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Abstract

Objective: Unnecessary and suboptimal antibiotic use causes adverse outcomes at both the level of individuals and health systems. Prospective
audit and feedback, a core aspect of antibiotic stewardship program (ASP) efforts, reduces such use, but is inefficient in the absence of a pre-
screening process. To address this, we used a machine learning approach to stratify antibiotic orders based on the likelihood of benefiting from
ASP review, and to identify the factors most influential in the model’s predictions.

Design: Machine learning model developed using expert-labeled point-prevalence data.
Setting: Single-center adult academic hospital.
Participants: Hospitalized patients 18 years or older on internal medicine services between May 2021 and August 2022.

Methods: Infectious disease experts assessed antibiotic orders for necessity and optimal use to create labels which were used as ground truth to
train a machine learning model that uses automatically queried data from the electronic health record including vital signs, laboratory values,
microbiological data, and medication administration records.

Results: Our model achieved an area under the receiver operating characteristic curve of 0.89 for antibiotic necessity and 0.80 for optimal use.
Model predictions were driven largely by markers of clinical instability, inflammation, and infection. Simpler clinical indices of infection had
no predictive ability.

Conclusions: We describe a model that predicts antibiotic necessity and optimal use using routinely available data that can be automatically
aggregated from medical records. This makes it a promising option for early identification and intervention on orders most likely to benefit
from ASP review.

(Received 4 May 2025; accepted 7 August 2025)

Introduction through restriction of certain antibiotics, prospective audit and
feedback (PAF), and co-implementation with infection control
measures.® ASP interventions have been shown to decrease rates of
both multidrug-resistant organisms and incidence of C. difficile
infection, and have an important role to play in reducing the
adverse consequences of suboptimal antibiotic use.”

Prospective audit and feedback (PAF), a backbone of ASP
efforts, optimizes antibiotic use via expert review of medical
records for appropriateness and via proactive outreach to
prescribing teams.® This includes identifying cases where anti-
biotics are not indicated, or where modifying them might reduce
toxicity or improve efficacy. PAF reduces the use of broad-
spectrum antibiotic use and might reduce rates of antibiotic
resistance without negatively affecting outcomes.>>!® Despite
PAF’s benefits, its labor-intensive nature limits higher-volume

As many as 50% of hospitalized patients receive antibiotics during
the course of their hospitalization.! Despite antibiotics’ life-saving
role in treating bacterial infections, approximately one fifth of
hospitalized patients who receive them experience adverse effects,
including hypersensitivity —reactions, direct toxicity, and
Clostridioides difficile infection.>® On a systems level, broad-
spectrum antibiotic use drives increased rates of multi-drug
resistance, contributing to worldwide morbidity and mortality.* In
hospital settings, where an estimated 30% of antibiotic use is
unnecessary, some of this harm may be avoidable.” Antibiotic
stewardship programs (ASPs) seek to balance antibiotics™ utility
with the harms stemming from unnecessary or suboptimal use
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implementation.'! An automated method to stratify orders based
on their need for review might refocus ASP audits toward orders
most likely to benefit from interventions.
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To this end, we developed a machine learning model to flag
suboptimal or non-indicated antibiotic orders for ASP audit and
feedback. The model uses data that can be automatically queried
from the electronic health record (EHR), and makes clinician-
interpretable predictions about indications and optimal antibi-
otic use.

Methods
Study population

Data collection and analysis for this study were approved by the
University of California, San Francisco (UCSF) internal review
board. Our study cohort included adult patients receiving at least
one antibiotic who were treated on the hospital medicine service
between May 2021 and August 2022 at UCSF Parnassus Medical
Center, an adult tertiary academic hospital. Separate medical
services (intensive care, cardiology and malignant hematology)
were excluded, as were surgical services. Three infectious diseases
experts (two faculty physicians and one infectious diseases
specialty pharmacist) completed quarterly periodic point preva-
lence surveys of all patients on a given medicine team receiving
antibiotics on the day of the survey. A single clinician assessed
orders for (1) whether antibiotics were indicated and (2) whether
the antibiotic selected was optimal. To ensure uniformity, all
reviews were performed using the National Antimicrobial
Prescribing Survey (NAPS) tool, a standardized, clinically
validated questionnaire.!> National Antimicrobial Prescribing
Survey (NAPS) assesses antimicrobial agent indication and
optimal use including dose, route of administration, clinical
syndrome, patient allergies/comorbidities, and microbiological
data, if applicable (a complete version of the tool is in the
supplemental appendix).

