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ON POLYLOGARΠΉMS*}

JOHAN L. DUPONT

§ 0. Introduction

Some functions related to the complex dilogarithmic function

(0.1) Li2(*) = Σ - ζ - , \ Z \ < 1

(in the notation of Lewίn [9]) are known to occur in connection with

algebraic if-theory and characteristic classes (see e.g. Bloch [1], Gelfand-

MacPherson [7], Dupont [5], and the references given there). Recently

MacPherson and Hain (see [10]) has announced results of a similar kind

for some higher polylogarithmic functions. Also Ramakrishnan [11] and

[12] has recently studied the classical polylogarithms, which for \z\ < 1

are given by

(0.2) Ii.(2)=Σ-ζ-.

In this note we shall pursue an idea in Bloch [1] and [2] where

the dilogarithm takes values in the tensor-product (over Z) C(8)C*, with

C and C* = C — {0} being respectively the additive and multiplicative

group of complex numbers. Thus let

L*: C\{0,1} > C* <g) <g> C* (n copies)

be given by

(0.3) L*{z) = (1 - z)®z® '"®z (τι - 1 z'a)

and consider the exponential map e: C ® (x)C—>C*® ® C *

(0.4) φ j ® ® an) = exp ( 2 ? ^ ) (x) (x) exp (2πian), aί9 , an e C .
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2 JOHAN L. DUPONT

Then we shall define a natural lift Ln in the diagram

(0.5) i
where Ln is an expression involving the polylogarithms 1A19 , Liw. The
explicit formula is given in Corollary 4.7. However, a lift in (0.5) is not
unique. Thus e.g. for n = 2 one can add terms of the form

® i i ®
2πi 2πi

without changing the image in C*®C*. One might therefore ask what
motivates our particular choice. First of all the formula for Ln is a
natural generalization of the dilogarithm as it occurs in [1] or [5] and,
in spite of the length of the formula, it seems difficult to produce any-
thing shorter which is well-defined. More importantly there is a certain
recursiveness in the formula for Ln: If one considers the reduction of
Ln in the group

C® ..<g)C/Q<g> ••• ®C/Q® ..<g)C

(where C is reduced to C/Q in two places) then the image is a tensor
product of 2 similar formulas of lower order (formula (5.14) below). This
can be exploited when one tries to prove relations for these poly-
logarithms. It clearly follows from the diagram (0.5) that a relation
involving Ln

9s must necessarily be satisfied by the algebraic symbols L*.
We show that one can also work backwards — at least one can reduce the
proof of such a relation to some involving only polylogarithms of lower
order. As an example we mention 2 relations among trilogarithms which
has occurred in our work with C.-H. Sah [6] on the homology of the
discrete group Gl(n, C). (See also [14, Section 4].) There the algebraically
defined maps L* naturally occurs in expressions of certain differentials
in a spectral sequence. It is expected that the analogous expressions
involving the lifts Ln should also give homological invariants for G\(n, C)
similar to the situation for the dilogarithm in the case n = 2.

Finally let us observe that we obtain well-defined real-valued poly-
logarithmic functions as in Ramakrishnan [12] if we compose Ln with
one of the n maps C ® ® C ->R defined by
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POLYLOGARITHMS 3

ax ® (x) an > (Re a,) (Re α^XIm α*)(Re α,+1) (Re ar)

(ί = 1, , ή) where Re and Im denotes the real and imaginary parts.

§ 1. Iterated integrals

Polylogarithms are defined by iterated integrals in the sense of K.-T.

Chen (see [3] and the references given there; see also Hain [8]). Thus

let M be a Riemann surface (e.g. M = C — {zl9 , zm}) and ωl9 , ωn

some holomorphic 1-forms (not necessarily different) on M. Let π: M—>M

be the universal covering and zoe M s. base point. The iterated integral

is defined inductively as a solution on M to the differential equation

(1.1) d \ ω ί ' - ω n = ( \ ω ί - ωn.Λωn .

