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Non-additive combining abilities
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Statistical methods are commonly based on additive models. In particular, the
analysis of the yields of a set of crosses by additive 'general combining abilities'
makes no genetic assumption, apart from the equal importance of the two parents.
Such analyses in terms of g.c.a.'s are always successful to some extent, but rarely
account for all the observed variation. This paper considers the simultaneous
estimation of two constants—additive and multiplicative—for each parent. The
data can then decide for themselves how far they are additive, and how far multi-
plicative. In those cases where the additive method accounts for nearly all the
'genetic' variance, there is naturally little prospect of significant improvement by
a non-additive hypothesis.

1. ALGEBRA

k x I table. We consider all possible crosses between k male parents and I female
parents. The model used is

?/y = m + ai + bj + cidj + remainder

where y^ is the yield of the cross between the ith male and the j th female;
m is the general mean;
«j, bj are the male and female additive combining abilities;
Cj, dj are the multiplicative combining abilities;
2 ai = 2 bj = 2 c» = 2 Aj = 0 a n ( i o n e arbitrary restriction must be placed on

2c? or £ 4
The model is evidently not restricted to the genetical case, but can be used

generally on any two-way table. It no longer predicts (as does the purely additive
model) that one parent will always outshine another, whatever the third parent to
which both are mated. The least-squares estimates of m, at and bj are the same as
in the purely additive case. The analysis therefore consists of finding the inter-
actions zti by correcting yti for main effects of the two-way table, and applying the
model

Zy = Ci dj + remainder

to the k x I matrix {z} composed of the elements z^. From the least-squares equa-
tions it is easily shown that 2 ci 2 A/j is the (largest) latent root of the matrix {zz'}
(or of the matrix {z'z}); and that the vectors ct, dj are the corresponding latent
vectors of {zz'} and {z'z} respectively. Extraction of latent roots is, of course,
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child's play to a computer. The 'interaction' sum of squares S 2 | is reduced by an
amount Sc^Sd^-, a n d its degrees of freedom from (k — l)(l— 1) to (k — 2)(l — 2).
Similarly, by taking the first and second latent roots and vectors, the model

Zy = cidj + eifj + remainder

reduces the "remainder1 d.f. to (k—'6)(l—'i); and so on until all the variation is
exhausted. From this point of view, therefore, the fitting of additive main effects
may be regarded as an arbitrary reduction of the d.f. to (k— 1) (I— 1), which would
more naturally be achieved by means of latent roots and vectors. This explains the
apparent paradox that, whereas additive main effects need not (necessarily) reduce
the remainder mean square, multiplicative main effects must do so (since one latent
root is always larger than the others). In other words, in the absence of true
multiplicative effects, the m.s. for 'multiplicative main effects' is expected to
exceed the ' error 'm.s. The point must be borne in mind when judging the statistical
significance of the multiplicative terms. If we impose the further arbitrary con-
straints ct = ait dj = Xbj, estimation of A absorbs Tukey's (1949) 'one d.f. for non-
additivity'. The kxl table will not be discussed further, but it has to be considered
in order to understand the kxk diallel cross, consisting of the \k{k— 1) crosses
between k parents (omitting selfs and reciprocals). The model becomes

ytj = m + b{ + bj + ct c;- + remainder (1)

or y^ = m + 6, + bj — ct Cj + remainder (2)

as opposed to the orthodox

(3)

where 2 h = 0 a n ( i za is ^n e interaction, or special combining ability.
Models (1) and (2) are identical in theory—apart from a factor -\/( — 1) in the c's

—but must in practice be considered separately if we want real values of c.
Since

= (TO - 02) + (bi - 6ct) + {bj - dcj) + (ct + 6) (G, + 0)

the restrictions S î = 2 ct = 0 a r e truly arbitrary. Since

the model can equally be regarded as quadratic. The general combining abilities
tt of model (3) are easily estimated (Yates, 1947). Model (1) is not so simple; in
particular, the estimate of bt is not the same as that of tt. From the least-squares
equations it can be shown that model (1) is equivalent to fitting

c\ + c] £ c 2

*» = ^ Cj + - ^ - {k_1)(k_2) + remainder (4)

Model (2) fits the same expression to — zi;-. This is the method used in the numerical
analysis. However, it is clearly unsatisfactory to regard the model purely as a
further analysis of the special combining ability z^, since (4) involves k, the number
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of parents, which can, of course, take any value we please. Similarly, the simple
model

Zy = ct Cj + remainder

would be unsatisfactory when translated into a model for ?/„•. Although the analysis
is made in practice by fitting (4) to z#, that is only a convenient way of fitting (1)
to t/y. The reduction in 2X§ due to fitting (4) is

^l) (2
and the variance of the difference between two estimated c's is approximately

2k s2

where s2 is the error variance of ytj. This approximation is obtained from the least-
squares matrix by assuming all values of c2 equal. If the original errors are Normally
distributed, the errors of the c/s will not be Normal.

