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Summary

We compare the powers of three methods for the QTL analysis of non-normally distributed traits.

We describe the nonparametric and the logistic regression approaches recently proposed in the

literature and study the properties of the standard regression interval mapping method when the

trait is not normally distributed. It is shown that the standard approach is robust against non-

normality and behaves quite well for both continuous and discrete characters. The loss of power

compared with the nonparametric or the logistic approach is generally minor. Moreover, the least

squares estimation procedure of the regression interval mapping is not affected by departure from

normality. The use of other approaches could be restricted to extreme cases where the trait

distribution is very skewed.

1. Introduction

The problem of mapping quantitative trait loci (QTL)

using high-density marker maps has been extensively

studied with respect to both methodological and

experimental aspects. Since the pioneering paper of

Lander & Botstein (1989) many powerful statistical

methods for detecting, locating and characterizing

QTL have been proposed and their properties investi-

gated (e.g. Haley & Knott, 1992; Haley et al., 1994;

Jansen & Stam, 1994; Rebaı$ et al., 1994a ; Zeng,

1994).

However, the problems of QTL interval mapping

with non-normally distributed traits have only recently

been addressed (Kruglyak & Lander, 1995; Hackett &

Weller, 1995; henceforth abbreviated KL and HW,

respectively). Two alternativemethodswere proposed:

the nonparametric approach (KL) for continuous and

categorial data and the logistic regression approach

for ordinal data (HW). Unfortunately, the comparison

between these approaches and standard interval

mapping has not been discussed in depth. The aim of

this paper is to identify the advantages and drawbacks

of these two methods and to investigate the behaviour

of the standard regression based interval mapping

(abbreviated RIM) approach (Haley & Knott, 1992)

when the data are not normally distributed.

2. The nonparametric approach

(i) The method

KL used a generalization of the Wilcoxon rank-sum

test which they performed at every genome position.

They established the asymptotic null distribution of

the test process, thus providing an approximation to

find the appropriate threshold. The major difficulty in

generalizing the rank test for a genuine-wide QTL

search is the occurrence of ties (individuals with the

same phenotypic score). KL chose simply to rank tied

individuals at random. Such an approximation has

the merit of simplicity and needs no new theory

because it does not affect the asymptotic distribution

of the test and does not lead to a significant loss of

efficiency compared with the method of average

ranking of tied individuals (Kendall & Stuart, 1979).

However, when the number of ties is high, which is the

case for categorial traits, that approach is expected to

be less powerful than the average-rank method for tie

breaking (which is to attribute to each of the tied

observations the average rank of those tied). Unfortu-

nately this removes the feature of rank order tests

causing the variance of sums of ranks to depend on

the number and extent of the ties observed.

The nonparametric approach, although applicable

to all distributions (distribution-free), would bring no

or a minor advantage over the standard interval

mapping regression approach when the data are

normal or close to normality. The authors stated that
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the loss of efficiency, relative to the t-test, would be

minor (4%) when the distribution is normal while the

gain could be substantial for very skewed distributions

(e.g. exponential). The major disadvantage is that the

QTL effect could not be estimated with the non-

parametric approach. KL recommended that both

parametric and nonparametric approaches be used,

especially when there is evidence for non-normality. If

the results differ, then the experiment should be

regarded with caution; otherwise the normal theory

standard RIM could be used for the detection and

estimation of QTL effects.

(ii) Validity of the RIM approach

The RIM approach could be applied to a wide range

of non-normal distributions without loss of efficiency.

It is known that least squares estimation in regression

theory and its optimum properties do not involve the

assumption of normality of errors. Thus all estimates

remain valid, as do their variances, in the face of non-

normality. Least squares is distribution-free to this

extent (Kendall & Stuart, 1979). The normality

assumption is required for hypothesis testing and

particularly to establish the sampling distribution of

test statistics. To find the F distribution for the

statistic used for testing the presence of a QTL at each

genome position, we need the independence of its

numerator and denominator, which holds exactly

only for normal populations. If we are sampling from

a non-normal population, the central limit theorem

nevertheless assures us that the regression coefficient

will be asymptotically normally distributed. In fact,

normality of the regression coefficients rather than

that of the observations is required.