More precisely given initial values cl9 , cn e C the vector α = (1, aί9 , an)

with

(1.2) aj = J ω, ωj

is a solution to the system of differential equations

(1.3) daό = aό.γωp j = 1, , n, (α0 = 1)

aj(z0) = c,.

Explicitly, if T is a path in M from «0 to z e M then

rz j-i Λ

(1.4) α / z ) = a)!-- a)j = Σici\ "> i + 1 ω, + c, (c0 = 1)
J i=o Jr

where ωt+ί ω̂ , i < j , are iterated path-integrals as in Chen [3, Ch. 1].

Thus we are here using the notation ωt ωn (or ωx ωn when we

indicate the variable z\ slightly more generally than used by Chen.

Therefore in the following when specifying \ ωt ωn it is necessary also

to consider all the integrals \ <oi+ί ωp 0 <I £ <j ^ n at the same time:

Let N(n, C) g Gl(n + 1, C) be the subgroup of unipotent matrices

A = (atj) with au = 1, α^ = 0 if j < L Then given C = (c^) e iV(n, C)

we have a unique holomorphic solution A = A(^), ze M, to the matrix

equation
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(1.5)

JOHAN L. DUPONT

dA = AΩ

A(z,) = C

where Ω is the (n + 1) X (n + 1) matrix

0 ω, 0

0 0 α>2

(1.6) Ω =

0 0

Then atj = \ ωί+ί ω,, i <j with initial condition αz /20) = c{J. In partic-

ular for 7 a path in M starting at zQ we denote the solution to (1.5)

along 7 with initial value A(zQ) = J by Ar. If the endpoint of Γ is z

then clearly the solution to (1.5) is given by

(1.7) A(s) = CAr.

It follows that for two composable paths a and β we have for the com-

posite path a * β (first a then β):

(1.8) Aa.β = AΛA^.

This is equivalent to the equation in Chen [3, 1.6.1.]

(1.9)
J a*β

ωi+ί
<θj = ω i + 1

ω,)( ωs+1 ωλ 0<Li<j<*n.
/ \J β /

In particular 7 *-> Ar defines a homomorphism of the fundamental group

π^M, πzQ) to N(n, C). Let Γ2 0 S N(n, C) be the image. Then for a a

closed curve in M at 7r(£0) the lift of α starting at z0 defines the mono-

dromy transformation Aa e ΓZo. It follows from (1.7) that if g denotes the

covering transformation of M corresponding to a then the solution to

(1.5) satisfies

(1.10) A(ga(z)) = CAaC-ιA(z).

Hence A gives a well-defined holomorphic mapping

(1.11) A: M • CΓZ0C-\N(n, C).

It is useful to see how the monodromy transformation change with

change of basepoint. Thus for g & covering transformation of M and

zeM let Λg(z) e N(n, C) be the monodromy transformation for a curve
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POLYLOGARITHMS 5

starting at z and representing g in πι{M9 πz). That is, if z = z0 and g is

represented by a then Λg(zQ) = Aa in the above notation. We now have

PROPOSITION 1.12. i) Ag is a holomorphic solution to the equation

(1.13) dΛ = [A, Ω]

ii) If A is a solution to (1.5) and A is a solution to (1.13) then AAA'1

is constant, i.e.,

(1.14) A(z)A(z)A-\z) = CA.C-1 = A(g{z))A(zY\ VzeM.

iii) Suppose M = M — {zu , zm} for M another Rίemann surface

and suppose that the singularity of Ω in z3 is at most a simple pole. Then

for gj e ττi(M) corresponding to going once around z3 in the positive direc-

tion we have that Λgj is holomorphic in z5 and

(1.15) Agfa) = exp (2πi Res2,ί2).

Proof, ii) follows simply because the left hand side of (1.10) is

independent of z0.

i) follows by setting C = / in (1.14) so that

A(z) =

which is easily seen to satisfy (1.13).

iii) is proved in Deligne [4, theoreme II, 1.17].