The values of ct were found iteratively by a special computer programme. The
equation for ct is

(k-2) £ ZtjCj =

Convergence is slow, and oscillations tend to develop unless damped. From the
discussion of the kxl table above, we can expect several sets of values of ct to
satisfy these equations. We are interested in one particular set. Consequently, the
initial values supplied to the computer, if wildly wrong, may affect the final result.

The values of ct were therefore obtained as follows. The sums of squares Z^ = 2 zfj

were found, and Z — /I S-^tl was taken as a preliminary estimate of c2. These

estimates of c2 were inserted into the matrix {z^} as diagonal terms, and the first
latent root was then extracted (corresponding to model (1)). The same estimates
of c2 were also inserted into the matrix { — z{j}, and the first latent root again ex-
tracted (corresponding to model (2)). One of these latent roots was always much
larger than the other, so indicating whether model (1) or (2) was chosen by the
data. As mentioned above, (1) and (2) are two forms of the same thing; to allow
the data to decide between them is a necessary part of the least-squares estimation.
The corresponding latent vector provided the starting values of ci; which were fed
into the programme for fitting (4). The analysis is thus rather complicated in
practice, but that is merely a consequence of using diallel cross data; in principle
it is very simple. Using the present Rothamsted computer, the method takes a lot
of time. Only the examples reported here have been analysed, and I do not expect
to do any more until a faster machine becomes available. Anyone who has access
to a fast computer, and wishes to programme the present analysis, would do well
to write to me first.
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2. GENETIC MODEL

The analysis can be illustrated by a crude genetic model, very similar to that of
Hayman (1954 a). The analysis in no way depends on the model—it would be
unacceptable if it did—and the reader is warned against identifying the two. Thus,
apparent ' dominance' may easily be due to multiplicative gene action or similar
curvature of the genotype-phenotype relation—with very different consequences
under selection (Gilbert, 1961a). But the model, although strictly incredible, does
illuminate certain aspects of the analysis. In particular, it suggests that the multi-
plicative statistical model will serve genetical data better than non-genetical.

In developing the genetic model, I make the same assumptions as Hayman,
namely

(1) additive independent gene effects ± d (homozygotes) or + h (heterozygote);
(2) two alleles at each locus;
(3) homozygous diploid parents;
(4) alleles independently distributed between parents,

together with the further simplification that the values of the genetic effects d and
h are the same for all loci. We then have

(a) phenotype of ith. parent = ipi = M + 2(l{ — N)d + remainder
(6) phenotype of Fx cross ixj

= M + [(k - N)d + kh] + [(lj - N)d + lj h] -1{ I, hjN + remainder

where M is a general mean;
d, h are additive and dominance effects;
li is the number of 'good' loci in the ith parent;
2N is the total number of segregating loci.

(b) is clearly of the same form as models (1) or (2), depending on whether h is
negative or positive. In other words, if (b) were true, (1) or (2) would absorb the
whole of the variation between the crosses, apart from error. We might be tempted
to write i =j in model (1), so expecting that, if the parents are inbred,
pi = m + 2bt + c\ + remainder. This expectation must be false, for we do not get (a.)
by substituting i = j in (b). From (6) it is easily shown that—if the genetic model
were true—ct and (bt — \pi) would both be concerned exclusively (apart from certain
constants) with dominance and would therefore be completely correlated, since
each would be a linear function of lt. The further expectations, that the correlations
cf x bi and c{ x pt would each be unity, depend rather more heavily on the assumption
of equal genetic effects at different loci. All these correlations will, of course, be
diluted by 'environmental' error.

3. Fj DATA OF HAYMAN (19546)

Although, as pointed out above, model (1) should properly be regarded as fitting
constants 6 and c simultaneously, the analyses of variance will be presented in
terms of the reduction in 2 z,§ that is achieved by fitting (4). In this way we can see
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Non-additive combining abilities 69

if the additive-multiplicative model performs better than the conventional additive
one.

Table 1. Analysis of variance of plant height o/Nicotiana rustica

d.f. m.s.

General c.a.
Special c.a.
Reciprocal diffs.
Error

On fitting model (1) this becomes:
Additive c.a.
Multiplicative c.a.
Remainder
Reciprocal diffs.
Error

As pointed out in Section 1, we are in effect selecting the largest root of a matrix;
and so, no valid significance test can be made on the m.s. for 'multiplicative c.a.'.
We might adopt one of Bartlett's (1951) tests for the largest root of a matrix as an
approximation, or evaluate the null distribution by Monte Carlo. But at present
we can only remark that the c's absorb an impressive amount of the 'special c.a.'
variance.

