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Abstract

Objectives:Data fromneurocognitiveassessmentsmaynotbeaccurate in thecontextof factors impactingvalidity, suchasdisengagement,unmotivated
responding, or intentionalunderperformance.Performancevalidity tests (PVTs)weredeveloped toaddress thesephenomenaandassessunderperform-
ance on neurocognitive tests. However, PVTs can be burdensome, rely on cutoff scores that reduce information, do not examine potential variations in
task engagement across a battery, and are typically not well-suited to acquisition of large cognitive datasets. Here we describe the development of novel
performance validity measures that could address some of these limitations by leveraging psychometric concepts using data embedded within the
Penn Computerized Neurocognitive Battery (PennCNB).Methods:We first developed these validity measures using simulations of invalid response
patternswithparameters drawn fromrealdata.Next,we examined their application in two large, independent samples: 1) childrenandadolescents from
the Philadelphia Neurodevelopmental Cohort (n= 9498); and 2) adult servicemembers from theMarine Resiliency Study-II (n= 1444).Results:Our
performancevaliditymetricsdetectedpatternsof invalid responding in simulateddata, evenat subtle levels. Furthermore, a combinationof thesemetrics
significantly predicted previously established validity rules for these tests in both developmental and adult datasets. Moreover, most clinical diagnostic
groupsdidnot showreducedvalidityestimates.Conclusions:Theseresultsprovideproof-of-conceptevidence formultivariate,data-drivenperformance
validitymetrics.Thesemetricsofferanovelmethodfordeterminingtheperformancevalidity for individualneurocognitive tests that is scalable,applicable
across different tests, less burdensome, and dimensional. However, more research is needed into their application.
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Neuropsychological testing assesses brain-behavior functioning,
typically to examine whether an injury or illness has negatively
affected specific cognitive functions. However, several factors –
including fatigue, disengagement, distraction, unmotivated
responding, and intentional underperformance – can interfere
with the reliable and valid measurement of cognitive functioning.
Gauging whether such factors have affected the measurement of
cognitive functioning is a significant challenge. Over the past three
decades, research to formally discern valid from invalid test perfor-
mance has rapidly increased, leading to assessment tools termed
performance validity tests (PVTs; Larrabee, 2012). PVTs have pro-
vided substantial benefit to neuropsychological evaluations by pro-
viding evidence for or against credible cognitive performance.

Despite their clear utility, most PVTmeasures have limitations.
Standalone PVTs typically require 10–15 min to administer, and

many are still administered by paper and pencil. Such measures
may not be suitable for “big data” acquisition, even though data
integrity is a substantial concern in data collected at scale. Though
several embedded PVTs exist, as described in Bilder & Reise
(2019), neurocognitive assessments would benefit from having
measures of performance validity built into every test, which
may be facilitated by examining aberrant patterns of responses
or speed. PVTs also rely on cutoff scores, which prevent explora-
tion of potential gradients in performance validity (Walters
et al., 2009) and impede flexibility for individuals utilizing the
tests. For example, a clinician or researcher may value minimiz-
ing either false positives or false negatives, depending on pop-
ulation base rates of invalid performance or the evaluation
context (McCormick et al., 2013). Cutoff measures also preclude
examination of potential variations in task engagement across a
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test battery. Relatedly, PVTs are typically used to predict insuffi-
cient engagement on separate, non-PVT measures, occasionally
leading to challenging discrepancies (Loring & Goldstein, 2019)
or false positives (Lippa, 2018). In addition, PVTs usually do
not factor in speed of responding, though using speed in addition
to accuracy may increase the sensitivity of PVTs (Kanser et al.,
2019; Lupu et al., 2018). Innovative methods for performance val-
idity that leverage item-level psychometrics (e.g., response consis-
tency) may be beneficial for acquisition of large samples over the
internet or for tests administered through telehealth, which has
become especially relevant during the COVID-19 pandemic.

