COMPACT SUBSETS IN FUNCTION SPACES
S. K. Kaul
(received January 20, 1969)
1. We wish to study the problem of finding conditions under which
a family of maps from one space into another, with a suitable topology,

is compact. Some of the results obtained in this direction are in
[1; 2; 3]. We propose to give conditions, to be called uniformly regular

and regular (the terminology is motivated by [4]), under which "Ascoli"
theorems can be proved. These notions turn out to be equivalent to even
continuity of Kelley [1, page 235] under such conditions that all the
theorems in the section on even continuity in it still hold when in their
statements even continuity is replaced by either uniform regularity or
regularity (see Theorem A below).

Let X,Y be topological spaces. We denote by (X,Y) the set
of all continuous functions from X to Y. This set with the compact
open topology will be denoted by C(X, Y) and with the pointwise topology
by P(X,Y) (see[1, Ch. 7] for terminology).

(1.1). F C (X,Y) is said to be uniformly regular if for any open
covering V of Y there exists an open covering U of X such that U

-1 -1 -
refines f [V] (U > f '[V]) for each f in F, where f 1[V] =
-1
{f [v]:veV}.

(1.2), F C (X,Y) is said to be regular at x ¢ X if for any open set
V in Y and G C F such that G(x) C V, where G(x) = {g(x) : g ¢ G},
there exists an open set U containing x such that g[U] C V for each
g in G. F is said to be regular if it is regular at each point of X.

We recall also the definition of even continuity from [1].

(1.3). F C (X,Y) is evenly continuous if for each x in X, each
y in Y and each open set V containing y, there exists a neighbourhood
W of y and U of x such that f{U] C V whenever f(x) ¢ W.

The main results are the following:

THEOREM A. Suppose Y is a regular space, F C (X,Y) and
F(x) is compact for each x in X. Then the following are equivalent:
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(a) F is uniformly regular;

(b) F is regular;

(c) F is evenly continuous.

THEOREM B. Suppose Y is regular and Hausdorff and X is
separable. If F C C(X,Y) is regular and closed and F(x) is compact

for each x in X, then F is sequentially compact.

We also prove Theorem 20 [1, page 236] with only assuming
regular (see Corollary (2.1) below).

2. The following lemmas lead to the proof of Theorem A.

LEMMA (2.1). I F C (X,Y) is uniformly regular then it is
regular.

Proof. Let x € X and v be an open setin Y. Let G CF be
such that G(x) Cv. Let V = {v,Y - G(x)} . Given the open covering
V of Y, there exists, since F is uniformly regular, an open covering

U of X suchthat U > f_i[V] for each f in F. Let u be a member
of U containing x. Since g(x) ¢ Y - G(x) for any g ¢ G,

glu] € Y - G(x). Hencefor g e G, g[lu] Cv. Since x and u were
arbitrary, this proves the lemma.

LEMMA (2.2). Let Y be a regular (or Hausdorff) space and V
be an open covering of Y. If F C (X,Y) is regular at p ¢ X, and
F(p) is compact, then there exists an open set u containing p such

that U = {u} > f‘i[v] for all f in F.

Proof. Clearly F(p) is a regular closed space whether we assume
Y to be regular or Hausdorff. Thus there exists a covering W of F(p)
by sets w open in the subspace F(p) suchthat W = {w:w ¢ W} > V.
Let {w'1 y o s e wn} be a finite subset of W that covers F(p). Let

Fi={f£F:f(p)swi}, 1 < i< n. Then since {W1,...,Wn}

n
covers F(p), U Fi = F. Since W > V there exists v, o€ V such
i=1
that 'W_l C \# and consequently Fi(p) Cw, C Vi 1 < i< n. Since
i S 1=

F is regular at p, there exists for each i an open set u, containing
i

n

p such that f[ui] Cuv, for feF . Let us= M u, - Then for each
i=1

feF, ffu] C v, for some i, 1 < i < n. Hence the result that

-1
U = {u} > f [V] for each f in F.
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LEMMA (2.3). Suppose Y is regular (or Hausdorff), F C (X,Y)
and F(x) is compact for each x in X. I F is regular then F is
uniformly regular.