Remark. Let the constant matrix T= A{g{z))A{z)-χ e N(n, C) have

entries ti5. Then ttj only depends on ωί+u -,ωp together with the con-

stants cVfy, i ^ V <̂  y <Lj. Similar to the notation for iterated integrals

we put

tij = tg(ωt+ι (ΰj).

(In the case ci3 = 0 for ί < j and g — ga for a a closed curve at π(z) we

clearly have tg(ωί+1 ω3) = ωί+ί ω3λ Then (1.10) is written

(1.16) I ωi+1- -ω3 = Σitg(ωi+ί ωs) \ ωs+ί ω3, 0 <L ί < j <, n

similar to (1.9).
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6 JOHAN L. DUPONT

§ 2. Polylogarithms

We now specialize the situation in the previous section to the follow-

ing case: Let M = C — {0,1} and let z0 lie over some point in the domain

U = {z\\z\ < 1, |1 — z\ < 1}. Let υQ and υι be the 1-forms

1 dz 1 dz
υ(2.1) υQ =

2πi z 2πί z — 1

Then as ωt in the previous section we shall take either υQ or υl9 and in

order to specify a particular solution it is enough to exhibit the solution

in U.

Case 0. Suppose ωt = υ0 for all i = 1, , n. Then we define

(2.2) ll(z) = Γ ϋ f = -A-( Γ ,0Y = I (log z ) \ z e U

where log z is the usual branch of the logarithm. Notice that all integrals

in the matrix A e N(n, C) given by ais = \ ωi+ί ωj9 0 ^ i < j <̂  n, are

of the same form.

Case 1. Let coj = ^ and ω̂  = υ0 for i = 2, , n. This is the case

studied by Ramakrishnan [11]. We define

(In particular Lij(2) = — log(l — z).) Again all integrals in the matrix A

with atj = ωi+ί - ωp 0 ^ ί < j ^ n are either of the form (2.2) (for

i > 0) or of the form (2.3).

In general for some fixed k, 1 <I k ^ τι, we shall consider

Case A. Let ωk = i>t and α̂  = y0 for ί φ k, i = 1, , τι. We then

define

(2.4) /*(*) = Γϋf-wr* = Σ (-iy+i(n ~ k + s~
./ «=i \ n — k

It is straight forward to verify by induction that these functions satisfy

(1.1). Again all integrals in the matrix A with atj — ωί+ι ωp 0 <Ξi ί

< j <; 7?, are of the form (2.2) or (2.4) In fact
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( 2 5 ) " " t f j i ί for i

For later use let us notice the asymptotic behaviour of l\ for z —> 0 and

(2.7) J*(z) = const. + ί ( ^

(2.6) Z*(s) = Od^K-loglzD*-1) as z -> 0 (if 1 ^ A ^ Λ)

{0(-\z - If-1 log|3 - 1|) as 2 - > l (if k = 1)

ID as z -> 1 (if 1 < k ^ 7i).

In particular

(2.8) l*n(z) ̂  0 for z -> 0 (if 1 ^ & ̂  n)

(2.9) Z*(s) -* const. for z -> 1 (if 1 < k or 1 < n) .

We will now determine the monodromy in the above cases: Thus

let gQ and gx be the covering transformations of the universal covering

of C — {0,1} corresponding to going once around 0 respectively 1 in the

positive direction. The following generalizes Ramakrishnan [11, Theorem]:

THEOREM 2.10. Given k = 0,1, , n let Ae N(n, C) be the matrix

A = (ai3) given by (2.5). Then the matrices Tg0, Tgl e N(n, C)

TgQ = A{g,{z))A(zYx and Tgl = A(gx(z))A(zYι

are given by Tg0 = (*?,), Tgl - (*},), where

(ll(j — ί)! ifί<j<,kork<i<Ί

(2.11) «; = L ,u~
[0 otherwise

" I
1 ifi=jori=k — 1, j = k

0 otherwise.

In particular A defines a well-defined holomorphίc map A: C — {0,1} —>

Γ\N{n, C) where Γ is a discrete subgroup of matrices with rational entries.