Examining item-level responses has the potential to increase
sensitivity to insufficient effort and task disengagement. Person-
fit metrics are one valuable tool to detect problematic responding
at the item level. Person-fit (Reise, 1990; Tatsuoka & Linn, 1983;
Tellegen, 1988) is a general term for psychometric methods
designed to assess the consistency of a response pattern using some
prior information (e.g., relative item difficulty). These methods
examine whether an individual’s pattern of responding on a test
fits with the individual’s overall ability level or the overall patterns
of performance across all individuals. As a simple example, con-
sider a 10-item test on which the first 5 items are of low difficulty
and the last 5 items are of high difficulty. If an examinee answers
the first 5 items correctly and last 5 items incorrectly, that pattern
would fit the normative data well (high person-fit score) and sug-
gest an ability level in between the difficulties of the easy items and
the difficulties of the hard items. However, if an examinee
answered the first 5 items incorrectly and last 5 items correctly, that
pattern would not fit the normative data well – correct responses
on hard items suggest that the examinee is of very high ability,
whereas incorrect responses on easy items suggest that the exami-
nee is of very low ability. This examinee would receive a low per-
son-fit score (indicating person misfit). We propose that this lack
of fit may be one useful indicator of invalid neurocognitive perfor-
mance (e.g., reflecting haphazard responses or insufficient effort).

Here, we describe and apply novel methods for developing
data-driven, embedded performance validity measures from
item-level responses in the Penn Computerized Neurocognitive
Battery (PennCNB; Gur et al., 2001, 2012, 2010), a neurocognitive
battery that has been applied worldwide in numerous studies. First,
we describe and present data from simulations that model invalid
responding using a multivariate combination of metrics. Second,
we examine associations of these simulation-derived metrics with
established validity rules in “real-world” data from two large, in-
dependent samples. Finally, we examine associations of these per-
formance validity metrics with psychopathology in these samples
to examine whether individuals with elevated psychopathology are
likely to be identified as false positives on these metrics.

Method

Neurocognitive battery

The PennCNB is a publicly available collection of tests assessing a
range of neurocognitive functions (Gur et al., 2010; Moore et al.,
2015). The 14 core PennCNB tests take approximately one hour
to complete (see eTable 1). Numerous studies support the
PennCNB’s validity and reliability, including sensitivity to individ-
ual differences (Gur et al., 2012) and expected neurobehavioral
profiles in clinical conditions (e.g., Aliyu et al., 2006; Hartung
et al., 2016; Roalf et al., 2013). The battery has been applied in
large-scale genomic studies (Greenwood et al., 2019; Gulsuner
et al., 2020; Scott et al., 2021), intervention studies (Bhatia et al.,

2017; Scott et al., 2021), and even in space flight (Basner et al.,
2015; Garrett-Bakelman et al., 2019).

To create performance validity measures, we used six PennCNB
tests conducive for psychometric characterization of item-level
responses. Specifically, for these methods, tests need to be self-
paced (no rapid signal-detection tests), include core measures of
accuracy, and comprise fixed sets of administered items. Based
on these criteria, we selected the following tests. Episodic Memory:
The Penn Word Memory Test (CPW), Penn Face Memory Test
(CPF) (Thomas et al., 2013) and Visual Object Learning Test
(VOLT) (Glahn et al., 1997) have similar formats for presentation
and recall. The CPW/CPF presents 20 words or faces to remember,
respectively, and the recall portion shows these targets mixed with
20 non-targets. The VOLT shows participants a series of 10 three-
dimensional Euclidean shapes, and the recall portion shows these
targets mixed with 10 new shapes. Verbal Reasoning: The Penn
Verbal Reasoning Test (PVRT) measures language-mediated rea-
soning ability using a series of analogy problems patterned after the
Educational Testing Service factor-referenced test kit. Nonverbal
Reasoning: The Penn Matrix Analysis Test (PMAT) measures
nonverbal reasoning ability using problems similar to those used
in the Raven’s Progressive Matrices Test (Raven, 1989) and
WAIS-IV Matrix Reasoning (Wechsler, 2008). Emotion
Identification: The Penn Emotion Recognition Test (ER40) mea-
sures the social cognition domain of emotion identification.
Participants are shown 40 individual faces and must determine
whether the emotion expressed by the actor’s face is happiness,
sadness, anger, fear, or none at all. There are 4 female and 4 male
faces for each emotion (4 × 2 × 5= 40).

Participants

To generate parameters for the simulations described below,
we used item-level accuracy and response time data from the
Philadelphia Neurodevelopmental Cohort (PNC), a large (n
= 9498), community-based sample of youth between ages 8 and
22. Please see Calkins et al., (2015) and Supplementary Methods
for more extensive information on PNC recruitment, enrollment,
and procedures. The Institutional Review Boards at the University
of Pennsylvania (Penn) and CHOP approved this study.