The correlations discussed in Section 2 are (6 d.f.):

Ci x bi 0-828

0.427

0-866

The signs of these, and similar, correlations can be reversed by reversing the signs
of the c/s (which leaves the rest of the analysis unaltered). Consequently, a two-
tailed significance test should be used.

4. Fx AND F2 DATA OF KINMAN AND SPRAGUE (1945)

Table 2. Analysis of variance of maize yield by model (1)

Additive c.a.
Multiplicative c.a.
Remainder

d.f.
9
9

26

Fx m.s.
424-2
2181
83-3

F2 m.s.
363-2
59-3
12-7

There is no estimate of error here, but the multiplicative constants have con-
siderably reduced the remainder m.s. Furthermore, the correlation between Fx and
F2 values of cf is 0-725 (8 d.f.), whereas the correlation between Fx and F2 values
of zi}—from which the c/s were estimated—is only 0-257 (34 d.f.). The multiplica-
tive constants can thus account entirely for the observed positive correlation
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between 'special combining abilities' z# in successive generations; the correlation
between Fx and F2 'remainders' is —0-237 (25 d.f.). The Fx correlations are:

CiXbi 0-113
0-144
0-300

(The values of pt suffer from severe inbreeding depression.)
There remains a possibility that a purely multiplicative model would serve as

well as the additive-multiplicative one. The F1 data were therefore analysed accord-
ing to the hypothesis

yij = didj+remainder

The values of d were estimated by least-squares, giving:

Table 3. Analysis of variance

d.f. Fx m.s.

Multiplicative c.a. 9 418-6
Remainder 35 119-4

The purely multiplicative model therefore absorbed no more variation than the
purely additive one. This one case suffices to remove the possibility that the
additive-multiplicative model is merely superfluous.

5. TOMATO YIELDS OF GILBERT (19616)

The data comprise Fx and F2 generations in 1958 and 1960, and selected F3 and
F 4 in 1960. I t was shown in the original paper that different F3 and F4 families had
responded differently to selection. There is therefore no reason to expect the F3

and F4 analyses to show much similarity to the Fx and F2. In fact, the Fx and F2 in
both years opted for model (2), but the F3 and F4 for model (1).

Table 4. Analyses of variance

Additive c.a.:

Regr. on parents
Remainder

Interactions:

Multiplicative c.a.
Remainder

Error (120 d.f. in 1958,
608 d.f. in 1960)

d.f.

1
16

17
118

1827
225

230
57

48

1958
A

4882
230

93
43

28

F l

13,393
703

804
198

169

1960

p 2 ;

21,400 21
382

393
184

169

,409
643

812
289

169

19,262
624

1173
389

169
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The values of ci; with parents arranged in groups according to Williams and
Gilbert (1960), are shown in Table 5. Correlations (16 d.f.) between c/s are:

1958 Fx x 1960 Fx 0-668 1958 ~F^ x 1958 F2 0-621
1958 F2 x 1960 F2 0-881 1960 Fx x 1960 F2 0-596

1960 F3 x 1960 F4 0-606

(The 5% two-tail confidence value is 0-53.) These figures are all very much higher
than the corresponding correlations between the interactions zti. Those correlations
which are expected to be large, if the c/s are to be genetically meaningful, are so;
the correlations of Fj or F2 with F3 or F4 are smaller. It might be thought that, if
model (2) were fitted to F3 and F4 (as it was to Fx and F2), the resultant c/s would
be correlated with the Fx and F2 c/s, although they are no longer true least-squares

Table 5. Values of ci (-\/(oz.) per plant)
1958 1960

(±0-469) (±0-249) (±0-559) (±0-526) (±0-532) (±0-504)
Group A:

Ailsa Craig -3-96 -1-07 -2-16 -1-53 -0-40 -2-05
Harbinger -1-61 -0-26 -1-11 -0-32 1-72 3-89
PlumptonKing -0-20 -0-56 -1-43 0-36 -1-59 -1-00
Crackerjack -0-71 -0-61 -1-00 -0-15 0-17 1-09

Group B:

Vetomold 1-15 0-16 1-64 0-33 -0-36 -1-70
Potentate 1-09 0-15 1-79 0-17 -2-06 1-18
Potential 1-09 -0-62 1-49 0-24 1-59 0-88
Vagabond 0-92 0-27 3-46 0-77 1-17 0-05
Comet -1-50 -0-89 0-59 0-29 1-41 -0-70
Baby Lea 2-62 4-56 2-28 6-59 0-55 -0-72

Other varieties:

KondineRed - 0 1 4 -0-62 -1-09 -0-38 3-03 1-88
LMR 1 -1-28 -0-10 -1-92 -2-13 1-93 1-51
E S I -0-87 -0-62 -1-51 -1-91 -0-21 002
Delicious 1-08 -0-43 -1-61 -0-44 -4-95 -2-94
Radio 0-02 -0-19 -1-92 -0-98 -1-25 -2-30
Downes' Seedling -0-47 0-03 0-27 -0-89 -0-60 -0-45
Exhibition 2-04 0-60 1-33 0-10 0-31 3-32
Moneymaker 0-72 0-19 0-91 -0-14 -0-44 -1-95

The figures in brackets are standard errors.

