ORDERED SEMIGROUPS

PAUL CONRAD"

1. Introduction. In this paper order will always mean linear or total order,
and, unless otherwise stated, the composition of any semigroup will be denoted
by +. A semigroup S is an ordered semigroup (notation o.s.) if S is an ordered

set and for all @, b, ¢ in S
a<b implies a+c <b+c and c+a <c+b.

If in addition ¢+a > a for all @ in S, then we call S a positwe ordered semi-
group (notation pos. o.s.). In particular an o.s. S is cancellative, and hence if
e is an idempotent element of S, then e is the identity for S. Moreover, for a.

b, ¢ in S and » a positive integer we have the following rules

a>b«—at+c>b+c—>c+a>c+b.
a> b <> na> nb.
a>band c>d-»a+c>b+d

Let I be an ordered set, and for each r=/ let S; be an o.s. such that
S. N S; =[] (the null set) if a=xp. Consider e S, and b S; where a < 8.
Define a <b if a <Bor a=p and a<bd in S,. Define a+b=b+a=0if a<p
and use the addition in S, if a=3. Then Q:Tgpsr is an ordered set and a
semigroup—the ordinal sum of the S:. The S: are the components of Q.

In section 3 we give a necessary .and sufficient condition for a semigroup
S to be the ordinal sum of pos. o.s. (Theorem 3-1). We also show that if S
is a pos. o.s., then there exists a rather natural o-homomorphism of S onto an
ordinal sum of pos. o.s. each of which is o-isomorphic to a semigroup of positive
real numbers. Cheheta [2] and Vinogradov [9] use an example of Malcev to
show that an o.s. cannot necessarily be embedded in a group. Ore [8] has
shown that if every pair of elements in a semigroup S has a common right

multiple, then S can be embedded in a group G={a—-0:a b S}. G is called
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the difference group of S. We show that if S is an o.s.,, then the order of S
can oe extended to an order of G in one and only one way. In section 5 we
show that the order type of the set of all convex normal subgroups of G is

determined by S.

2. Embedding theorems. Throughout this section S will denote an o.s.

TurEOREM 2-1. Suppose that S satisfies: (*) for each pair a, b in S there
exists a pair x, y in S such that a+x=>b+y. Then there exists an o-group G
such that G={a-0b:a, b S} and a—b is positive in G if and only if a>b
in S. Moreover, if H is an o-group that contains S as an ordered subsemigroup
and is generated by S, then there exists an o-isomorphism n of G onto H such
that st =s for all s€S. We call G the difference group of S.

This theorem is a corollary of a result of Ore [8] for integral domains.
We outline the construction of an o-group G’ that is o-isomorphic to G. Let
T=Sx S and define that (a, b) ~ (¢, d) if there exist x, y in S such that a+ %
=c+y and b+x=d+y. Then ~ is an equivalence relation. Denote the
equivalence class containing (@, #) by [e, ], and define that [a, 6]+ [¢, d]
=la+x, d+y] where b+x=c+». Then the set G' of all equivalence classes
is a group, La, a] is the identity, [5, a] is the inverse of [ @, 4], and the mapping
7 of s upon [s+ %, x] is an isomorphism of S into G.

[a, b1=la+x, x1—[b+x, x]=ar —br. Thus there is at most one way of
extending the order of S to an ordering of G’. Namely, define that [a, 5] is
positive in G’ if ¢ > b in S. Let .4 be the set of all positive elements in G'.
If [a, al=1[b,c], then 8>¢ or b<c¢ in S, and hence [b, c1€ . # or —-1[b, c]
=[e, bl . #. If [a.d] and [c, d] belgng to .#, then @ >b and ¢ >d, and
[a, b1+ [c, d1=[a+x, d+v] where b+x=c+y. Thus a+x>b+x=c+y
>d+y, and hence [a, b]1+[c, dle #. If [a, ble # and [c, d]1= G, then
X=0d, c1+[a, b1+[c, dl1=1d, c1+[a+x, d+v]1=[d+u. d+y+v] where
b+x=c+yand c+u=a+x+v. To show that X ¥ it suffices to show that
u>y+wv. Pickrand sin Ssuchthat u+7=y+s. Thena+x+v+7r=c+u+7r
=c+y+s=b+x+s. If v+r=s then a+x+v+7r>b+x+s becauée a>b.
Thus v+ 7 <s, and hence v+v+7<y+s=u-+7. Therefore y+v < u.