Proof. Let V be any given open covering of Y. For each x ¢ X
and V find an open set u(x) as in Lemma (2.2). Then the open covering
U = {u(x) : x ¢ X} thus obtained has the required property.

LEMMA (2.4). Suppose F C (X,Y) and F(p) is compact for
p in X. I F is evenly continuous then F is regular at p.

Proof. Let v _be anopensetin Y and G C F such that G(p) C v.
Given p ¢ X, y ¢ Gfp) and v = v(y), there exists a neighbourhood uf(y)
of p and w(y) C v(y) of y such that if for f ¢ G, f(p) ¢ w(y) then
fl[u(y)] € v(y). Carrying out this construction for each y in G(p) we
get an open covering W = {w(y) : y ¢ G(p)} of G(p) and corresponding
to it a family U = {u(y)} of neighbourhoods of p. Let u be the
intersection of members of U corresponding to a finite subset of W
covering G(p). Clearly then for any g ¢ G, g[u] C v. Since v was
arbitrary, F is regular at p. This completes the proof.

LEMMA (2.5). Suppose Y is regular. I F C (X,Y) is regular,
then it is evenly continuous.

Proof. Let x ¢ X, y ¢ Y and let u, a neighbourhood of y, be
given. Let w be a neighbourhood of y such that & C u. Let
G={geF :gx) ew. Then G(x) CW C u, and by regularity of F,
there exists a neighbourhood v of x such that g[v] Cu for any g ¢ G.
Thus if g ¢ F, and g(x) ¢ w, then g e G, and consequently g[v] C u.
This implies that F is evenly continuous.

Proof of Theorem A. Lemmas (2.1) and (2.3) imply that (a) and
(b) are equivalent; Lemmas (2.4) and (2.5) imply that (b) and (c) are
equivalent. Hence (a), (b), and (c) are equivalent. This completes the
proof.

Let e : (X,Y) X X = Y be defined by e(f,x) = f(x) for f ¢ (X,Y)
and x ¢ X. If for a topology on F C (X, Y), e restricted to F is
continuous, then we call it a jointly continuous topology on F.

THEOREM (2.1). K F C (X,Y) is compact relative to a jointly
continuous topology on F, then F is regular.

Proof. ILet x ¢ X, v be anopensetin Y, and G C F be such
that Gx) C v. Let w = Y - G(x). Then {v,w} is an open covering
of Y. For f in F if f(x) € v then we find open sets o(f) and u(f, x)
containing f and x respectively such that e(o(f) X u(f,x)) Cv. In
case f ¢ F and f(x) ¢ v, then of course f(x) ¢ w; again in this case
we find open sets as above so that e (o(f), u(f,x)) € w. From the open
covering {o(f) : f ¢ F} thus obtained we obtain a finite open covering
{O(fi) : ie I} of F, where I is afinite set. Let J be the subset
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of I such that {O(fi) :ie J} covers G, and also each o(fi), ie J,
contains at least one member of G. Now, since o(fi) for i¢ J,

contains a member g of G and g(x) ¢ v, by the above construction

e(o(f.) X u(f.,x)) Cv. Let u = () uff,,x). Thenfor g ¢ G, g[u] Cv.
i i icT i

Hence F is regular at x. Since x was arbitrary, F is regular and

the proof is complete.

From Theorem A and Theorem (2.1), we get immediately:

COROLLARY (2.1). X F C (X,Y) is compact relative to a
jointly continuous topology on F, and Y is regular (or Hausdorff),

then F is evenly continuous.

3. LEMMA (3.1). Let Y be Hausdorff, and {f } be a sequence
et be Hausdoril, and it seq

in (X, Y) regular at p in X. Then for any open set v containing
q = Lim f (p) (assuming that the limit exists) there exists an open set
n
n--w

u and a positive integer N such that f [u] C v for n > N.
n tor =z

Proof. Since Lim f (p) = q ¢ v, there exists a positive integer
n-»
N suchthat f (p) e v for n > N. Hence {f (p): n> N} Cv. From
n - n -

regularity of {fn} it follows that there exists an open set u containing

x such that fn[u] Cv for n > N.