Reviewers at our institution assessed orders based on patient
notes, vital signs, laboratory values, imaging, medicine adminis-
tration record (MAR), and microbiological data. Data were
collected and processed at the level of individual antibiotic orders.
Two concurrent orders for the same patient were considered
separately—due to the intermittent point prevalence design of the
reviews, repeat orders for the same patient were assessed at
intervals of 3 months or greater, and were therefore considered
independently of one another. Patients receiving infectious disease
consultation were excluded from review.

Data extraction, labeling, and descriptive statistics

Data were extracted from the medical record via a reporting database,
Clarity, attached to our institution’s EHR (Epic Systems Corporation,
Verona, Wisconsin, United States). To match the model’s intended
use case (ie, automated screening of existing/new antibiotic orders),
data were censored after 11:59 PM on the day prior to review.
Subsequent data processing and machine learning model develop-
ment were done using the Python programing language (Python
3.9.2, Python Software Foundation, Wilmington, Delaware, United
States); libraries used are detailed in the supplement. Student’s T-test
or the Kruskal-Wallis test were used to compare continuous
variables, the chi-squared test or Pearson’s exact test for categori-
cal ones.

Model generation

We selected the initial pool of training features based on their
relevance to infection. Candidate features included: markers of
hemodynamic and respiratory status (eg, vital signs, pulse
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oximetry); inflammatory markers (white blood cell count
(WBC), C-reactive protein (CRP), eg,); and markers of end organ
function (creatinine, bilirubin, eg,). A complete medication
administration record (MAR), including antibiotics, immunosup-
pressants, and microbiological data were also included. medication
administration record (MAR) data contained date and time of
administration for antibiotics, allowing duration of treatment to be
determined for each. Microbiological data included species,
presence of extended-spectrum beta lactamase producing enter-
obacterales (ESBL; designated by presence of ceftriaxone resis-
tance), identification of methicillin-resistant Staphylococcus aureus
isolates (MRSA; designated by either phenotypic testing or rapid
molecular diagnostics), and for negative cultures, the quantity of
time with no growth detected.

We selected a machine learning approach to develop our model
based on machine learning models’ ability to capture hierarchical,
nonlinear relationships without explicit a priori instruction about
how to relate variables to one another.!* The model chosen,
XGBoost, makes predictions by iteratively creating decision trees
to generate and refine predictions.'* The model used a 10-fold
cross-validation scheme with non-repeating partitions of 90% train
and 10% test data to prevent overfitting. The performance metrics
reported herein are aggregated from the 10 different partitions of
test data, which were not used to directly train models.

Area under the receiver operating characteristic curve
(AUROC) was used to adjudicate predictive ability—AUROC
measures the ability to distinguish between different types of
objects, with an AUROC of 1.0 representing a perfect predictor and
an AUROC of 0.5 representing a predictor that performs no better
than random chance (an AUROC 0.5-0.6 is generally considered
poor, 0.6-0.7 weak, 0.7-0.8 fair, 0.8-0.9 good, and 0.9-1.0
excellent, although these are not formal definitions and perfor-
mance needs to be considered in context). SHAP (SHapley
Additive exPlanations), an approach to machine learning model
interpretation that uses game theory to identify variables’ relative
influence on model predictions, was used both to iteratively select
variables during model development and to interpret the final
model’s predictions.

After model generation and evaluation we assessed the
performance of the systemic inflammatory response syndrome
(SIRS) criteria, a commonly used diagnostic tool for infections in
hospitalized patients, to query whether our model’s performance
exceeded that of simpler clinical decision tools; the quick sepsis-
related organ failure assessment score was not used due to the
quantity of missing data for Glasgow Coma Scale measure-
ments.'>~!7

Study design, model generation and data reporting were
executed in alignment with the TRIPOD guidelines for clinical
prediction models.'® The supplemental appendix describes addi-
tional details about variable selection, feature engineering and
model development.