Finally suppose that H is an o-group that is generated by S. Let [a, b1x'
=a-bforall (g, b1eG. Ifla, bl=[c,d], thena+x=c+yandb+x=d+7y.
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Thus a-b=a+x—x—-b=c+y—y—d=c—d, and hence o' is single valued.
(La, 81 +[c, dDn'=la+x, d+ylr'=a-+x—~y—d, where b+ x=c+y. Thus
x—y¥—b+c and a+x—-y—d=a—b+c—d=L[a, bln'+[c, d1n'. 1 0=[a, bIn’
=a—0b, then [a, b] is the identity of G'. If [a, bl . ¥, then ¢ > b in S and
hence in H. Thus [a, b1z’ =a—b is positive in H. S<G'n' < H and, since H
is generated by S, G'n' = H. Therefore n' is an o-isomorphism of G' onto H.
This completes the proof of the theorem.

CoroLLArY 1. S satisfies (x) if and only if S can be embedded in an o-
group G={a—-0b:a, beS}.

For suppose that G={a—b : @, b= S} and that a and b belong to S. Then
—a+beG and hence —a+b=x—y for some x, y=S. Thus b+y=a+x.

CoroLLARrY II.  Suppose that S satisfies (*) and let G be the difference group
of S. Then for a, b, ¢ in S

(a) a—=b=c—d if and only if there exist x, v in S such that a+x=c+y
and b+x=d+y.

(b)) a—b+c—d=a+x—(d+y) for all x, y in S such that b+ x =c+y.

(c) a—b>c~—d if and only if there exist x,y in S such that a+x>c+y
and b+ x=d+y.

The equivalence of (i) and (ii) in the following corollary is well known
and has been proven by Tamari, Alimov, and Nakada ([4] p. 309).

Cororrary III.  For a commutative semigroup A the following are equivalent.
(i) A can be embedded in an o-group.

(ii) A can be ordered.

(iii) A satisfies the cancellation law, and na = nb implies that a = b, for all

a, b in A and all positive integers n.

Proof. Clearly (i) implies (ii), and since any commutative o.s. satisfies
(), (ii) implies (i). An easy argument shows that (ii) implies (iii). Finally
assume that A is cancellative, and let G={a—b: a, b A} be the difference
group of A. If x=a—-0b<G and nx =0, then 0= nx =na—nb, and hence na
=nb. Thus by (iii) ea=56, and 0 =a—~b=x. Therefore (iii) implies that the
difference group G of A exists and is abelian and torsion free. But this means
that G can be ordered (see for example [7]).
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Suppose that A is a cancellative commutative semigroup with identity O.
Then if A can be ordered, it is torsion free, but the converse is false. For
consider the semigroup B =N® N, where N is the additive semigroup of non-
negative integers. For (a, ) and (¢, d) in B define that (a, b)~(c, d) if
a=c¢ mod 2, b=d mod 2 and a+b=c+d. Then it is easy to show that ~ is
a congruence relation. Let [a, 8] be the congruence class that contains (a, b).
B/~ ={la, b] : a, be N} ={[2n, 01, [2n+1, 0], [0, 2%2+1] and [2n+1, 1]
for all n= N} is a commutative semigroup with identity [0, 0]. It is easy to
show that B/~ satisfies the cancellation law and is torsion free, but 2[1, 1]
=2[0, 2] and [1, 11 %[0, 2]. Thus (iii) of the last corollary is not satisfied,
and hence B/~ cannot be ordered.

Let P={xcS:x+x>x}) and N={x&S: x+x < x). The following five

propositions are easy to verify (or see [1] for proofs).

1) P={xcS:x+s>sforall se€S}={xeS:s+x>s for all s€S).

2) N={xeS:x+s<sforallseS}={xeS:s+x<s forall s€S).

3) P and N are subsemigroups of S.

4) N< P. Thatis, n<p for all n N and all p P.

5) If S does not have an identity, then S= N U P and an identity 0 can be
adjoined to S so that T=S U {0} is a semigroup. Moreover, the order of S can
be extended to an order of T in one and only one way, namely N<O<P. If
we adjoin an identity to a pos. o.s we shall call the result a pos. o.s. with

zero. An o.s. S is naturally ordered if for all @, b in S
(R) a > b implies a=b+ x for some x in S, and
(L) a> b implies a=x+ b for some x in S.