To examine the utility of validity metrics derived from these
simulations, we applied these metrics to PNC and Marine
Resiliency Study-II (MRS-II) data for external validation. MRS-
II participants (n= 1444) have been described in detail previously
(Acheson et al., 2015), with more information available in
Supplementary Methods. The institutional review boards of the
University of California San Diego, Penn, VA San Diego
Research Service, and Naval Health Research Center approved this
study.

Procedures

The PennCNB was administered by assessors who undergo exten-
sive training by experienced assessors, including hands-on instruc-
tion, observation of mock sessions, feedback after practice
assessments, and standardized certification procedures. For both
samples, participants were administered the PennCNB on laptops
by proctors trained by experienced Penn staff. However, the PNC
used a one-to-one proctor-examinee setup, and theMRS-II admin-
istered tests with multiple service members and one proctor.

After test administration, assessors assigned a code to rate the
quality of data and took detailed notes to indicate when an exami-
nee exhibited disengagement from a task. In addition, algorithmic

790 J. C. Scott et al.

https://doi.org/10.1017/S1355617722000893 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617722000893


validity rules for PennCNB tests have been developed specific to
each test to detect certain subject-related problems (e.g., extended
periods of inattention, random or habitual responding). These
rules include flagging of repeated instances of impossible response
times (e.g., < 200 msec), excessive outliers in performance, and
unusual response patterns (e.g., choosing the same option several
times in a row). See Supplemental Methods for greater detail on
these algorithmic validity rules. Experienced CNB data validators
supervised by neuropsychologists make ultimate decisions to des-
ignate a test as invalid by integrating algorithmic rules, assessor
comments, and visual data inspection. Though helpful for quality
assurance, these validation procedures require significant manual
intervention, are infeasible for collecting data at scale, and are not
“gold standard” criteria, as they are less likely to detect more subtle
task disengagement or insufficient effort than typical PVTs.
Nonetheless, associations between our performance validity met-
rics and these validation rules provide a useful initial test of cri-
terion validity.

Performance validity metrics

We used a combination of three methods to generate performance
validity metrics.

Person-fit metric
Person-fit is a measure of how feasible an individual’s response
pattern is given item characteristics (e.g., difficulty). Many per-
son-fit indicators have been described – see Karabatsos (2003)
and Meijer & Sijtsma (2001). We selected two indicators that
are least correlated with each other: the point-biserial1 method
(Donlon & Fischer, 1968) and Kane & Brennan (1980) dependabil-
ity method. Both measures indicate the degree to which a person’s
response pattern conforms to sample-level response patterns.2 See
Supplemental Methods for more details on these specific methods.

Response time3 outlier metric
This metric reflects the proportion of items on which the response
time (RT) is at least two standard deviations from the expected RT,
given that the response is correct or incorrect. Each item’s response
time is modeled using the following regression equation:

Response Time ¼ intercept þ β1 Responseð Þ þ error

where “Response” is a dichotomous variable indicating whether the
response is correct or incorrect. In this model, each item has an
expected response time (given a correct/incorrect response). If
the examinee’s response time is> 2.0 SD above or below the
expected response time according to the model, then it is consid-
ered an outlier. The proportion of responses that are outliers is sub-
tracted from 1.0 to arrive at a score for this metric, with higher
values indicating greater validity. For example, if 10% of an indi-
vidual’s responses were outliers, the score for this metric would be
1.00–0.10= 0.90 (90% valid/non-outliers).

“Easiest Items” metric
Similar to most standalone PVTs, this metric reflects items that are
answered correctly by an overwhelming majority of individuals.
This metric determines the proportion correct on the three easiest
items on each measure, where “easiest” is indicated by the highest
proportion correct in the full sample. Typically, these items were
answered correctly by >95% of the reference sample. This metric
has 4 possible values (0%, 33%, 67%, 100%). Note that this method
will inevitably share some variance with person-fit methods but
may be particularly sensitive to intentional underperformance,
where a common putative strategy is to feign memory loss (Tan
et al., 2002), resulting in easy items answered incorrectly.

