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E. L. ÖRMECİ,∗ Koç University

A. BURNETAS,∗∗ University of Athens

Abstract

We consider the problem of dynamic admission control in a Markovian loss system with
two classes. Jobs arrive at the system in batches; each admitted job requires different
service rates and brings different revenues depending on its class. We introduce the
definition of a ‘preferred class’ for systems receiving mixed and single-class batches
separately, and derive sufficient conditions for each system to have a preferred class. We
also establish a monotonicity property of the optimal value functions, which reduces the
number of possibly optimal actions.
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1. Introduction

In this paper, we consider a two-class loss system with c identical parallel servers and no
waiting room. Arrivals occur according to a Poisson process with rate λ. Each arrival consists
of a random batch of jobs from one or both classes. Specifically, the probability that an arriving
batch consists of j1 jobs of class 1 and j2 jobs of class 2 is equal to pj1j2 . Whenever a class-i
job is admitted to the system, it brings a reward of ri > 0 upon its arrival and requires a service
time exponentially distributed with rate µi . We are interested in dynamic admission policies
that maximize both the total expected discounted reward, with a continuous discount rate β

over an infinite horizon, and the long-run average net profit. The system may employ batch
acceptance, meaning that it can either accept or reject the entire batch, or partial acceptance,
meaning that some of the jobs in a batch can be admitted and the remaining ones rejected. For
the case of batch acceptance, Örmeci and Burnetas [13] considered a system with equal service
rates and equal rewards for all jobs, so that the only difference between the jobs is the size of the
batches to which they belong. They showed that this system does not possess any monotonicity
property. Hence, our paper concentrates only on systems following a partial acceptance policy.

Systems of this kind may arise in various applications, such as production systems and rental
businesses. Control of the workload in a production system via dynamic policies of admission
has received increasing attention in recent years. The types of item produced may differ in
their service requirements and the profit they generate. Although the system owner may charge
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916 E. L. ÖRMECİ AND A. BURNETAS

a fixed admission fee for jobs of a specific type, the actual cost of serving each job may vary
due to the changing use of the system resources. In such situations, the system can benefit
from basing its acceptance decisions on the current state of the system. This calls for dynamic
rather than static admission control rules. Moreover, in most production systems, orders arrive
in batches and the system owner generally has the option of accepting some of the jobs in a
batch while rejecting the rest. All these features are represented in the system described above.

Our model can also be applied to revenue management problems in rental businesses.
Capacity control in revenue management addresses the optimal allocation of a fixed amount of
resources to different demand segments. The underlying assumption is the perishability of the
resources at a certain time. The effect of revenue management on the performance of car rental
firms was discussed by Carrol and Grimes [4] and Geraghty and Johnson [5]. However, for
many rental businesses, in particular car rental, the perishability assumption is not appropriate,
since the resources are rented for a random amount of time, after which they are available
for future customers. Savin et al. [21] were the first to formulate such systems as multiple-
server loss models with uncertain customer arrivals and uncertain rental durations. Geraghty
and Johnson [5] indicated that the major car rental companies depend largely on corporate
customers, who demand more than one resource at a time. The system under consideration
models the uncertain demand size generated by these customers, using random batches.

We first develop sets of sufficient conditions which ensure that a job class is ‘preferred’, in
the sense that its jobs are always accepted whenever there are free servers, regardless of the
system’s congestion level. We also show that the characterization of a preferred class when
all batches consist of jobs from the same class is analogous to that in a system with single-job
arrivals. In both cases, accepting a job (either single or from the batch) depends on the trade-off
between the burden this job will bring to the system if accepted and the profit lost if rejected.
On the other hand, when a batch includes jobs from both classes, in order for a job of one class
to be accepted, its net benefit must not only be positive, but also higher than the benefit of a job
from the other class. Therefore, the characterization of preferred classes in this case is more
complicated. We note that the conditions developed in this paper are sufficient but not necessary,
since there are combinations of parameter values for which they do not ensure the existence
of a preferred class. We analyze such cases numerically and make several observations and
conjectures.

The existence of a preferred class constitutes a static property of the optimal admission policy,
in the sense that if class i is preferred, jobs of this class are accepted whenever there is an available
server, regardless of the current state of the system. However, the optimal policy is generally
state dependent. Regarding this general issue, we prove the submodularity of the value function,
a desirable property that guarantees the existence of optimal thresholds in single-arrival loss
systems (see [2]). However, in systems with batch arrivals, submodularity can characterize the
structure of the optimal policy only partially, although its proof is mathematically challenging
and interesting due to the boundary effects, multiple servers, and batch arrivals.

Markov decision processes are widely used in the control of queueing systems: Altman [1]
surveyed the theoretical tools developed to model and solve such problems, as well as their
application areas in communications networks. In particular, admission control problems
in stochastic knapsacks have been studied by many authors; see Chapter 4 of [19] for a
comprehensive review. A stochastic knapsack is defined as a system consisting of c identical
parallel servers, no waiting room, and K job classes. Each class is distinguished by its size bi ,
its arrival rate, and its mean service time. If a class-i job is accepted into the system, it siezes
bi servers and occupies all of them till the end of its service time, at which point it releases all
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bi servers simultaneously. This is significantly different from the system with batch arrivals,
for various reasons. In a system with batch arrivals, each admitted job of an arriving batch
behaves independently, i.e. each job has its own service time and occupies and releases only
one server. Moreover, these systems, unlike stochastic knapsacks, can receive mixed batches.
For further comparison of stochastic knapsacks and systems with batch arrivals, we refer the
reader to [13], which includes examples in which the structures of the corresponding optimal
policies are compared.