Proof. In the notation of Section 1 consider

Then Ag0 and ΛΛ are determined by Proposition 1.12. That is, they satisfy

(1.13) and the initial conditions

(2.13) Λg0(0) = exp (2πi Resoβ), Λgl(ί) = exp (2πί
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8 JOHAN L. DUPONT

Then

(2.14) Tg0 = AΛ^A-1, T?x = AΛglA~>.

Case k = 0. In this case A is nonsingular at 1 so that

Tgι = Λgι = 7.

Also Λgl) is constant and

/ - 0! if
o otherwise.

Letting z -> 1, A(z) -> / so also

0 otherwise.

Case k > 0. The statements in (2.11) for i <Lj < k or k<Li <Lj

follows from the case k = 0 by the remark following Proposition 1.12.

So we only need to determine t\5 and t\3 for i < k fg j . By (2.14)

/ O 1 ET\ JV V" I ^y ίfc Λ\ 1

(2.15) tij = 2-» aίr^rs^Tj > V = ϋ, 1

where A = (α^) is given by (2.5) and A'1 = (αj) is the inverse matrix.

Notice that in (2.15) the left hand side is constant in z whereas the terms

on the right might vary. Also notice that the terms for r = s add up to

zero since λv

rr = 1 and i Φ j. Hence

(2.16) tij = Σ airλ
v

rsafj, v = 0 ,1 .

For v = 1 notice that Xx

r8 is analytic near 1 and that by (2.13)

JΊ if r = s or r = k - 1, j = k

[0 otherwise.

By (2.5) and (2.7) air is bounded near 1 except for r = k> ί = k — 1 where

ak.hk(z) = ZJ(̂ ) = 1 . - log (1 — 2).

Also α* grows at most as a constant times — log | l — z\ as z —> 1, so it

follows that

ί|j = limαίfc.jαίy.
2—1
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POLYLOGARITHMS 9

Here if i < k — 1, aί1c-i = II-1-^ has 1 as zero and similarly if j > k, afj

(_iy-fc/° fc a i s o has 1 as a zero so t\5 = 0 unless ί = k — 1, j = k, in

which case 4-ifc = α*-ifc-iΛ*A. = 1, which proves (2.12).

For v = 0 in (2.16) we have Λ°s analytic near 0 and

{l/(s — r)! if r <I s < k or £ ^ r ^ 8

0 otherwise.

Also it follows from (2.5) and (2.6) that aίr and α* grows at most like a

constant times a power of — \og\z\ as £—•(). Hence

(2.17) ^ = lim[ Σ aίra*l(s - r)l + Σ aίra*l(s - r)\].

Using (2.5) and (2.6) it follows that in the first term of (2.17) air grows

as a constant times (—\og\z\)r-1 whereas α* grows as a constant times

\z\(—log\z\)j~s~\ that is, the limit is zero for 2->0. Similarly also the

second term has limit zero for ^->0 so t\j = 0. This proves the theorem.

Remark, In the notation of (1.16) we have just shown that for the

iterated integrals (2.4)

(2.18) *>?)

(2.19) tgSut-\υΓk) = 0

(2.20) ίΛ(w*"VΓ f c)= ,
[0 otherwise.

§ 3. Shuffle relations

Until now we have kept fixed the ordering of ω{ - - - ωn. We shall

also need to consider simultaneously all the iterated integrals of the form

ωH - - - ωis where / = (i, , ίs) is a finite sequence of the numbers

1, , n. For / = (ίu , is) and J = {ju , jt) two such sequences a

shuffle of I and J is a sequence K = (£1? - -,ks+t) such that for s places

1 <̂  î i < IΛ, < * < ^ ^ s + £ we have /^ = il9 Z = 1, , s, and for the

remaining £ places 1 <L μx ^ <; //t ^ s + t, kμm = j m , m = 1, , t. Fol-

lowing R. Ree [13] we shall say that a collection of complex numbers

{c(I)}, I — (ίί9 - , is), satisfies the shuffle relations if

(3.1) Φ Ί , , i,)c(Ji, '"Jt)=Σi C(K --,ks+t)
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where K = (ku •• ,£ s + ί ) runs through all shuffles of I and J. Such a