Statistical analyses

All analyses were performed in R v3.6.1 (R Core Team, 2020).

Simulations

One set of simulations was performed for each test. First, item
responses and response times were estimated using parameters
generated from the PNC. Next, simulations were conducted using
these parameters for n= 2,000 simulated participants. Item-level
response patterns and response time estimates were used to gen-
erate varying proportions of invalid responses for a small percent-
age of simulated participants. Next, the three performance validity
metrics were calculated for each measure for each simulated
examinee. Finally, a model was built and cross-validated to predict
invalid responses in the simulations. More specific steps for per-
forming simulations were as follows:

1. To simulate item responses, we first estimated population
parameters (e.g., discriminations, difficulties) of item-level data
from the PNC, using the 2-parameter logistic IRT model (2PLM).
For reference, eTable 2 shows the item-wise proportions correct for
data on which simulations were based, and eTable 3 shows the
2PLM item parameter estimates used in simulations. In rare cases
where a negative discrimination parameter was estimated in real
data, it was fixed to zero before simulations. Of note, although
responses from simulated examinees are unrelated to those from
real examinees, simulated item responses have the exact same
parameters (discrimination, difficulty) as items from the PNC.
These item parameter estimates were used as population parame-
ters for simulations in #3 below. See Supplementary Methods for
details.

2. Response time distributions for correct and incorrect
responses were estimated separately for each item using data from
the PNC, using the JohnsonFit() function in the SuppDists package
(Wheeler, 2016). These measures provide item-level response time
estimates from a distribution of responses most similar to a target
distribution. For each item of each test, the program generated two
sets of four estimates (one set each for correct and incorrect
responses), used in simulations described in #4 below.

3. Response patterns were then simulated for 2,000 examinees,
using population parameters estimated from #1 above and the sim-
data() function in the mirt package (Chalmers, 2012). N= 2,000
was chosen because it is small enough to ensure some variability
due to sample size – for example, two simulations of N= 2,000 will
vary in their proportions correct (especially of the N= 100 invalid
responders) – yet not so large that the phenomena demonstrated
here may be limited to extremely large sample sizes, casting doubt
on their utility.

4. For each simulated correct/incorrect item response from #3,
response time was simulated by drawing randomly from a

1Note that the correlations used here are point-biserial, not biserial. The formula for a
point-biserial correlation is identical to the formula for a Pearson correlation. The “point-
biserial” term is used simply to indicate that it is a Pearson correlation between continuous
and dichotomous variables (and therefore has a maximum absolute value < 1.0).

2Note that a weakness of these metrics is that they do not provide values for all-correct
or all-incorrect response patterns, with the exception of the Kane-Brennan statistic, which
shows perfect fit for perfect scores; therefore, such response patterns (all 0s or all 1s) are
coded here as maximum fit.

3Note that all response times were log-transformed (natural log) before analysis. If raw
RTs were used, all outliers would be on the positive end (too slow) due to the inherent
positive skew of response time distributions.
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distribution with the samemoments as those estimated in #2, using
the rJohnson() function in the SuppDists package (Wheeler, 2016).
Therefore, if real-world examinees tended to have highly skewed
response times for Item X on Test Y, response times for simulated
examinees for Item X on Test Y were drawn from a similarly
skewed distribution.

5. For a subset of the 2,000 simulated examinees, a percentage of
their responses (see #8 below) were changed to be “invalid.” For
these simulated low-validity examinees, the probability of a correct
response on a percentage of responses was set at chance level (i.e.,
unrelated to discrimination and difficulty item parameters), and
response times for these chance-level responses were drawn from
a random uniform distribution between 200 and 3000 millisec-
onds. This randomness was meant to simulate careless responding
insofar as response times and accuracy were unrelated to the dis-
crimination or difficulty of the item (analogous to random or
unmotivated responding). The “invalid” nature of response pat-
terns of these randomly selected examinees was indicated (val-
ue=1) in an additional column. Other examinees received a 0 in
this column.

Primary analyses simulated invalid performance for 100 (5%) of
the 2,000 examinees, which was selected as a reasonable base rate of
non-credible performance for non-clinical/community samples
(Martin& Schroeder, 2020; Ross et al., 2016).However, given research
in healthy undergraduates that found higher rates of invalid perfor-
mance (Roye et al., 2019), we alsomodeled invalid performance in 200
(10%) simulated participants as a sensitivity test.