For linear regression models, Y¯Xβ­ε, Sen &

Srivatsava (1990, ch. 5) showed that, if the error

vector ε satisfies the Gauss–Markov conditions

(E(ε)¯ 0 and E(εε«)¯σ# I ) then the test statistic for

testing the hypothesis Cβ¯ 0, where C is a full rank

matrix, converges asymptotically (as nU¢) to the

standard F distribution if

max (h
ii
)U 0,

where h
ii

are the diagonal elements of the matrix

X(X «X )−"X «. As a rough rule of thumb, max (h
ii
)!0±2

may be taken as small enough for most applications if

the original distribution of the ε values is not

excessively long-tailed or J-shaped. This provides a

simple criterion for studying the validity of the normal

theory approximation when applying the standard

RIM approach to the QTL analysis of non-normal

data. Thus since the β
j
values are linear combinations

of y
i

values, the central limit theorem guarantees,

under certain conditions, that β
j
values and the test

statistic have approximately the expected distributions

even if the y
i
values are not normally distributed. The

test significance threshold could then be obtained by

available methods, either by approximations (e.g.

Rebaı$ et al., 1994b) or by permutation (Churchill &

Doerge, 1994), which have the advantage of taking

into account the actual distribution of the trait.

(iii) Simulation results

We investigated the properties of the RIM approach

by simulation. In the case of a backcross population

and for a chromosome of length 1 M and six equally

spaced markers, we simulated three samples of 100,

200 and 500 individuals from an exponential dis-

tribution with mean 1 and a QTL with an allelic

substitution effect of a¯ 0±35 (explaining almost 11%

of the phenotypic variance) located at the middle of

the chromosome. The exponential distribution has

considerable importance and has had widespread use

in the analysis of data in which the response variable

is a lifetime. It is asymmetric and L-shaped with a

standardized skewness coefficient equal to 2. The

values of residuals were generated using the RANEXP

random function of the SAS software (SAS, 1990) and

the QTL analysis by RIM was done using programs

developed under SAS}IML (1985). We also con-

sidered two other distributions: a standardized gamma

distribution with scale and location parameters 1 and

2, respectively, and a Poisson distribution with

parameter 1. Both are left skewed and have a long

right tail (see e.g. McCullagh & Nelder, 1983 pp. 129,

151) and they were simulated using the SAS functions

RANGAM and RANPOI. We computed the average

(over all replications) QTL position, QTL effect and

its standard deviation. The linear model test, distri-

buted as a chi-squared with one degree of freedom

(Rebaı$ et al., 1994b), was performed every 1 cM and

the QTL position determined as the position with

maximum test value. The empirical power was

calculated as the ratio of the number of times the test

exceeds the threshold to the total number of repli-

cations (1000 here). The threshold value was set to 6±9,

which corresponds to a 5% per chromosome

significance level (Rebaı$ et al., 1994b).

Table 1 shows that the estimates of the QTL effect

for the exponential distributions are close to the exact

values, especially when the population size increases,

illustrating the optimal properties of least squares

estimation. The standard deviation of the estimate is

approximately inversely proportional to the popu-

lation size. For all population sizes, all replications

and all genome positions, the values of max (h
ii
) were

found to be smaller than 0±04. These values are small

enough and the sample size large enough that the

distribution of the test statistic could be relatively well

approximated by the usual theoretical distribution.