There have been earlier investigations of the structural properties of optimal admission
policies for certain stochastic knapsacks. Miller [11] has shown that there exists an optimal trunk
reservation policy for a stochastic knapsack with K different job classes, each of which has the
same mean service time and a unit size, meaning that bi = 1. Lippman and Ross [8] analyzed
the optimal admission rule for a system with one server and no waiting room that receives
offers from jobs according to a joint service time and reward probability distribution. They
also considered such a system when it receives batch arrivals. Several authors have studied the
structural properties of optimal dynamic admission policies in Markovian stochastic knapsacks
with two classes of job. Altman et al. [2] showed that these policies are of threshold type,
whereas Örmeci et al. [15] established the monotonicity of thresholds under certain conditions
while assuming that bi = 1. Moreover, Örmeci et al. [15] and Savin et al. [21] analyzed the
issue of preferred classes in these systems. Örmeci et al. [14] addressed the issues of optimal
thresholds and preferred jobs when the rewards are random. Carrizosa et al. [3] analyzed
an optimal static control policy for a stochastic knapsack with K classes of job, where the
service times follow a general distribution. A loss system with batch arrivals was considered by
Puhalskii and Reiman [16], who restricted the domain of admission policies to the set of trunk
reservation policies. However, optimal policies are not necessarily trunk reservation policies,
as illustrated in Section 4. Örmeci and Burnetas [13] also considered the structure of optimal
policies in loss systems with batch arrivals, concentrating on systems with K classes of jobs
that have different rewards but the same service rate.

The paper is organized as follows. In the next section, we present the Markov decision
process model of the system described above. In Section 3, we present the conditions under
which a preferred class exists for systems with single-class and mixed batches. In Section 4,
we prove the submodularity of the optimal value functions. We conclude and point out possible
extensions of this work in Section 5. The paper closes with a technical appendix.

2. Model description

2.1. Discrete-time equivalent

In this section, we construct a discrete-time Markov decision process for systems employing
a partial acceptance policy, with the objective of maximizing the total expected discounted
returns over a finite time horizon with β as the discount rate. We first define the state as
x = (x1, x2), where xi is the number of class-i jobs. We interpret discounting as exponential
failures, i.e. the system closes down in an exponentially distributed time with rate β. (For the
equivalence of the process with discounting and the process without discounting, but with an
exponential deadline, see, e.g. [22].) We also assume, without loss of generality, that µ1 ≤ µ2.
Arrivals occur according to a Poisson process with rate λ. The maximum possible rate out
of any state is then λ + cµ2 + β. Since the maximum rate of transitions is finite, we can
use uniformization (introduced by Lippman [7]) and normalization to construct a discrete-time
equivalent of the original system. Specifically, we assume that the time between two successive
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transitions is exponentially distributed with rate λ + cµ2 + β, and, using the appropriate time
scale, that λ+ cµ2 +β = 1. At each transition epoch, there is an arrival of a batch of jobs with
probability λ; a service completion of a class-i job with probability xiµi ; a fictitious service
completion with probability cµ2 − x1µ1 − x2µ2, due to uniformization; or a transition to the
terminal state with probability β, due to discounting.

Furthermore, we will refer to the instantaneous states at the arrival epochs as (x; j) =
(x1, x2; j1, j2), indicating that a batch of (j1, j2) jobs has arrived at the system to find xi ,
i = 1, 2, class-i jobs already present. Note that admission and rejection decisions are assumed
to be made upon an arrival, meaning that these states are observed only at arrival epochs.
Immediately after those epochs, the system moves to another state according to the decision
made.

A batch, (j1, j2), consisting of two classes, i.e. j1 > 0 and j2 > 0, is called a mixed batch,
whereas batches with j1 = 0 or j2 = 0 contain only one class of job and are referred to as
single-class batches. We will consider two kinds of system: systems with mixed batches receive
at least one mixed batch with a positive probability, and systems with single-class batches never
receive mixed batches.

2.2. Markov decision model for a finite horizon

We denote the maximal expected β-discounted n-horizon net benefit of systems starting
in states x and (x; j) by un(x) and vn(x; j), respectively. Let S be the state space: S =
{x : x1 + x2 ≤ c}. Arrivals occur according to a Poisson process with rate λ and, at each arrival
epoch, the batch of arriving jobs consists of ji class-i jobs, i = 1, 2, with probability pj1j2 ,
where

∑c
j1=0

∑c
j2=0 pj1j2 = 1 and p00 = 0. We occasionally denote a batch (j1, j2) by j and

the corresponding probability by pj for brevity. We define yn(x; j) = (yn
1 (x; j), yn

2 (x; j)) as
the optimal state to move into when a batch j arrives at the system in state x with n transitions
remaining. Then, let S(x; j) be the action space for state (x; j), i.e. the set of states that can
be reached from state x when a batch j arrives:

S(x; j) = {y ∈ S : xi ≤ yi ≤ xi + ji, i = 1, 2}.
Note that S(x; j) = {x} for any state (x; j) such that x1 + x2 = c.