collection corresponds to a formal power series

(3.2) C(X) = Σ c(ίu , ίt)XhXi2 "Xis (cΦ = 1)

in the non-commuting variables Xu , Xn, and (3.1) is satisfied if and

only if log C{X) is a Lie-element (Ree [13, Theorem 2.5]). Also let recall

(Ree [13, Theorem 2.4]) that the set of such power series is a group

under the usual multiplication

(3.3) E(X) = C(X)D(X)

where

(3.4) e(ίί9 , ίs) = Σi c(il9 , iv)d(ίv+1, , is).
v = 0

Finally the following observation easily follows by induction:

PROPOSITION 3.2. Suppose the complex numbers {c(I)} satisfy the shuffle

relations (3.1). Then the iterated itegrals ωίχ ωig, I = (ίu , ί$), with

initial conditions ωίχ ωίs = c(il9 , ίs) also satisfy the shuffle relations,

that is,

(3.3) (J ω i χ ' " ωίsj(j ωh ω1tj = Σ J ωkl ωks+t

where K — (ku , ks + t) runs through all shuffles of I and J.

Remark 1. For C(X) — 2 / c(/)X7 we thus obtain a formal power series

A(z)(X) = Σ*, ..*.(f ">« °>i)Xή •••*<.

where the coefficients are holomorphic functions on M with A(zo)(X) =

C(X). For g a covering transformation of M we have by (1.16):

A(gzKX)= Tg(X)-A(z)(X)

where

Tg{X) = Σιh'-U Mωή» * ' " > ω ^ 8 ) ^ i * * ' Xis

Hence we conclude that also the collection {tg(ωh ωis)} satisfies the

shuffle relations, i.e.
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(3.4) tg(ωit - ωit)tg(ωh ωjt) =- Σ tg(ωkl ωks+t).
K
Σ
K

Remark 2. If {c(I)} satisfy (3.1) then they also satisfy the similar

relation with more factors

(3.5) c(iu , ίs)c(ji> -Jt) - c(l» , lv) = Σ c(kl9 , ks+t+...+v)
K
Σ
K

with the obvious definition of shuffles of I, J, , L.

Remark 3. In Proposition 3.2 we considered ω^ ωίs defined for

all sequences I = (ί19 , ίs) of numbers between 1 and n. In our applica-

tion we shall only specify the integrals \ ωh ωig for sequences I =

(il9 , is) with no repetitions. In this case the relations (3.3) and (3.4)

only make sense (and are true) for I and J disjoint. For example in the

case considered in Section 2 where ωx = ux and ωt = υ09 ί = 2, , n, we

have for I — (il9 , ίn) a sequence without repetitions \ωίχ ωίn = ζ

for some k. Again (3.3) is shown by induction for disjoint sequences /

and J using (2.6) and it follows that also (3.4) holds in this case.

We also need the following formula, which is valid just c(I) is defined

for sequences I = (il9 , ίs) with no repetitions.

PROPOSITION 3.6. Suppose {c(I)} satisfy the shuffle relations, then

(3.7) Σ (-i)*-s Σ c(Λ + l, . JMJi + i, ,Λ)
l <i

. - . c ί Λ - i + l , . . . , ; , ) = 0

for n > 1. (ίZβre 1, , n are taken in cyclic order).

Proof We expand each term using (3.5) and want to determine the

coefficient of c(ίl9 - - ,ίn) in (3.7) for each permutation I = (ί19 , in) of

(1, , ή). Now a product

c(js + 1> ' -Ji)c(ji + 1, ,j2) ''' cUs-i + 1, Js)

contributes to this coefficient if and only if I is a shuffle for the s

sequences (j, + 1, ,yΊ), , (ja_1 + 1, . JS). We will call the s-tuple

[ji < * <Λ] a subdivision of (ί, , λi) and say that I is' a* shuffle for

L/i < * * <J*] The subdivisions are clearly ordered by inclusion, and it is

easy to see that a given permutation I = (iu , in) determines a minimal
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subdivision for which it is a shuffle. Hence if the minimal one has

cardinality k then / is a shuffle for (n ~" J subdivisions of length k + s,

s = 0, , n — k. It follows that the coefficient of c{iu , in) is

i f k < n

But if n > 1 it is easy to see that the minimal subdivision for any permuta-

tion I has length at most n — 1 so that the coefficient of c(I) is zero.