Results

425 antibiotic orders were reviewed and annotated between May
2021 and August 2022. 176 (41%) of patients were female, the
average age was 64 years (interquartile range (IQR): 53-74), and
the median duration of hospitalization prior to review was 11 days
(IQR: 7-15). Of orders reviewed, 317 (75%) and 236 (56%) were
assessed as indicated and optimal, respectively. Demographic, vital
sign, laboratory and antibiotic data are summarized in Table 1. No
statistically significant differences were seen between antibiotics
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Table 1. Cohort characteristics

Optimal Indicated
Yes No Yes No

Female 96 (22) 80 (18) 136 (32) 37 (8)
BSHO 100 (23) 71 (16) 135 (32) 35 (8)
BSCA 159 (37) 141 (33) 218 (52) 74 (17)
Gram positive 172 (40) 142 (33) 239 (57) 65 (15)
MRSA 172 (40) 142 (33) 239 (57) 65 (15)
ESBL 93 (21) 59 (13) 124 (29) 26 (6)
Pseudomonas 117 (27) 96 (22) 160 (38) 50 (12)
Positive blood culture 58 (13) 34 (8) 75 (18) 11 (2)
Positive urine culture 74 (17) 72 (16) 112 (26) 30 (7)
Age 65 (53-74) 64 (54-75) 64 (55-75) 63 (52-73)
Days of antibiotics 1(1-5) 1(1-4) 1(1-4) 1(0-3)
ASI at review 9 (5-13) 10 (6-14) 9 (5-13) 9 (5-13)

Median SBP, 24h 121 (110-135)

119 (106-132) 121 (107-133) 120 (108-137)

Median HR, 24h 84 (71-96) 89 (77-99) 84 (73-98) 90 (80-99)
Median RR, 24h 18 (16-18) 18 (16-18) 18 (16-18) 18 (16-18)
Median temperature, 24h 98 (97-98) 98 (97-98) 98 (97-98) 98 (97-98)
Median WBC, 24h 8 (6-13) 9 (7-14) 8 (6-13) 9 (6-15)
Median platelet count, 24h 221 (143-338) 240 (156-324) 228 (142-338) 231 (158-290)
Median lactate, 24h 1(1-2) 1(1-1) 1(1-1) 1(1-2)

Parentheses show column percentages for categorical variables and interquartile ranges for continuous ones. BSHO: broad-spectrum hospital onset, HSCA: broad-spectrum community
acquired, MRSA: methicillin-resistant Staphylococcus aureus, ESBL: extended-spectrum beta lactamase, ASI: antibiotic spectrum index, SBP: systolic blood pressure, HR: heart rate (beats per

minute), RR: respiratory rate (breaths per minute), WBC (1 000 cells per microliter).

received, vital sign values, laboratory values, or demographic
characteristics between patients who met the “indicated” versus
“optimal” criteria (unadjusted P > 0.05 for all comparisons).

Stepwise feature selection identified optimum performance at
18 features for both the indicated and optimal criteria, yielding
respective AUROCs (95% confidence interval) of 0.89 (0.87-
0.91) and 0.80 (0.77-0.83) (Figure 1). To explore which types of
clinical data were most informative for making predictions, we
also trained separate models using: vital signs only; laboratory
values only; and microbiology/antibiotic administration data
only (these were paired to assess how well the model could learn
to identify concordance between culture data and spectra of
coverage).

For the final models (ie, those using all available data that had
undergone feature selection to optimize performance), we also
assessed performance on different subsets of antibiotics as defined
by the National Healthcare Standardized Antimicrobial Admini-
stration Ratios antimicrobial categories: broad-spectrum hospital
onset; broad-spectrum community onset; MRSA; ESBL and
Pseudomonas aeruginosa.'® In brief, model performance was
highest using all available data, and lower when trained
individually on vitals, laboratory data, and microbiological/ MAR
data, in descending order of performance. This held true for both
predicting whether antimicrobials were indicated and for whether
the optimal antimicrobial was being used. Model performance
across spectra of coverage appeared similar. For ease of readability,
model performance is detailed in Table 2. Systemic inflammatory
response syndrome (SIRS) criteria distributions are shown in
Figures S3a and S3b.
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Table 2. Model performance

Indicated Optimal

Training data AUROC 95% Cl AUROC 95% Cl
All data 0.89  (0.87-0.91) 0.8 (0.77-0.83)
Vital signs 0.87  (0.70-0.98)  0.77 (0.58-0.91)
Laboratory data 0.76 (0.57-0.93) 0.76 (0.540.90)
Microbiology/antibiotics 0.74 (0.45-0.98) 0.66 (0.48-0.82)
SIRS criteria 042  (0.37-0.49)  0.42 (0.36-0.47)
Spectrum of coverage AUROC 95% Cl AUROC 95% Cl
BSHO 0.86 (0.78-0.92) 0.77 (0.70-0.86)
BSCA 0.87  (0.80-0.90)  0.81  (0.75--0.85)
MRSA 0.87 (0.82-0.92) 0.77 (0.71-0.84)
ESBL 0.89  (0.78-097)  0.73 (0.64-0.82)
PsA 0.82  (0.73-0.88)  0.78 (0.70-0.83)

Area under the receiver operating characteristic curve (AUROC) with 95% confidence intervals
(C1) are listed, with performance stratified by the profile of data used to train the model (all
available data vs subsets) as well as model performance by spectrum of coverage (broad-
spectrum hospital onset (BSHO), broad-spectrum community onset (BSCO), methicillin-
resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase producing
organisms (ESBL) and Pseudomonas aeruginosa (PsA). The systemic inflammatory response
(SIRS) criteria are listed as a comparator.