6. With valid and invalid response patterns simulated, perfor-
mance validity metrics were calculated for each measure for each
simulated examinee. Person-fit metrics were calculated using
r.pbis() and E.KB() functions in the PerFit package (Tendeiro
et al., 2016).

7. To assess the performance of the validity metrics in detecting
invalid responders in this simulation, we split the sample randomly
into a training (75%) and testing (25%) set. In the training set, a
logistic regression model was built to predict invalid responders
using the new performance validity metrics. Then, the model (built
in the training set) was used to predict invalid responses in the test-
ing set, with area under the receiver operating characteristic (ROC)
curves generated using each performance validity metric individu-
ally (e.g., only the person-fit metric) and using all metrics com-
bined. Of note, to eliminate collinearity among performance
validity metrics, they were regressed out of each other before build-
ing models that included them all.

8. Steps 3 through 7 were repeated for all possible percentages of
invalid responses (#5 above) per test. For example, for the PMAT
(24 items), a set of simulations was conducted for when 100 exam-
inees had invalid responses to 24 items (24/24= 100% invalid), 23
items (23/24= 95.8% invalid), 22 items (22/24 = 91.7% invalid),
etc., to only 1 item invalid. For exploratory purposes, a response
pattern simulated to be invalid was considered invalid even if it
had only one “random” response. Although examining a large
range of invalid responses may not reflect distributions of invalid
responses in real-world participants, this method avoids choosing
an arbitrary cutoff and examines the methods’ utility across a dis-
tribution of levels of invalid responding. The ability of performance
validity metrics to detect invalid response patterns in the test sam-
ple was recorded at each possible percentage of invalid responses.
For each test and each percentage of invalid responses, 500 simu-
lations (2000 examinees each) were run. In total, there were: 500
simulations × 179 total items (across 6 tests)= 89,500 simulations
total.

Coefficients for each simulation were saved, and final hard-
coded equations below represent the average across all simulations.

Application of validity estimates to developmental and adult
neurocognitive data

Next, as an initial test of criterion validity, we examined whether
the multivariate CNB validity estimates (MCVE) were associated
with established CNB validation rules. We generated MCVEs
for PNC and MRS-II participants and used these scores to predict
previously established valid/invalid classifications for each test
using logistic regressions and ROC curves. Specifically, equations
created from “Simulations” above were used to calculate a weighted
sum of the four individual validity metrics per person, providing
out-of-sample validity estimates. These validity estimates were
used to “predict” valid/invalid classification rules determined by
a human team. As detailed above, although these are not gold stan-
dard PVTs, they serve as an important proof-of-concept test.

Finally, to assess whether the MCVE could be confounded by
clinical conditions (depression, anxiety, etc.), we examined
MCVE data for real PNC participants with and without six psycho-
pathological diagnoses: depression, obsessive-compulsive disorder
(OCD), post-traumatic stress disorder (PTSD), psychosis, atten-
tion deficit hyperactivity disorder (ADHD), and conduct disorder.
See supplementary methods and Calkins et al. (2015) for greater
details on psychopathology assessment and Calkins et al. (2014)
for clinical composition of the sample. Similar analyses were con-
ducted for MRS-II; because clinical assessments differed, we com-
pared participants with and without: depression, PTSD, anxiety,
insomnia, alcohol problems, psychosomatic/physical problems,
and marked lack of perspective-taking (low interpersonal reactiv-
ity). Specific instruments can be found in Supplemental Methods,
and details of score generation for the sevenMRS-II psychopathol-
ogy scales and clinical composition can be found in Moore
et al. (2017).