Note that a pos. o.s. P satisfies (R) if and only if 6+ P={as P: a > b} for
all b in P.

TueoreM 2-2. If S satisfies (R), then S satisfies (*) and hence S is an
ordered subsemigroup of its difference group G. If S is naturally ordered, then
S contains the semigroup of all positive elements of G. A pos. o.s. P is the semi-

group of all positive elements of an o-group if and only if P is naturally erdered.

Proof. Consider a, b in S. If @ > b, then a=b+ x for some x in S. Thus
a+b=b+ (x+b). Similarly if a<b, then a+u=0+v for some #u, v in S.

Therefore S satisfies (*). Suppose that S is naturally ordered, and consider a’
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positive element » in the difference group G of S. y =a —b, where ¢, 0 S and
a>b. Thus a=x+b for some xS, and hence y=a—-b=x€S.

Finally suppose that P is a naturally pos. o.s. and let .# be the semigroup
of all positive elements of the difference group G of P. Then we have shown
that Po.#. If p P, then p+p>p in P and hence p=p+p—-»>0 in G
Therefore PC . #.

Lemma 2-1. Let a, b, ¢ be elements of S. If a+b<b+a, then a+ nb
< npb+a and na+nb<n(a+bd) <nlb4 a) <nb+na for all positive integers n,
where the equalities hold if and only if n=1.

This follows by a simple induction argument or see [6] for a proof.
CororLrArY. If p and q are positive integers and pa = qb, then a+b="5b+ a.

For if a+b<b+a, then (p+1)a=a+pa=a+gh<gb+a=pa+a
=(p+1)a, a contradiction.

Note that Lemma 2-1 and its corollary are true for an ordinal sum of o.s.
For if a4+ b6 <b+a, then a and b belong to the same component. In [6] the

following theorem (which we use later) is proven.

THEOREM 2-3. For an o.s. S the following are equivalent. (i) There exists
an o-isomorphism of S into a subseniigroup of the (naturally ordered) additive
group R of real numbers. (ii) For each pair a <b in S, there exist positive
integers m and n such that ma < (m+1)b and (n+1)a < nb.

THEOREM 2-4. Suppose that the center Z={z2€ S : z2+s=s+2z forall s€ S}
of S is not empty. Then there exists o.s. T such that

1) S is an ordered subsemigroup of T,

2) T contains the difference group G of Z and T is generated by S and G,

3) If T' is an o.s. that satisfies 1) and 2), then there exists a unique o-

isomorphism = of T onto T' such that st =s for all s S.

We outline a proof, leaving out the straightforward computations. Let
Q =Sx Z and for (a, &) and (¢, d) in @ define that

(@, b)+ (¢, d)=(a+c, b+d) and
(a, b)~(c, d) if a+d=0b+c.

Then @ is a semigroup, and ~ is a congruence relation. As usual, denote the

equivalence class containing (a, &) by [a, 1. For [a, #] and [¢, d] in @/~
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define that [, 81> [c, d] if a+d>b+c¢. Then (/~, +, >) is an o.s. and
the mapping v of a= S upon [a+ z, z], where z is a fixed element in Z is an
o-isomorphism of S into @/~. G'={[a, b]:a, bc Z} is the center of @/~ and
the difference group of Zr. Clearly @/~ is generated Sr and G'. Thus there
exists an o-semigroup T that satisfies 1) and 2). Moreover G is the center of
T. Finally suppose that T and 7' are o.s. that satisfy 1) and 2), and consider
te€T. t=s+g=s+2—2:, where s€S, gG and 2z, zZ. Define to=[s+z, z.].
Then ¢ is on o-isomorphism of 7" onto @/~. Similarly we define an o-isomor-
phism ¢' of T’ onto @/~, and then = =g¢' ' is the desired o-isomorphism of T

onto T'.
3. Positive ordered semigroups

TueoreMm 3-1. A semigroup S is an ordinal sum of pos. o.s. if and only if

(1) S is an ordered set, and for all a, b, ¢ in S,

(I1) if a<b, then a+c<b-+c and c+a<c+Db,

(II) a+a> aq,

(IV) if a+b=a+c, then b=c or a+b=a, and if b+a=c+a, then b=c¢

orb+a=a.