We also computed the empirical power for a normally

distributed trait with the same QTL effect and found

that it is only slightly superior to that with an

exponential distribution. The difference between
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Table 1. Simulation results for an exponentially distributed trait using

the RIM approacha

Population
size QTL positionb QTL effectc

Empirical
power (%)d Range max (h

ii
)

100 49±8 0±326 (0±216) 56±5 0±02–0±037
200 49±7 0±347 (0±124) 85±3 0±01–0±017
500 50±0 0±351 (0±064) 99±8 0±004–0±006

a In simulation of backcross progeny (1000 runs) the QTL was assumed to lie in
the middle of the chromosome (100 cM in length) and its additive effect was set to
0±35.
b In centimorgans from the leftmost marker of the chromosome.
c Estimate of the allele substitution effect and its standard deviation (in brackets).
d The ratio of the number of ties the test exceeds the threshold at the 5% level of
significance (6±9) to the total number of replications.

powers is respectively 1±5%, 0±7% and 0±2% for 100,

200 and 500 individuals. Simulation results (not

shown) for the gamma and Poisson distributions are

similar to those obtained for the exponential ; for the

100 individuals case, estimated powers for the two

distributions were close to 57%. Position and effect of

the QTL are well estimated; the QTL effects were

0±331 and 0±336 for the gamma and Poisson distri-

butions, respectively. All these results indicate that the

RIM approach could be used for QTL analysis of

non-normal continuous traits without a major loss in

power, at least as a first scan. If max (h
ii
) values are

found to be too large (say more than 0±2) then the

nonparametric approach could be a good alternative.

This approach was implemented in the software

MapMaker}QTL (version 1.9), where nonparametric

QTL mapping could be easily achieved using the ‘np

scan’ command.

3. The logistic approach

(i) The method

The logistic approach described by HW is appropriate

for discrete-valued traits measured on a finite number

of categories. A typical example of such traits is

disease resistance in crop species, scored on a nominal

scale varying from unaffected to dead. For these

ordinal traits, QTL detection could be carried out

using the generalized linear model approach

(McCullagh & Nelder, 1983) and particularly the

logistic regression. In this model, it is assumed that the

observed categories are derived from the restriction of

an underlying continuous variable (generally normal)

to fixed unknown thresholds (see Gianola, 1982). If

the trait has k categories (denoted 1 to k) then there

are k®1 thresholds α
i(i="...k−")

and the probability that

an individual j belongs to category i (i¯1…k),

knowing its genotype for the flanking markers, is (in

the backcross case) :

Pr (Y
j
¯ i rx

j
)¯F(α

i
­βx

j
)®F (α

i−"
­βx

j
),

for 1% i%k,

where F(x)¯1}(1­e−x ) is the logit link function,

with α
!
¯®¢ and α

k
¯­¢, β is the QTL allele

substitution effect of the QTL on the ordinal scale and

x
j
is the coefficient of the QTL effect in the expression

of the expected phenotypic value of individual j

(which is equal to the difference between the con-

ditional probabilities of being of genotype QQ and Qq

at the QTL, conditional on the flanking marker

genotypes). The total parameter vector is θ¯ (α
"
,…,

α
k−"

,β )«. In F
#

populations, β would be a vector of

two components corresponding to additive and

dominance parameters of the QTL.

For simultaneously estimating the QTL effect and

position, HW used an EM algorithm. Here we propose

to fit the logistic model, to estimate and test θ at every

position of the genome (every 1 cM). The QTL

analysis is achieved using an iteratively weighted least

squares algorithm (e.g. Green, 1984) for estimation

and a Wald test (see Appendix for details). In the

interpretation of such models the parameter of interest

is neither β nor the QTL effect measured on the

unobserved normal scale, neither of which have any

direct biological meaning, but rather the probability

of being in a given category conditional on the QTL

genotype, that is Pr (Y¯ i rQTL genotype) for each

i (see HW).

(ii) Validity of the RIM approach

HW compared the values of category probabilities

obtained by the logistic and the normal mixture

models. They found that the advantage of the logistic

approach when using flanking markers is slight,

especially when the mode of the trait is in a central

category and the number of categories is not too small

(more than four or five). For a binary trait the

category probabilities obtained with a normal mixture

model seem to be biased. The QTL effect could be

estimated using the logistic models on both ordinal

(β ) and underlying normal scales (a¯o3β}π ; see

HW) but these values could not be directly compared

with that obtained by the RIM model applied on the
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Table 2. Simulation results for an ordinal trait with the RIM and the

logistic approacha

Approach
Population
size Position QTL effect β

Empirical
power (%) Range max (h

ii
)