Results

Simulations

We first used simulations and the MCVE prediction model incor-
porating our three performance validity metrics to classify simu-
lated examinees as valid versus invalid responders. Figure 1
shows the relationship between simulated effort (number of valid
responses across items) and the model’s ability to classify response
patterns as valid or invalid when simulating 5% of examinees as
invalid. As expected, the more valid responses a simulated exami-
nee gave (i.e., moving from left to right on the x-axis), the ability of
the MCVE to detect invalid responding in these simulations
decreased. Further, the individual metrics (e.g., person-fit) differed
by test in how well they detected invalid responses. For example,
for the ER40, individual metrics except the “easiest items” metric
perform well (AUC > 0.80) up to 75% valid responding. By con-
trast, for the VOLT, the relative utility of the methods was less
clear; the easiest items metric outperformed RT outlier and per-
son-fit metrics between ∼30% and ∼90% valid responses, though
all fell below AUC= 0.80 when 60% or more of responses were
valid. Notably, for every test except PMAT, the combined MCVE
performed marginally to substantially better than any individual
metric, supporting the utility of our approach. See Supplemental
Results for greater details on the shape of curves in Figure 1. As
shown in eFigure 1, sensitivity analyses showed similar results
when simulating 10% of examinees as invalid, supporting results
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above. Additionally, eFigure 2 shows that increases in the propor-
tion of items invalid for each test generally results in decreased
internal consistency (Cronbach’s α), supporting effects on validity.

The simulations summarized in Figure 1 were used to generate
hard-coded equations for use in real data:

MCVEmem= 0.42 ×Outlier_Scoreþ 0.02 ×Acc_3easyþ
0.05 × PersonFit1þ 0.50 × PersonFit2

MCVEnon-mem= 0.34 ×Outlier_Scoreþ 0.00 ×Acc_3easyþ
0.22 × PersonFit1þ 0.44 × PersonFit2

where “MCVEmem” is for episodic memory tests, “MCVEnon-mem”
is for all non-memory tests, “Outlier_Score” is the RT outlier val-
idity metric, “Acc_3easy” is the easiest items metric, “PersonFit1”
is the point-biserial metric, “PersonFit2” is the Kane-Brennan
dependability metric, and coefficients reflect averages across each

test type (memory and non-memory). Note that non-memory tests
are combined because we intend for the MCVE to be generalizable
across multiple tests. Furthermore, there is domain specificity in
PVTs that might be lost when aggregating across memory and
non-memory domains (Erdodi, 2019). Supplementary file
“MCVE_estimation.R” provides the R script for calculating valid-
ity estimates, where memory and non-memory versions can be
specified by commenting out relevant lines indicated.

Application of validity metrics to two independent samples

Next, these equations were used to generate MCVE scores for par-
ticipants in the PNC andMRS-II, which were used to predict valid/
invalid classifications previously determined by the investigators’
quality assurance team for each test. eFigure 3 shows results of
these ROC curves for the PNC. AUCs ranged from 0.61 for the

Figure 1. Prediction accuracy (AUC) for the multivariate CNB performance validity estimate in predicting true (Simulated) careless responding in 5% of the simulated examinees,
by proportions of valid responses. Note. For visual simplification, “Person-Fit Method” is the average of the person-fit indices. CPF = Penn Face Memory Test; CPW = Penn Word
Memory Test; VOLT = Visual Object Learning Test; ER40 = Penn Emotion Recognition Test; PMAT = Penn Matrix Analysis Test; PVRT = Penn Verbal Reasoning Test.
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PMAT to 0.75 for the CPW. Using an AUC> 0.70 cutoff, the
MCVE shows acceptable classification accuracy for four of the
six tests. eFigure 4 shows ROC results for the MRS-II. AUCs
ranged from 0.65 for the PMAT to 0.94 for the ER40. In this sam-
ple, the MCVE achieved acceptable (or remarkable) classification
accuracy for five of six tests. To facilitate decisions regarding use of
MCVE thresholds, eFigures 5 and 6 and Supplementary File
MCVE_sensitivity_specificity_coordinates.csv show how sensitiv-
ity and specificity vary as this threshold is varied. Overall, the table
suggests that a specificity of at least 0.80 can be achieved with a
threshold of approximately 0.90 ± 0.05 on the MCVE. Table 1
presents in-sample prediction statistics for the PNC and MRS-
II. See Supplementary Results for more information.