Proof. It is easy to verify that an ordinal sum of pos. o.s. satisfies these
four conditions. Conversely assume that S is a semigroup that satisfies (1),
(II), (III) and (IV). Then S satisfies (III') ¢+ b>max {a, b} <b+a for all a,
binS. Forif a+b<a, then a+2b<a+b. If a+2b<a+b, then 2b < b, but
this contradicts (III). If ¢+2b=a+b, then by (IV) 2b=b or a+b=a, a
contradiction. Therefore a+ b>«, and by a similar argument e+ b=b.

For a, b in S we define that ¢ ~ & if ¢+ b > max{a, b} <b+a. Clearly
~ is symmetric, and by (III) it is reflexive. Suppose that ¢a~&b and b~ c.
Then ¢+b6> b, and thus ¢a+c+bdb=a+b. If a+c+b=a+b, then by (IV)
c+b=bor a+b=a. Then b+c¢ or a+ b, a contradiction. Thus a+c+5
> a-+b, and hence a+c > a. By symmetry it follows that a ~ ¢, and hence ~
is an equivalence relation.

Let a={b= A : b~a}, and consider b, ¢ in a. We show that a+b+c¢
> max {a, b+c}. By symmetry it follows that &+ ¢ € a, and hence that @ is a
semigroup. If a+b+c¢<a+b, then b+ ¢ < b, and hence b +¢. Thus a+b+c
Za+b>a. If a+b+c<b+c then a+b<b, and hence a+b. If a+b+¢
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=b+c, then by (IV) a+b=0 or b+c=c, and hence a+ b or b+ c. Therefore
a+b+c>b+c.

We next show that @ is a pos. o.s. Consider x, ¥, z in a. If x <y, then
x+2<3y+2z For otherwise x+z=y+ 2, and thus x =y or ¥ +2z=2, a contra-
diction. By symmetry if x <y, then z+x <z+y. Thus @ is an o.s., and since
a satisfies (III) it is a pos. o.s.

In order to prove that S is the ordinal sum of the semigroups @ it suffices
to show that if ¢ <5 and @&, then a+b=0 and @ <b. a+b<b because
@~ 0, and by (III") a+b=b. Pickdedand 'eb. a+a+b=a +b. Hence
by (IV) @'+a=a' or @' +b=0. But @' +a > a because @' ~a. If o' <a, then
b'+b<a +b=>b, and hence ' + b. Therefore a’' < ¥, and hence a < b.

For the rest of this section we investigate pos. o.s. The information ob-
tained will then apply to semigroups that satisfy the four properties of Theorem

3-1. For the remainder of this section let P denote a pos. 0.S.

LemMA 3-1. For all a, b in P and all positive integers m, (m+1)a

+ (m+1)b is greater than ma+ mb and mb + ma.

Proof. (m+1)a>ma and (m+1)b>mb. Thus (m+1a+ (m+1)b
> ma-+ mb. Suppose that @ =b. If a=mb, then (m+ Da+ (m+1Dbdb>(m+1a
=a+ma=mb+ma. 1 a<mb, then since mb< (m+1)b<(m+1)a, there
exists a positive integer n such that na < (m+1)b6<(n+1)a. Thus (m+1Da
+m+Db>(m+1)a+na=(n+1)a+ ma> mb+ma. By an entirely similar
argument if @ < b, then (m+1)a+ (m+1)b > mb + ma.

LEMMA 3-2. For all a, b in P and all positive integers m:

(i) (m+D(a+0d) is greater than m(a+b) and m(b+ a).
(ii) (m+Da+ (m+1)b is greater than m(a+b) and m(b+ a).
(iii) (m4+1)(a+b) is greater than mb+ ma and ma + mb.