THEOREM (3.1). Suppose {fn} C (X, Y) is regular, and

{fn(x)} converges for each x in X. Let f : X - Y be defined by

f(x) = Lim f (x) for x ¢ X. I Y is Hausdorff and regular, then f
n->w O
is continuous. Furthermore, f is a limit point of {fn} in C(X,Y).

Proof. Let x ¢ X and v be an open set containing f(x). Since
Y is regular there exists an open set w containing f(x) such that
W Cv. From Lemma (3.1) there exists an open set u containing x
and a positive integer N such that fn[u] Cw for n > N. Hence

flu] C W C v. Thus f is continuous at x. Since x is arbitrary f
is continuous on X.
To show that f is a limit pointof {f } in C(X,Y), it is enough
n

to show that any sub-basic open set in C(X,Y) containing f contains
all but a finite number of fn. Let M(k,v) = {h e (X,Y) : h(k) C v},

where k is compactin X and v is openin Y, be a sub-basic open
set containing f. For each x in k, since Lim f(x) = f(x) e v,
n--o
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there exists a positive integer N(x) such that, for n > N(x), fn(x) £ V.
Since Y is Hausdorff, {fn(x) :n > N(x)} Cv. From regularity of
{fn} , there exists an open set u(x) containing x, such that

fn[u(x)] Cv for n > N(x). The family {u(x) : x ¢ k} yields a finite
open cover {u(xi), e, u(xn)} of k. f N = max {N(x1), e, N(xn)} ,
then for n > N, fn(k) C v. This completes the proof.

LEMMA (3.2). Let A C X be dense, and {fn} be a sequence in

(X,Y) such that {fn(a)} converges for each a ¢ A. If Y is Hausdorff

and regular, {fn(x)} " is compact for each x in X, and {fn} is

regular, then {fn(x)} converges for each x in X.

Proof. Let x ¢ X and suppose that {fn(x)} does not converge.
Since {fn(x)} " is compact and Y is TZ, we find two subsequences
{gn} and {hn} of {fn} such that {gn(x)} converges to say p, and
{hn(x)} converges to say q, where p # q. Since Y is TZ, there
exist disjoint open sets vy and v, containing p and q respectively.
From Lemma (3.1) there exist open sets u, and u, containing x and

1
positive integers N, and N2 such that gn[u1] Cv,, for n> N1 and

1 1
C > . L = . i i i ,
hn[uz] v, for n > N2 et u = u M u, . Since A is dense in X
there exists an a ¢ A () u. Clearly {fn(a)} does not converge to any
point contrary to the hypothesis. Hence {fn(x)} converges, and the lemma
is proved.

THEOREM (3.2). Let Y be Hausdorff and regular, A C X be
dense, and {fn} C (X,Y) be a sequence such that {fn(a)} converges

for each a in A. Then the function g defined on A by g(a) = Lim fn(a)
n- o

for a in A, has a unique extension to a continuous function f : X — Y

provided that, (1) {fn(x)}_ is compact for each x in X, and (2)
is regular.
{fn} is regular

Proof. From Lemma (3.2) it follows that {fn(x)} converges

for each x in X. Hence f(x) = Lim fn(x) is a well-defined function
n-=> oo

on X which agrees with g on A. From Theorem (3.1) it follows that

f is continuous on X . Since f is a continuous extension of a continuous

function g on a dense subset A in X and Y is Hausdorff, f is unique.

This completes the proof.

465

https://doi.org/10.4153/CMB-1969-057-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-057-9

Proof of Theorem B. Since X is separable, there exists a

countable dense subset A in X. Since {fn(a)} " for {f } CF is
n

compact for each a in A, by the Cantor diagonal process [5, Theorem 9,
page 45] there exists a subsequence {gn} of {f } suchthat {g (a)}
n n

converges for each a in A. By Theorem (3.2) the function g: A - y
defined by g(a) = Lim gn(a) has a unique extension to a continuous

n->o
function f: X - Y. By Theorem (3.1), f is a limit point of {gn} CF,

and consequently, since F is closed, f lies in it. Thus an arbitrary
sequence {fn} of F has a convergent subsequence converging to a

point of F . This proves the theorem.

Remark. In view of Theorem A, 'even continuity'" can be
replaced by '"regularity" in Theorems 22 and 23 [1, page 237].
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