Associations with psychopathology

eFigure 7 shows how psychiatric diagnostic groups differed on
MCVE scores in the PNC. For OCD, PTSD, and conduct disorder,
no significant differences in MCVE were found. Depression was
associated with higher MCVE (i.e., more valid performance) on
the PVRT (p< 0.005), CPW (p< 0.0005), and VOLT (p< 0.005).
Psychosis was associated with lower MCVE on the ER40
(p< 0.05) but higher MCVE on the CPW (p< 0.0005). Finally,
ADHD was associated with lower MCVE on all tests (p< 0.05
to p< 0.0005).

eFigure 8 shows how psychiatric diagnostic groups differed on
MCVEs in theMRS-II. For PTSD, anxiety, insomnia, alcohol prob-
lems, and lack of perspective-taking, no significant differences in
MCVE were found. Depression was associated with lower
MCVE on the ER40 (p< 0.05), and psychosomatic/physical prob-
lems were associated with lower MCVE on the PVRT (p< 0.05)
and VOLT (p< 0.0005).

Discussion

Here, we used novel, item-level psychometrics to establish data-
driven, embedded performance validity metrics for individual tests
in a widely used computerized neurocognitive battery. Our perfor-
mance validity metrics detected patterns of invalid responding in
data that simulated careless responding, even at subtle levels.
Moreover, a multivariate combination of these metrics predicted
previously established validity rules on most measures in indepen-
dent developmental and adult datasets. Furthermore, there were
few differences on this measure by clinical diagnostic groups, even
in diagnoses associated with reduced cognitive performance in
prior studies (e.g., Barzilay et al., 2019; Gur et al., 2014;
Kaczkurkin et al., 2020; Service et al., 2020). These results provide
proof-of-concept evidence for the potential utility of data-driven

performance validity metrics that leverage existing individual test
data. Importantly, the MCVE also allows one to examine perfor-
mance validity across a spectrum, providing greater flexibility
for estimating the likelihood of invalid responses and offeringmore
precise data for investigators interested in understanding their data
at a fine-grained level. Though these methods were specifically
applied to the PennCNB, they could be applied to any computer-
ized test with accuracy and response time data.

Although robust measures exist to detect insufficient engage-
ment on neurocognitive tests, such measures typically rely on cut-
off scores, do not integrate response speed, do not allow one to
examine variations in validity across a test battery, and are not scal-
able for large-scale data acquisition. Our metrics offer a method to
examine gradients of performance validity, provide multiple mea-
sures across individual tests, and integrate response speed and
item-level psychometrics. Similarly, item-level metrics from
another computerized battery, the NIH Toolbox-Cognition, have
recently shown promise predicting externally validated PVTs in a
mild traumatic brain injury sample (Abeare et al., 2021). Such met-
rics may facilitate administration of neurocognitive tests through
telehealth or other remote applications, as well as the integration of
cognitive testing into “big data” efforts, including genomics. In
addition, compared to standalone PVTs, the nature of these valid-
ity metrics may be less amenable to coaching, which can be prob-
lematic in forensic cases (Suhr & Gunstad, 2007). Examining
variations in performance validity across a test battery may be
especially informative in this regard, as sophisticated simulators
of cognitive impairment may target specific tests rather than per-
forming poorly across all measures (Lippa, 2018). Critically, we
provide equations that PennCNB users can apply to examine per-
formance validity in data already collected. However, these metrics
should be integrated with other available data, where possible,
including behavioral observations by test administrators and par-
ticipant clinical history.

Importantly, performance validity metrics should be minimally
associated with most clinical conditions, even those with estab-
lished neurocognitive deficits. There were few associations between
our validity metrics and diagnoses of depression, PTSD, anxiety,
psychosis spectrum disorders, or externalizing disorders, support-
ing our approach. This feature is especially relevant considering
neurocognitive performance differences in these conditions (e.g.,
Barzilay et al., 2019; Gur et al., 2014; Kaczkurkin et al., 2020).
However, there were diagnoses with reduced validity metrics that
should be addressed. First, ADHD showed MCVE reductions
across all tests. It is unclear whether these reductions aremeasuring
a behavioral phenotype of ADHD or reflect high base rates of non-
credible performance in ADHD (Suhr & Berry, 2017). Caution is

Table 1. In-Sample prediction statistics for the six neurocognitive tests predicting human-determined validity, in the Philadelphia Neurodevelopmental cohort (PNC)
and marine resiliency Study-II (MRS-II) samples