Proof. (i) (m+1)(a+b)=m(a+b)+a+b>mla+b) and (m+1)(a+D)
=a+mb+a)+b>mb+a)+b>mb+a). (i) If a+b=b+a, then by
Lemma 2-1, (m+Da+ (m+1Db=(m41)(a+b), and by (i) (m+1)(a+b)
>m(a+b) and m(b+a). 1f a+b<b+a, then by Lemma 3-1, (m+1)a
+ (m4+1)b>mb+ma, and by Lemma 2-1, mb+ ma=m(b+a)> mla+D).
(iii) If b+ a=a+ b, then by Lemma 2-1, (m+1)(a+b)=(m+Da+ (m+1)0b,
and by Lemma 3-1, (m+1)a+m+1)b>ma+mb and mb+ma. I a+0b
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>b+a, then by Lemma 2-1, (m+1)e+b)>m+1)b+a)> m+1)b
+(m+1)a, and by Lemma 3-1, (m+1)b+ (m+1)a > mb+ ma and ma-+ mb.

Remark. Lemmas 3-1 and 3-2 remain true if P is an ordinal sum of pos.
o.s. In fact, the given proofs apply.
For a and b in P we define that asb if (m+1)a> mb and (m+1)b> ma

for all positive integers .

1) o is a congruence relation. For clearly ¢ is symmetric and asa because
(m+1)a>ma. If acb and boc, then (m+2)a> (m+1)b> mc and (m+2)c
> (m+1)b> ma for all m. Let m=2n, then 2(n+1)a>2nc and 2(n+1)c
> 2na. Hence (n+1)a > nc and (n+1)c > na, and asc. Finally suppose that
asb. ByLemma3-2, (m+3)a+c)>m+2)a+(m+2)c>(m+1)b+ (m+1)c
> m(b+c) for all m. Let m=3m, then 3(n+1)(a+c)>3nb+c). Thus
(n+1)(@+¢) >nb+c¢) and similarly (n+ 1)(d +¢) > nla+ ¢) for all =
Therefore (a+c)a(b+c).

2) The semigroup Pls is commutative. For by (i) of Lemma 3-2,
(m+1)(@a+b) >m(b+a) and (m+1)(b+a) > m(a+b) for all m. Therefore
(a+b)o(b+a).

For the remainder of this section we shall denote the elements of P by
a, b, ¢ and the elements of P/¢ by A, B, C. Moreover, m, n, p, ¢ will always
denote positive integers. If p is a congruence relation over a semigroup S,
then p* will always denote the natural homomorphism of S onto S/p. P/s is
an ordinal sum of pos. o.s., and this can be shown by verifying that P/¢ satisfies
the four properties of Theorem 3-1. But we wish to show something stronger.

Namely, that P/s is an ordinal sum of pos. o.s. each of which is a subsemigroup
of positive reals.

3) If a> b, then as™ =bs™ or x>y for all x in as* and y in bs*. For sup-
pose that there exists an x in acs* and y in bs* such that y=x (m+2)x
>(m+1Va>(m+1)b>my. Now let m=2n and cancel. Then (n+1)x > ny
for all #» and also (n+1)y=(n+1)x > nx for all n. Thus x¢y, and as™ = x5™*
=ys* = bs*. For as* and bs* in P/o we define that as* < bs* if as™ = bs™ and
a<bin P. Then by (3) this definition is independent of the choice of repre-

sentatives a and b.

LemMa 3-3. (i) P/o is an ordered set and A < B implies that A+ C
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<B+C forall A, B, C in Plo. (ii) A<A+A. (ii) If A<B, then nA<nB.

Proof. (i) If as” < bs™ and bo* < ¢co™, then a < b and b<¢. Hence a<c¢
and as® <co*. If as™ =cs*, then a < cos”, but then a > b, a contradiction. Thus
as™ < bs*. If as* = bs*, then a <b or b<a, and so as* <bs* or bo* < as™
(ii) Clearly A <2A. Suppose that 2A=A=as". Then as2a, and hence
(m+1)a> (2m)q for all m. In particular for m =1, 2a > 2a, a contradiction.
Thus A < A+ A. (iii) Clearly nA <nB. Suppose that #A = nB where as* = A
and b¢*=B. Then naond, and so (m+1)na>mnb and (m+1)nb> mna for
all m. But then (m+1)a>mb and (m+1)b>ma. Thus asd, and hence
A =as* =bs* = B, a contradiction.

For A and B in P/s we define that At B if there exist positive integers
and n such that mA > B and #»B > A.