The Fx correlations are:
1958 1960

-0-550 -0-207
-0-750 -0-425

CiX(bi-iPi) 0-387 0-348

(The signs of these correlations can be reversed by reversing the signs of the c/s.)
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estimates. This expectation is not fulfilled. In fact the F3 and F4, having responded
differentially to selection, give patterns of ct quite different from Fx and F2. In
Table 5, the varieties within groups A and B—thought on other grounds to be similar
—show similar values of ct in Fx and F2, but not in F3 or F4. It is possibly of interest
that Baby Lea, as a variety, has previously performed extremely erratically.

6. DISCUSSION

To those accustomed to an additive way of thinking, it may appear that, since
Cj is estimated from interactions zti, the value obtained will depend entirely on which
other parents are included. In other words, the value of ĉ  might not truly char-
acterize the ith parent—in the way that an additive combining ability does—but
only the set of crosses as a whole. Such an argument vanishes as soon as the possi-
bility of (partially) multiplicative genetic effects is admitted. Consideration of
model (4) shows that elimination of one parent from the diallel cross would not
seriously alter the relative values of the remaining c/s. The large correlations
between Fx and F2 values of cit expected on almost any genetic theory, indicate that
the Ci's are genuinely describing some characteristic of the parents. The poor
correlations between c{ and bt show that ct is not merely measuring the same thing
as bt. The poor correlations between ct and {b{ — JpJ show that the genetic model
of Section 2 is possibly valuable but certainly untrustworthy.

The present analysis may usefully be compared with that of Hayman (1954a).
Hayman's very ingenious method depends rather crucially on unverifiable genetic
assumptions, and involves a searching analysis of second-order statistics. I am
afraid that the results can rarely mean what they purport to mean. Students of
quantitative inheritance perhaps pay too much attention to second-order statistics
altogether. The present method is free of both these troubles. It is concerned with
the individual parents, whereas Hayman's analysis is more interested in the set of
parents as a whole. The present method certainly does not try to sort out additive
gene effects, dominance, etc. The use of such terms—except in a purely nominal
way—is, I submit, bound to be misleading in these situations where the true genetic
system is unimaginably complicated.

It may well be asked, what is the use of the method advanced in this paper?
Regarding the study of quantitative inheritance as an end in itself, the method can
and does improve our understanding. It is true that any behaviour can be explained
in terms of multiple interactions between additive genetic effects. But unless some
kind of pattern can be discerned, such an ' explanation' does nothing to improve
our comprehension of the phenomena. The additive-multiplicative model has
proved capable of describing remarkably well—although still not perfectly—the
rather large bodies of data analysed here. It will be interesting to compare the
magnitudes of c{ in Fx and F2, and to see how well the analysis works for backcrosses
and for parents that are not inbred. I am convinced that genuine progress in the
subject must come from cautious statistical description of this kind, rather than
from analyses dependent on unverified genetical hypotheses. The results presented
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in this paper suggest very strongly that a non-additive way of thinking is more
helpful than the additive, however easy the latter may be statistically.

Various analyses, notably selection indices and polygenes, have been advocated
as aids to practical breeding. None of the claims has so far been substantiated.
In plant breeding, it is relatively easy to achieve any (reasonable) specification; the
major difficulty is rather to recognize what kind of plant is really wanted, as the
history of Proctor barley shows. The main need is not for elegant statistical frills,
but for effective ways of reducing the numbers of plants that have to be grown.
There is more scope for refined analysis in animal breeding, where individuals are
expensive and no vegetative multiplication is possible. Bearing in mind its limit-
ations, the concept of heritability is certainly useful, and perhaps no single parameter
could be more useful. But it is often asserted that 'genetic correlations' enable us
to predict changes in one character consequent on selection for another character.
This assertion, which depends on assumptions of additivity and of linear relations
between the characters, has not been adequately tested by experiment. Until such
elementary information has been obtained, refinements such as that proposed in
this paper seem superfluous. Neither the present method, nor any similarly
sophisticated one, offers practical help to the breeder in dealing with specific
problems. But any knowledge of the general pattern of quantitative inheritance
will be worth having.

7. SUMMARY

An additive-multiplicative model is found to describe diallel cross data rather
well. Estimates of the model's parameters are highly correlated from generation
to generation.

I thank Dr F. Yates for the use of the Rothamsted computer, Mr C. W. Fearne for his help
with machine work, and the Referee for his valuable criticism. The data of Section 5 were
obtained at John Innes Institute.
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