PNC MRS-II

Test Thresh Sens Spec AUC Thresh Sens Spec AUC

CPF 0.86 0.88 0.47 0.73 0.90 0.80 0.73 0.82
CPW 0.90 0.81 0.60 0.75 0.88 0.91 0.80 0.89
VOLT 0.88 0.85 0.54 0.74 0.84 0.93 0.80 0.93
PMAT 0.85 0.78 0.51 0.65 0.82 0.88 0.40 0.65
PVRT 0.83 0.67 0.71 0.72 0.64 0.94 0.80 0.89
ER40 0.87 0.64 0.70 0.71 0.81 0.80 1.00 0.96

Note. PNC= Philadelphia Neurodevelopmental Cohort; MRS-II=Marine Resiliency Study-II; Thresh= threshold; Sens= sensitivity; Spec= specificity; AUC= area under the receiver operating
characteristic curve; mean threshold across samples= 0.84.
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warranted in applying the MCVE to individuals with ADHD
before additional research is conducted. Second, youthwith signifi-
cant psychotic symptoms and Marines with depression showed
slightly lowerMCVE on ER40, so caution is warranted in interpret-
ing ER40 MCVE data in these populations. In contrast, lower
MCVE from the Marines with psychosomatic/physical problems
appears consistent with research showing that individuals with
higher psychosomatic complaints have elevated rates of perfor-
mance validity concerns (Dandachi-FitzGerald et al., 2016;
Martin & Schroeder, 2020).

Limitations and future directions

Although initial results are promising, additional studies are
needed for validation. As mentioned above, one limitation is the
lack of a “gold standard” PVT criterion, which should be examined
in future work. Future validation studies could take several forms,
including comparison of the MCVE to multiple PVTs or known
groups designs in which patients expected to display underper-
formance because of external incentives are compared to those
without external incentives (see Larrabee, 2012). Though these
methods could be applied to detect intentional underperformance,
they are likely detecting unmotivated responding in these samples
given the lack of external incentive for underperforming.

A second limitation is that data were simulated from unidi-
mensional IRT models, though many tests will produce multi-
dimensional data. For example, memory tests often produce
data showing two separate dimensions reflecting the ability or
tendency to detect a target (e.g., knowing one has seen a face
previously) and to reject a foil (e.g., knowing one has not seen
a face previously). Future studies should examine whether incor-
poratingmultidimensional psychometric modeling improves these
measures. Relatedly, methods of detecting aberrant response pat-
terns have advanced considerably since the development of metrics
used here, especially in clinical and personality research (Falk & Ju,
2020; Lanning, 1991; Tellegen, 1988). While our metrics were
selected based on generalizability (e.g., no reliance on model esti-
mation) and appropriateness for neurocognitive tests, future work
may benefit from testing more advanced methods.

A third limitation of the present study is that the weighted com-
posites (equations on pg. 13) are based on simulations in which the
number of invalid responders is fixed at 5%. While we tested 10%
invalid in additional simulations, the weights in our equations
could change slightly if the base rates of invalid performance were
lower (e.g., high-stakes test) or higher (e.g., with external incentives
to malinger).

Ensuring the validity of assessments is critical for accurate
interpretation in medicine and psychology. However, PVTs arouse
considerable controversy, as there can be substantial consequences
to classifying an assessment as invalid, including stigma, loss of
benefits, and psychological distress. Thus, most PVTs have empha-
sized specificity over sensitivity, which should be considered in
applying these metrics. Relatedly, researchers must currently use
subjective judgment (including examination of the MCVE distri-
bution in their sample) to decide what proportion of the sample to
flag or remove. Even in cases where the MCVE distribution shows
extreme outliers, the judgment is still subjective, which is a weakness
of the metrics proposed here. MCVEs have not been extensively
examined in clinical or medicolegal contexts, and further research
is needed before they are used in such contexts. Furthermore, neuro-
psychologists using PVTs should integrate multiple sources of data to
determine invalid performance, including behavioral observations

and expected cognitive performance given the patient’s history
(Heilbronner et al., 2009).

Conclusions

These limitations notwithstanding, we provide promising initial
data on the development and application of novel, data-driven,
dimensional performance validity metrics for individual tests in
the PennCNB. We show that these metrics are sensitive to subtle
patterns of invalid responding in simulated data, correspond well
with established quality assurance metrics in two independent
datasets, and are not associated with diagnoses of most psychiatric
disorders. These methods may facilitate modeling of unmotivated,
random, or disengaged responding in remote or large-scale cogni-
tive data collection, enhancing the validity and precision of such
assessments.
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