§ 4. Tensor valued functions

We now assume that the iterated integrals \ωit ωu satisfy Prop-

osition 3.2 and furthermore that the monodromy constants tg(ωiχ ωis)

are all rational (again it is enough to assume this for sequences (ίly , is)

with no repetitions). In particular the expression

(4.1) Φ = Φ(ωu , ωn) = J ωx <g) - - ® J ωn

gives a well-defined map

Φ: M > C/O (x) <g> C/O (τι copies)

where the tensor product is taken over Q.

THEOREM 4.2. Suppose n > 1.

the diagram

is α well-defined lift Φ in

M

C/Q® ®C/Q

given by the expression

(4.3) Φ = Φ(ωl9 •• , Σ

Γ
_ J <%_1 +i ••

(where ωu , ωn are taken in cyclic order).
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Proof, We must show that for g a covering transformation of M

Φ(gz) = Φ(z), for all z e M.

By (1.16)

(4.4) Φ(gz)=±(iy-S Σ .
l l^ < <

Σ

1 ® . •• ® 1 ® J ωίs+ί ωh® 1 ® •• ® 1 ® Γω iχ+1 ωh(

• ® 1 ® ® 1 ® ωt _t ωjs ® 1 ® ® 1,

where again ω! <yn are taken in cyclic order. Thus each term in (4.4)

corresponds to a sequence of ϊs and / s such that either

(4.5) 1 ^ Λ ^ i\ ^ ; 2 ^ i2 £js £ ίs £ n

or

(4.6) l^ίs £jt £

with strict inequality among the /s . The terms in which j p — ip for all

p = 1, , s, are exactly the terms of Φ(z), so in the remaining terms

we have j p < iF for some p. In this case we have either

a) j P < iP = jp+u or

Now any term of type b) cancels with one of type a). In fact if a

sequence as in say (4.5) satisfies b) then the corresponding term cancels

with the term corresponding to j ' l 9 ί[, ,jί+ι, i£+1 where

for v ^ p, v .
ip, for v = p,

/„_!, for v > p + 1.

It follows that the only non-cancelling terms of Φ{gz) — Φ(^) are the

terms in which

' ' * Jp ^ lp = = Jp+l ^ ^ + 1 — 7p + 2 * * *

and since this is true in cyclic order we obtain ip = j p + ί for all p = 1,

• , s — 1, ίs = JV Hence
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Φ{gz) - Φ{z) = ± ( - 1 ) — Σ * , K + , ωh)tg{ωh+, »A)
5 1 l ^ ^ < < y ^ W

= 0

by Proposition 3.6. This proves the theorem.

In particular in the case of polylogarithms we use the notation lk

n

of Section 2, and obtain a lift of the function L* defined by (0.3) in the

introduction:

COROLLARY 4.7. Suppose n > 1. Then there is well-defined lift Ln

in the diagram

given by

n

(4.8) Ln = 2] (—ϊ)n~s XI 1 ® ® 1 ® ln-js

s+)i ® 1 ® ® 1 ®
~~h^l ' 32-31-1

Remark 1. Let σ denote the cyclic permutation of C ® ® C given

byj σ{a^ ® ® an) = σn ® αj ® ® αΛ_lβ Then it is easy to check that

σ o Φ(ωu --,ωn) = Φ(ωn, ωu , αι n _i)

and hence by iteration

σk o Φ(ωu , ωn) = Φ(ωw_fc+1, , ωw, α ,̂ , α)B-fc)

for ^ = 0, , n — 1. In particular

(4.9) L l = a k - λ o L n ^ Φ ( p ^ -,O» - , v 0 ) , k = 1 , - . - , * .

with L»j on the fe'th place corresponding to the "&'th case" of Section 2.