4) © is an equivalence relation. For clearly r is symmetric and by (ii) of
Lemma 3-3, 2A > A. Thus ArA. If AcB and BrC, then A > B, pB > A,
mB > C and qC > B for some positive integers m, n, p, ¢. By (iii) of Lemma
3-3, mnA > mB> C and pqC > pB > A. Therefore AcC.

Let Ar™ be the equivalence class that contains A. We shall show later
that r is a congruence relation, and so r* is the natural homomorphism of P/g
onto (P/a)/r.

5) If A< B and A7* = Bt*, then Ac* < Bc* and A+ B =B. For suppose
that there exist X in Ac* and Y in B<™ such that X>Y. Then nX>n»nY > B
and mB = mA > X for some m and n. Thus X¢B, and hence A:* = Xt* = Br*
A =as” and B=bs*. Since a+b>b, (m+1)(a+b) > m(a+b) > mb for all m.
Thus it suffices to show that (m+1)d > m(a+b) for all m. Now nA < B for
all », for otherwise A= Br*. Thus na<b for all n. (n+2)b=b+n+1)bd
>(n+Da+(n+1)0>n(a+b). Now let n=2m and cancel to get (m+1)b
>m(a+b). Thus A+ B=B.

6) If A<B and AtC, then A+C<B+C. For A=as*, B=bs", C=cds",
a<b and (n+1)a <nb for some positive integer ». By Lemma 3-3, A+C
< B+ C. Suppose (by way of contradiction) that A+ C =B+ C. Then (m+3)a
+m+3)e>m+2)a+c) > (m+1)(b+¢) > mb+mc. Therefore (m+3)a
+3c>mb for all m. Since A:C, there exists an integer k such that kA
>C and 3hA>3C by Lemma 3-3. Let 2=3h, then ka>3c. (B+3)nb
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>k+3Nn+Da=(+3)n+3la+ka>[(E+3)n+ 3]a+ 3c. Now let

m=(k+3)n. Then mb> (m+3)a-+c, a contradiction.

TaEOREM 3-2. For each A in Pls, At™ is an ordered subsemigroup of Plo
that is o-isomorphic to an additive semigroup of positive real numbers. Plo is

an ordinal sum of the pos. o.s. Ar™.

Proof. Consider B, C in Ac*. A=as", B=bs* and C = cs*, where a, b, ¢
e P. There exist positive integers m, #, 7, s such that mB> A, nA>B, rC> A
and sA>C. Thus mb>a, na>b, r¢c>a and sa>c¢. Let g=max{m, 7).
Then gb>a and gc > a. Thus (g+1)(b+¢) > gb+qgc > 2a > a, and by Lemma
3-3, (¢q+2)(B+C) > (g+1)(B+C)=A. Let t=max{n, s}. Then ta> b and
ta>c. Thus 2ta>b+c and (2¢+1)A>2tA=B+C. Therefore B+ C e Ar™,
and so Ac* is a semigroup. By Lemma 3-3, Ar™ is ordered, and thus by (6)
Ar™ is an o.s. In order to prove that A* is o-isomorphic to a semigroup of
positive real numbers, it suffices by Theorem 2-3 to show that if X, Y Ac*
and X <Y, then there exist positive integers m and # such that (m+1) X<mY
and nX < (n+1)Y.

X=xs" and Y=y for some x and y in P. Since X<Y, nX<nY
<(n+1)Y for all n. Hence nx<(n+1)y for all n. Suppose (by way of
contradiction) that (m+1) X =mY for all m. If for some m, (m+1) X =mY,
then (m+2)X=(m+ DX+ X<mY+ Y =(m+1)Y. Therefore (m+1)X
> mY for all m. Thus (m+1)x> my and mx < (m+1)y for all m. Therefore
X =Y, a contradiction. Thus by Theorem 2-3 there exists an isomorphism =
of Ar* into the additive group of reals. But for B A:*, B <2B. Hence Br
< 2(Br). Therefore Br is a positive real number. It follows at once from (4)
and (5) that P/s is the ordinal sum of the Ac*.

CoRrROLLARY. Tt is a congruence relation on P/o.

Proof. Consider X, Y, Z in P/s, and assume that XcY. If ZrX, then
since Xt* is a semigroup X+ Z and Y + Z belong to Xr*. Thus (X + Z) ¢ (Y + Z).
Suppose that Xtv** Zr*. If Z< X, then Z* < Xc* = Yr*. Thus by (5) X+2Z
=Xand Y+Z=Y. U X<Z then Yr"=Xc*< Zr*. Thus by (5) X+Z=2Z
=Y+ Z. In either case (X+Z)c(Y+Z).