Trait with four categories
RIM 100 49±5 0±288 (0±228) 45±1 0±020–0±034
Logistic 100 51±3 0±552 (0±427) 41±0 —
RIM 200 49±9 0±300 (0±125) 74±1 0±010–0±015
Logistic 200 49±6 0±573 (0±264) 72±0 —

Trait with two categories
RIM 100 50±1 0±110 (0±102) 35±8 0±020–0±031

Logistic 100 49±9 0±556 (0±503) 30±3 —
RIM 200 49±3 0±113 (0±069) 58±8 0±010–0±016
Logistic 200 51±0 0±561 (0±340) 58±2 —

a Same notation and comments as in Table 1.

Table 3. Simulation results for an ordinal trait with the RIM and the

logistic approach for two �alues of the QTL effect and a population size

of 100

Approach
Simulated
QTL effect Position QTL effect βa

Empirical
power (%)

Trait with four categories

RIM 0±2 49±6 0±156 (0±214) 19±1
Logistic 0±2 50±9 0±341 (0±416) 19±0
RIM 0±5 50±2 0±426 (0±188) 77±2
Logistic 0±5 49±5 0±856 (0±337) 78±0

Trait with two categories

RIM 0±2 50±8 0±059 (0±106) 15±2
Logistic 0±2 51±1 0±227 (0±501) 13±1
RIM 0±5 50±6 0±166 (0±0832) 56±0
Logistic 0±5 49±2 0±687 (0±546) 52±9

a Same notation as in Table 1.

observed categorial data. By virtue of the same

arguments developed earlier in this paper, the RIM

model could also be applied and would give quite

good results. In the following section we investigate

this by comparing powers of the QTL detection tests

used in both logistic and RIM approaches.

(iii) Simulation results

The simulations were carried out similarly to those

previously described. We first generate a normally

distributed trait using the RANNOR function of SAS

and a QTL with effect a¯ 0±35. Simulations with 100

individuals were also carried out with two other QTL

effects : a¯ 0±2 and a¯ 0±5. Using this underlying

distribution we derived two ordinal traits. The first

trait has four categories and is derived using

thresholds : 0, 0±5 and 1±5. This gives a left skewed

distribution with approximately half of the expected

observations in category 1, 19% in category 2, 24%

in category 3 and 7% in category 4. The second trait

is binary (two categories) derived by using a threshold

of 0±5, which gives, in expectation, almost 70% of the

individuals in category 1 and 30% in category 2.

Values of QTL parameters and power were calculated

as previously described. For the logistic approach, the

test statistic (Appendix) also has a χ#

"
distribution and

the same significance threshold was used for both

RIM and logistic tests.

The results for a¯ 0±35 are given in Table 2. We see

that the estimates of the QTL effect with the RIM

method are close to the actual value of 0±35 for the

first trait but not for the second. However, this is not

our concern and we are not expecting them to be close

to 0±35 because they are not measured on the same

scale. We also notice that the QTL effect obtained by

the logistic model and transformed onto the normal

underlying scale by a¯o3β}π is about 0±32, which is

close to the actual value of 0±35. This reflects the good

convergence of the algorithm proposed. But the most

interesting result is that the powers of the RIM and

the logistic approaches are not significantly different.

Moreover, the RIM seems to be more powerful when

the population size is small. For both methods the

power is increased when the population size increases,

but more slowly for the RIM approach. For the
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binary trait the power is 10–15% less than that for the

first trait (four categories), which itself is about 10%

less than that obtained for the continuous trait (Table

1). This is intuitive because less variation is observable

when the number of categories is smaller. Results in

Table 3 confirm the conclusions already drawn and

particularly that the powers of the RIM and logistic

approaches are not significantly different.

4. Discussion

For traits with an exponential distribution, the use of

nonparametric interval mapping test for QTL de-

tection seems to give equal or less power than the

standard interval mapping regression approach. This

property would also hold for a wide family of

continuous distributions, especially when the number

of individuals is sufficiently large (more than 100, say)

and the distribution is not very skewed. The non-

parametric method of KL remains a good alternative

to RIM and the combined use of both approaches for

the analysis of experimental data is itself informative.