Clearly σuoLn is a lift of

(4.10) Ll*(z) = 2® (x)( l-2)(χ) . ® 2 e C * ( x ) . . ® C *

with (1 — z) on the β'th place. In the next section we shall also use the

notation
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(4.11) L° = Φ(υa, , a.) = Σ ( - I ) * " 8 Σ

jι-1 jz-ji-1

which is the lift of

(4.12) L°*(z)= z®'" ® 2 e C * ® ••• C* .

Remark 2. By Proposition 3.6 it clearly follows that Φ(ωu , ωn) is

in the kernel of the natural homomorphism μ: C ® •• ® C - > C given

by multiplication:

(4.13) μ{ax ® ® an) — ax an .

§ 5. Relations

We will finally study relations among tensor valued functions

Φ{ωu , ωv) as in (4.3) for different choices of ω/s. More precisely

consider Ψ: M^C® ® C of the form

and we want to find conditions for ?Γ to be constant. (Relations in more

than one variable can of course be reduced to this case by keeping some

variables fixed). A necessary condition is of course that

(5.2) Ψ = Σ ί * « •,<) = Σ U ϊ ® ® \<

is constant in C/Q® ®C/Q. As we shall see it is possible succes-

sively to work backwards from (5.2) to (5.1). First let

rk: C Θ . (χ)C->C® ®C/Q® ••• ® C

be the natural reduction mod Q on the fe'th factor.

PROPOSITION 5.3. Let Ψ: M - > C ® - . . ® C be given by (5.1). Then

Ψ is constant if and only if rk o Ψ is constant for all k = 1, , n.

Proof. Choose zoe M and put a = Ψ(z0). Then given ze M,

(5.4) rk(Ψ(z) - a) = 0, for all β = 1, ., n.
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Hence

¥(z) - a e 0 ® ® Q -~> Q

where μ: C ® ® C - > C is given in (4.13). Now μo(ψ — a): M-»C

is locally given by a holomorphic function and so, since it takes only

rational values, must be constant. Therefore also Ψ — a is constant and

hence 0, so Ψ = a.

Remark. By the last remark of Section 4 if Ψ = a is constant, then

a is in the kernel of μ: C ® ® C—>C and hence is uniquely deter-

mined by its reductions rka.

Thus Proposition 5.3 reduces the verification of a relation among

Φ(ωv

ly , ωv

n) to a relation among rkΦ(ωl, , α>£) for each A = 1, , n.

Now, if we put

(5.5) Φ(ωu , ωn) = rnΦ{ωu , ωn) e C ® • ® C <g> C/Q

then by the Remark 1 following Corollary 4.7

< 7 w - f c o rkΦ(ωu . , α > n ) = Φ(ωk+ί, - - - , ω n , ωlf - - 9 ω k ) .

Hence we conclude that the conditions of Proposition 5.3 are equivalent

to

(5 6) 2a Φ(ωk+i> * J <K, ωϊ> * * * > ωfc) = const., k = 0,1, , n — 1.

Here Φ(ωt, , ωn) is given by

w - l

(5.7) Φ(ω1? •• ,α)J = 2 j ( - l ) n 2-.

. ® 1 ® I a), ω, ® 1 ® .. ®Jl ® . ®
^- . J n *—-yr-~^

^ - ® 1 ® J ωjs+1 - ωn
n-js-l

where the term corresponding to s = 0 is just

1 ® . ® 1 ® I O)Λ ωn .J
Again let

(5.8) rfc:
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denote the reduction mod Q on the &'th factor. Then we have (cf. Bloch

[2, Corollary 6.2.3]).

THEOREM 5.9. Let Ψ\ M - > C ® ® C/Q be given by

(5.10) f

Then ¥ is constant if and only if rkoψ is constant for all k = 1, , n — 1.