The top 5 features identified by SHAP for each outcome were, in
descending order: diastolic blood pressure range over the most
recent 8 hours, median diastolic blood pressure at -48 hours,
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Figure 1. Feature selection and optimization. 1a and 1b show AUROC trend as non-informative features are iteratively removed; trend lines represent a rolling average of AUROC,

with 95% confidence interval (Cl) depicted by shading.
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Figure 2. global feature performance. The x axis depicts the relative contribution of a feature as determined by SHAP values, normalized to a total of 100%.

median glucose at —-24 hours, estimated WBC slope, and median
systolic blood pressure at 72 hours for the “indicated” outcome;
and median absolute neutrophil count at —48 hours, diastolic blood
pressure range over the most recent 8 hours, estimated heart rate
intercept, median systolic blood pressure at -72 hours, and
estimated WBC intercept for the “optimal” outcome (Figure 2).
To identify clinical correlates for those predictions, we
examined the relationship between feature values (ie, clinical
values) and SHAP values (ie, the values used to summarize the
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relative importance of those features). Illustrative results from the
“optimal” model are shown in Figure 3. Figures 3a and 3b depict
diastolic blood pressure range in the 8 hours prior to data
collection and the rate of change in temperature. Both examples
show a positive relationship between markers of clinical instability
and a positive prediction (ie, a order predicted as optimal).
Figure 3c shows correspondence between both elevated and lower
platelet levels and positive predictions. FIgure 3d shows
correspondence between a rise in white blood cell count in the
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Figure 3. illustrative feature-prediction relationships for optimal use. Each dot represents a single prediction by the model (red dots represent orders in need of review based on
ASP staff review; blue dots those which do not). The y axis represents a given value’s impact on model predictions as determined by SHAP. Negative values predict suboptimal/

non-indicated orders in need for review, and vice versa.

72 hours preceding review and positive predictions. Figures 3e and
3f, interestingly, show that elevated absolute neutrophil count at
—48 hours and decreased systolic blood pressure at —72 hours
correspond to negative predictions. A complete set of feature-
variable graphs for each model is provided in the supplemental
materials.

Discussion

We describe a machine learning model that accurately stratifies
inpatient antibiotic orders according to predicted likelihood of
being not indicated or suboptimal and thus needing review by an
ASP team. The model employs ubiquitously available data that can
be automatically extracted from the EHR without the need for
manual extraction, and can be interrogated to make interpretations
explainable. Its predictions demonstrate accuracy over several
spectra of antibiotics, although its performance appears slightly
higher in community-acquired compared to hospital-acquired
infections, potentially reflecting differences in complexity between
infections arising in the community versus those in patients with
significant healthcare exposure.

The most influential clinical features in our model include
markers of hemodynamic instability, inflammation, and end-
organ dysfunction. Relatively little model performance comes from
antibiotic orders themselves. This emphasis on markers of
infection mirrors clinicians’ approach to empiric antibiotic use;
empiric treatment is life-saving in newly septic patients, and is
often guided by clinical status rather than microbiological data.
Interestingly, markers of instability or inflammation did not yield
positive predictions more than 48 hours in advance of review. In
these cases abnormal values (leukocytosis, low systolic blood
pressure) actually correlate with predictions that antibiotic use
might not be indicated/optimal. One potential explanation is that
abnormal values in this setting can arise from preexisting non-
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infectious causes, such as reactive leukocytosis in malignancy or
stable hypotension in a patient with cirrhosis. Alternatively,
abnormal values 2-3 days prior to review may function as a proxy
for prior antibiotic use, and the need to revisit prior empiric
treatment.

We have previously described a machine learning approach to
screen for antibiotic orders in need of ASP review, describing an
approach that similarly found markers of clinical instability or
systemic inflammation as key predictors.?’ In contrast to this prior
work, which used data from a single time point, our model makes
use of time series data, which lends context to data that would
otherwise be interpreted in isolation. This likely accounts for the
increased discriminative ability of the model described in
this paper.