There is a natural 1-1 order preserving correspondence between the con-

gruence relations of P/s and the congruence relations of P that contain o,
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Therefore r can also be considered as a congruence relation on P, where atd
if there exist positive integers m and # such that ma > b and nb > a. Consider
Xand Y in P/r. X=xc* and Y =y for some x and y in P. We define that
X<Yif X5Y and x<y in P. Then P/r is an ordered set and r* is an o-
homomorphism of P onto P/r. Denote the addition in P/ by [+]1. Then
since X+Y Cmax[X, Y]in P, X[+1Y=max[X, Y] in P/r. X is a subsemi-
group of P and X/¢ is o-isomorphic to a subsemigroup of the positive reals.
Thus in Clifford’s terminology [3], P/t is a semilattice and P is a semilattice
of the semigroups X< P/r. In particular, P— X is a subsemigroup of P and
the number of components As* of P/s is equal to the number of elements in
P/t which we shall denote by | P/<|.

A subsemigroup C of P is convex if a= P, c=C and a <c imply that
a=C. It is easy to show that the set & of all convex subsemigroups of P is
ordered by inclusion, and that if A and B are convex subsemigroups of P and
A D B, then AN B is a semigroup. Moreover if A covers B, and e AN B,
then at* = AN B. For each as Plet P°={xc P : xt*<ar*}. Then P"is a
convex subsemigroup of P and if C is a convex subsemigroup of P, then
C=a\EJCP". Thus the order type of . is completely determined by P/r.

Let G be an o-group and let I be the set of all pairs of convex subgroups
G", G+ of G such that G* covers G-. Define that (G., G*) <(Gs, G*) if G*<G;.
Then I' is ordered, and the order type of I' is the rank of G.

TueoreMm 3-3. If P is a naturally pos. o.s., then the rank of the difference
group G of P equals the order type of Pl-.

For by Theorem 2-2, P is the semigroup of all positive elements of G, and
a convex subgroup of G is determined by its set of positive elements. Thus
if (G+, G')eTI, then Gx N\ P and G' N P are convex subsemigroups of P and
G'NP covers G:NP. Moreover (G'NP)(G:NP) =ar*, where a= (G'N P)
N(G-NP).

Remark. If Pis a commutative naturally pos. o.s. and the components Az™
of P/s are d-closed, then the c-closure C of the difference group G of P is
uniquely determined by P/¢. For C is isomorphic to the Hahn group H(TI, R:),
‘where I" is an ordered set with order type equal to the rank of G and the R-
are isomorphic to the components G'/G: of G (see [5] for these concepts).

But I is determined by P/s and the components of G are just the difference
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groups of the components of P/o.

Let P be a positive o.s. that satisfies (*) and let G be the difference group
of P. It should be made clear that there is virtually no relationship between
the order type of P/r and the rank of G, even if G is abelian. For example
let G = R® R® R, where R is the additive group of real numbers. Define (a, b, ¢)
in G positive if ¢>0 or ¢=0 and b>0 or c=b=0 and a>0. Let P={(a, b, ¢)
€ G :c>0). Then G is the difference group of P, | P/c| =1, and the rank of
G is 3. By generalizing this example it is easy to see that for |P/c|=1 the
rank of G can be any given order type. But we shall show (Theorem 5-1)
that P does determine the order type of the set of all convex normail subgroups
of G.

4. Relationships between P and P/s. Throughout this section let P be a
pos. o0.s. A semigroup @ is a t-semigroup if @ is an ordered set and

ma < (m+1)a for all @ in @ and all positive integers m.

LemMa 4-1. Let o™ be an o-homomorphism of P onto a t-semigroup Q. For

a and b in P define aob if ap™ =bo*. Then o isa congruence relation on P and

o< o.

Proof. If apb, then ap* =bp*. Hence (m+1)(ap*) > m(bp*) and (m+1)-
(bp*) > m(ap™). Thus since p* is an o-homomorphism, (m+1)a > mb and
(m+1)b> ma for all m. Therefore aqb.