Proof. Choose zQe M and put a = Ψ(z). We want to show that

Ψ — ά is constant in a neighborhood of zQ. Now by assumption for each

zeM

(5.11) #•(*) - ά = 1® ® 1® a(z)

and we claim that a can be chosen complex analytic in a neighborhood

U of 20. In fact by construction Ψ — ά is represented in a suitable U

by such functions, i.e. we can represent

φ- -ά)\ΌeA® . .

where A is the ring of analytic functions in U. Now if we write

(5.12) @-ά)\u = Σ Qi^in^ ® ® α*.

where qiχ...in e Q and au , aNe A are linearly independent over Q then

a cardinality argument shows that for some ze U also ax(z), , α^z)

are linearly independent over Q from which it follows together with

(5.11) that (5.12) must have the form

(ψ - ά)\u = 1® ••• ® 1 ®α +

thus proving the claim. To show that a is constant we shall prove that

(¥ — ά)\u is in the kernel of the map

D: A ® ••• ® A > A ® ••• ®A®ΩA/C

n n-2

given by

D(a1 ® ® αn) = αt ® ® an_ιdan

where d: A->ΩA/C is the usual differential. This will then show that a

in (5.11) is in the kernel of the composite
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and since this kernel clearly consists of the constants it follows that a

is constant. Thus it remains to show

(5.13) DΦ(ωu . . . , o ι , ) = 0

where Φ(ωu , ωn) is given by (5.7). Now using

d j ωh+i " * ωn = ί I ωJt+ί ωn_λωn and d I ωn = ωn

we obtain

ra-2

Σ ( 1 \w — S +1 "v '

V / / i

1 ® - Θ 1
ji-1 jz-ji-1

Σ(-i)π-s+1 Σ
s=l l^./i< <y*

1® 1 ® f a)! •• ω i 3 l ® •• ® 1 ® ••• ® 1 ® i f ω i β _ 1 + 1

= 0

which proves (5.13) and ends the proof of the theorem.

Remark. Notice that

(5.14) rkΦ(ωu , ωn) = Φ(α)!, , ωk) ® Φ(ωfc+1, , ωn).

It follows that relations among functions of the form Φ(ωu , ωn) are

reduced by Theorem 5.9 to relations among functions of the form

Φ(ω, , ωfc), k<n.

This remark tegether with Proposition 5.3 means that any relation

of the form

, •••,<) = const.

eventually can be deduced from relations among the functions ω\ with

values in C/Q. In particular relations among the polylogarithmic func-

tions LI, k = 0, , n, defined in Section 4 can all be deduced from the

defining relation for the ordinary logarithm

log (z + w) = log z + log w mod 2πi.
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As an illustration of this principle let us mention the following relations
in one variable among the trilogarithmic functions U = L\, i = 0, , 3,
defined by (4.8), (4.9), (4.11) and with values in C Θ C Θ C :

COROLLARY 5.15. For 2eC\{0} we have

i) LKz-1) - L\z) + L\z) = 0

ii) L\\ -z) + u(l - 1 ) = L\z) + L\z) + L\z)

where c = - — V U*Q> = ~ τ Λ τ Σ 1/*'.

These identities are analogous to the identities in Lewin's book [9,
A.2.6, (5)-(9)]. We will not give the proof which is straight forward by
successive applications of Theorem 5.9, the remark (5.14), and Proposition
5.3. The constant in ii) is determined by evaluation on V — 1 = eπί/z.

From these identities one easily deduce

COROLLARY 5.16. For ze C - {0} put R(z) = L\z) - L\z): Then

i) Riz-1) - R(z) - 0

ii) R(l - z) + R(I - —) + R(z)= 3(1® l ® c

It is interesting to note that relations of exactly this form naturally
occur in the homology of the chain complex of configurations in the
complex projective plane. We shall return to this subject and its connec-
tion with the homology of the discrete group Gl(n, C) in a paper with
Sah [6] (see also Sah [14, Section 4]).
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