It allows assessment of the validity of the RIM model

and estimation of the QTL effect.

The logistic method is concerned with the QTL

analysis of categorial traits. Its use needs more

complicated models and iterative estimation pro-

cedures (EM or iteratively weighted least squares).

Moreover, HW showed that the advantage of the

logistic model over likelihood-based interval mapping

is generally slight, and this advantage decreases as the

number of categories increases, especially if the

distribution of the trait is approximately symmetric.

Our results showed that the RIM model gives at least

the same power as the logistic approach and would be

more powerful when the trait distribution is sym-

metric. Nevertheless, the logistic model could be a

good alternative when one is interested in achieving

an accurate estimation of category probabilities (e.g.

for use in breeding experiments).

The advantages of the RIM approach are that it is

asymptotically equivalent to likelihood-based interval

mapping (Rebaı$ et al., 1995), easy to generalize to the

experimental populations and crossing designs com-

monly used (e.g. Rebaı$ et al., 1994a) and could be

quite simply adapted to include covariates to model

the effects of multiple QTL (Jansen & Stam, 1994). In

this paper was have shown, by simulation, that the

RIM tests also have good robustness properties

against non-normality, provided that the population

size is sufficiently large (100 or more). This, combined

with the fact that the least squares estimation

procedure is distribution-free, makes the RIM an

attractive approach for QTL mapping purposes.

Further work is, however, needed to investigate the

effect of other problems related to non-normality of

the trait on the performances of the RIM and

alternative approaches. One of these is when the error

terms are no longer independent and have unequal

variances (Weller & Whyler, 1992; Korol et al., 1996).

The properties of the RIM method and its optimality

could be studied in more depth by further simulations

and}or resampling methods (such as the bootstrap) to

check the limits of the validity of the asymptotic

theory.

Appendix

For each individual j we define the multinomial

variable Z
j
¯ (Z

"j
,… ,Z

kj
) such that Z

ij
¯1 if Y

j
¯ i

and 0 otherwise. Let P
j
¯ (p

"j
,… , p

kj
) where p

ij
¯

Pr (Y
j
¯ i). The expected value of Z

j
is E (Z

j
)¯P

j
. Let

V
j
¯ cov (Z

j
) be the k¬k variance–covariance matrix

of Z
j
and D

j
the k¬p matrix (p being the number of

estimable parameters) of partial derivatives of P
j
with

respect to θ. The estimating equations for the

regression parameters are :

3
j

D!
j
W

j
(Z

j
®P

j
)¯ 0,

with W
j
¯w

j
V−

j
,w

j
is the weight of the j th observation

and V−

j
is a generalized inverse of V

j
. We took for V−

j

the inverse of the diagonal matrix having vector P
j
as

a diagonal. The estimates are obtained iteratively as

θW
m+"

¯ θW
m
­(3

j

(Dq !
j
Wq

j
Dq

j
))−"3

j

Dq !
j
Wq

j
(Z

j
®Pq

j
),

with the hat over D, W and P indicating that these

matrices are evaluated at θW
m
. The expression after the

plus sign is the step size. To improve the convergence

of the algorithm one can evaluate the log-likelihood

(which is equal to 3
j
w

j
log (pW

j
)) at θW

m+"
. If its value is

less than that evaluated at θW
m

then θW
m+"

is recomputed

using half the step size. The estimated variance–

covariance matrix of θW could be obtained after

convergence as (3
j
(Dq !

j
Wq

j
Dq

j
))−".

The algorithm described above converged in five to

ten iterations in all the computations done in this

study.

At each position we compute the test statistic

T¯βW #}var (βW ), which is asymptotically distributed as

a χ#

"
. The threshold for a genome-wide scan could then

be obtained by approximate methods (Rebaı$ et al.,

1994b) or permutation tests (Churchill & Doerge,

1994).
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