Now consider g€ Q. ¢ =ao" for some a< P. Define ga = as™. Then by
the usual arguments « is an o-homomorphism of @ onto P/s such that pp*a

= po* for all p P. We have the following diagram and theorem.

P Q=P

N
Pls

THEOREM 4-1. P/c is the smallest o-homomorphic image of P that is a t-
semigroup. In particular, Blo is the smallest o-homomorphic image of P that
is an ordinal sum of pos. o.s.

Remarks. (1) Let p be a congruence relation on P. Then P/p is a i-
semigroup and p* is an o-homomorphism if and only if for all @, b= P: (A)

If @a<b, then ap*=0bp* or x <y for all x=ap™ and yebo*, and ma(NOT p)
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(m+1)a for all m. Thus ¢ is the join of all congruence relations that satisfy
(A). (2) If [P/c|=1 and p is a congruence relation on P such that P/p is an

ordinal sum of pos. o.s. and o™ is an o-homomorphism, then P/p is a pos. o.s..

5. Relationship between P and its quotient group G. Let P be a pos. o.s.
and let 4={p : p is a congruence relation on P, P/p is a pos. 0.s. or a pos. 0.S.

with zero, and p* is an o-homomorphism}.
LeEMMA 5-1. 4 is ordered by inclusion.

Proof. Consider a, < 4 and suppose (by way of contradiction) that there
exist a, b, ¢, d= P such that aab, a(NOT B)b, ¢(NOT a)d and cfd. Case L
a>b and ¢>d. Then af*>b8* and ca* >da*. If a+d<b+c, then af* + dg*
<bF*+cf* and dB* =cB*. Thus aB* <bB*, a contradiction. If a+d>b+e,
then aa™+ da™>ba* +ca™ and aa®=ba*. Thus da*>ca™, a contradiction.
Similarly in the other three cases we get a contradiction.

For the remainder of this section we assume that P is a pos. o.s. which
satisfies (*). In particular, the results obtained are valid for commutative pos.
os. Let G be the difference group of P and let = be an ¢-homomorphism of
P into a pos. o.s. with zero. Then clearly Pr satisfies (*). Let H be the differ-

ence group of Pr and for g=a— b in G define g7 = ar — br.

LeEMMA 5-2. 7 is the unique extension of m to an o-homomorphism of G
onto H.

Proof. If a—b=c—d, where a,b, c,ds P, then by Corollary II of Theorem
2-1, there exist x, y= P such that a+x=c+v and b+x=d+y. Thus ar+ xn
=cn+y7 and br + xw = dr + yr, and so by applying this corollary again, ar — br
=cn —dr. Thus 7 is single valued. The lemma now follows by repeated use
of Corollary II and straightforward computation.

It is well known and easy to verify that the kernel of any o-homomorphism
of an o-group is a convex normal subgroup. Let % be the set of all convex
normal subgroups of G except G itself. Then ¥ is ordered with respect to

inclusion.
TueoreM 5-1. There exists a 1-1 order preserving mapping of 4 onto 6.

Proof. For each p< 4 let 5 be the unique extension of p* to G (which is
assured by Lemma 5-2), and let oy =K(p)={x=G : x5 =0}. We wish to show
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that » is the desired mapping. Since g is uniquely determined by p, » is single
valued. Let a, =4 and « € (. If x= K(&), then x=a— b, where a, be P and
0=xa =(a—b)& = ai& — b& = aa™ —ba”™. Thus aab and hence aBb. But then
0=aB*—b3*=x3. Therefore x = K(5) and ayp <Py If a =8, then there exist
a, b P such that afBd but not aabd, but this meané that e~ b K(3) N\ K(&).
Therefore 5 is 1 —1 and order preserving. Next consider C € ¥ and let N be
the natural o-homomorphism of G onto G/C. Let p be the congruence relation
induced on P by N (apb if and only if aN=bN). Define that ap™ > bp™ if a+C
>b+C. Then it follows by a straightforward computation that p& 4 and
on=C. Therefore » is a 1 —1 orderpreserving mapping of 4 onto %

If |P/rl=1 or equivalently if P/s is o-isomorphic to a subsemigroup of
positive reals, then s 4 and 4={p : p is a congruence relation on B, P/p is

a pos. o.s. and p* is an o-homomorphism}.
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