Microbiological and MAR data contributed little to model
predictions in our study. Models trained on such data alone did
retain predictive ability but with poorer performance compared to
vital sign or laboratory data when each was used in isolation. In
contrast, work recently published by Tran-The et al, who describe a
model for recommending antibiotic discontinuation, oral switch,
or de-escalation, places greater emphasis on specific classes of
antibiotics as well as susceptibility data 2! Beyond slightly different
use cases for the models, this may be in part due to differences in
the time between antibiotic initiation and ASP review. 60% of
orders in our data set were less than 48 hours old with a median of
1.2 days, whereas data described in the authors’ paper had a mean
antibiotic duration of 13.2 days in the discontinuation arm, 8.2 in
their early de-escalation, and 17.3 in their late de-escalation (ibid).
Microbiological data are unlikely to yield actionable information in
fewer than 48 hours, a period in which decisions about antibiotics
are often made empirically and influenced by markers of clinical
instability or active infection. Sample size likely also influenced
which features Goodman et al (2022), in a similar paper modeling
antibiotic appropriateness, were able to make use of.??
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Ultimately, the goal of a model such as this one would be to use
an automated pipeline to triage antimicrobial orders in order for
ASP staff to make better use of finite resources by prioritizing
orders for review. Surveys of antibiotic use in United States
hospitals suggest more than half of patients admitted will receive
antibiotics, with a median of 776 days of therapy per 1,000 patient-
days.? Given the high proportion of patients receiving antibiotics,
manually reviewing all orders is impractical, and our institution’s
current approach is to select limited subsets of the hospital at a time
in tandem with periodic point prevalence studies. While local
implementation might vary in its specifics, the core data used by a
model such as this one would be able to be updated on a daily basis,
providing a regular, automated means for directing ASP staff’s
attention to high-impact areas. This might extend ASP reach to a
much broader swath of hospitalized patients.

Several limitations pertain to this model. While NAPS is a
standardized and validated tool, inter-rater variability is higher at
our institution for infectious syndromes with clear diagnostic and
treatment guidelines compared to those where more weight is
placed on clinical gestalt?**> In cases such as documented
bacteremia where diagnostic criteria are straightforward, data
labeling—and therefore model predictions—are likely more
reliable than in less clear-cut instances like undifferentiated sepsis.
Sample size, use of hospital medicine patients for training, and the
single-center nature of the model, both of which reflect the time-
intensive nature of ASP review, limit the model’s generalizability
and complexity. Many potentially useful features, such as
considering antibiotics or microbes individually rather than by
spectrum of coverage, would also be more feasible with a larger
sample size. While we chose to focus on clinical variables relevant
to the need for antibiotics and the spectrum of coverage required,
several other factors contribute to “optimal” use, including
considerations around patient comorbidities, toxicities, and social
factors that are not accounted for in the model. External validation,
both in academic and community settings, would strengthen the
case for widespread use of a model such as this one.

From an implementation standpoint, while the model was
optimized to identify high-yield orders for ASP review, unstruc-
tured data such as clinical notes detailing the prehospitalization use
of suppressive/prophylactic antibiotics might lead to divergent
assessments. Structured data such as vital signs are key factors in
identifying and diagnosing infection. However, clinical notes,
radiology reports, and pathology reports lend additional context—
nuances gleaned from these sources cannot be accounted for by our
model. Large language models, a type of neural network that can be
appropriated for text classification tasks, could be used to abstract
some of this information if given a large enough corpus of training
data and represent a promising development in future efforts to
more effectively implement stewardship interventions, although
outstanding questions remain regarding privacy and regulatory
structures.?%?’

In summary, we describe an approach toward automatically
reviewing new inpatient antibiotic orders using machine learning.
In contrast to labor-intensive manual review, this model uses data
that can be abstracted from the medical record without the need for
clinician involvement. The model’s higher throughput might be
used to optimize ASP teams’ limited staffing resources; antibiotics
predicted to be non-indicated or suboptimal could be prioritized,
freeing up ASP resources for other tasks. Bearing our model’s
strengths and limitations in mind, it is best framed as a tool for
helping ASP teams triage the highest-yield orders for PAF, and
defer review of those least likely to need intervention. Future
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extensions of this work include incorporating additional data
sources, validation in broader practice settings, and investigating
similar models’ impact when used to provide direct feedback to
providers.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/ash.2025.10142.
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