We now present the optimality equations. Let ei be the ith unit vector. For x1 + x2 ≤ c, we
have

vn(x; j) = max

{ ∑
i=1,2

ri(yi − xi) + un(y) : y ∈ S(x; j)

}
, (1)

un+1(x) = λ
∑
j

pj v
n(x; j) + x1µ1u

n(x − e1) + x2µ2u
n(x − e2)

+ (cµ2 − x1µ1 − x2µ2)u
n(x), (2)

where we define un(−1, x2) = un(0, x2) and un(x1, −1) = un(x1, 0). Let y∗ = yn(x; j) be
the optimal decision if a batch j arrives in state x when there are n transitions remaining. If
the nth event is an arrival of batch j , then y∗

i − xi of ji class-i jobs are accepted, meaning that
the system moves to state y∗ with total reward equal to

∑
i=1,2 ri(y

∗
i − xi). If a class-i job

completes service with probability xiµi , the system state changes to state x−ei . The ‘fictitious’
service completions, which occur with probability cµ2 − x1µ1 − x2µ2, affect neither the state
nor the total reward. Finally, if the terminal state is reached (with probability β), no further
reward is received.
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Remark 1. In this model, we assume class-dependent rewards, ri , which are collected at the
beginning of service, immediately upon the admission of a class-i job. Indeed, these rewards
can be used to model more general reward/cost functions, as our results do not change if holding
or rejection costs are incurred: a system with holding cost hi , rejection cost bi , and reward r ′

i

is equivalent to a system which collects a reward of ri = r ′
i + bi − hi/(µi + β). Similarly, a

system collecting a reward of Ri at the end of a service is equivalent to a system that collects a
reward of ri = Riµi/(µi + β) upon an admission.

2.3. Infinite-horizon models

Our main aim in this paper is to describe the structure of optimal dynamic admission policies
for systems that operate over an infinite horizon. For this purpose, we first prove our results
with the objective of maximizing the total expected β-discounted reward for a finite number
of transitions, n, including the ‘fictitious’ transitions due to the ‘fictitious’ service completions
(the final term in (2)). Thus, ‘finite’-horizon problems are in fact pseudo-finite, which allows
us to use the powerful tool of induction to prove our results for all finite n. In this subsection,
we show that the results for finite n extend to infinite-horizon problems. To start the induction,
we specify the initial function u0 as u0(x) = 0 for all x ∈ S in all our results. Of course, this
makes no difference to the optimal policy for infinite-horizon problems.

We first analyze the model when the total expected β-discounted reward over an infinite
horizon is maximized. A maximizing policy is sought in the set of all history-dependent
policies. However, for this problem there is always an optimal deterministic stationary policy,
due to the finiteness of the state space and the action spaces of all states and the bounded
rewards (see Theorem 6.2.10 of [17]). Moreover, this policy can be computed using the value
iteration algorithm. All of our results for finite-horizon problems then extend to infinite-horizon
problems with discounting. Specifically, let v(x; j) and u(x) denote the value functions for
the infinite-horizon expected discounted reward. Then, for β > 0,

v(x; j) = lim
n→∞ vn(x; j), u(x) = lim

n→∞ un(x),

and y(x; j) = (y1(x; j), y2(x; j)) is an optimal action in state (x; j), meaning that it is
optimal to accept yi(x; j) − xi class-i jobs when a batch of j = (j1, j2) arrives at a system
with xi class-i jobs.

Next we consider the criterion of maximizing the expected long-run average reward. In this
case, we must define the relative value functions, v′(x; j) and u′(x), and the gain, g, in the
usual Markov decision process formulation. Specifically, we let

v′(x; j) = max

{ ∑
i=1,2

ri(y
′
i − xi) + u′(y′) : y′ ∈ S(x; j)

}
,

g + u′(x) = λ
∑
j

pj v
′(x; j) + x1µ1u

′(x − e1) + x2µ2u
′(x − e2)

+ (cµ2 − x1µ1 − x2µ2)u
′(x),

where we define y′(x; j) = (y′
1(x; j), y′

2(x; j)) as an optimal action in state (x; j). We first
observe that the resulting Markov decision process is unichain, since, under all possible policies,
state (0, 0) is reachable. Moreover, it is also aperiodic, due to the fictitious service completions.
Theorem 8.4.5 of [17] then guarantees both the existence of an optimal deterministic stationary
policy in the set of all history-dependent policies for the long-run average criterion, and the
validity of the value iteration algorithm as a means of finding this policy. Moreover, as β → 0
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in the infinite-horizon problem, we obtain the long-run average problem (see Theorems 6.18
and 6.19 of [20]). Hence, all of our results for the infinite-horizon problem with discounting
hold in the long-run average case.

2.4. Coupling and policy perturbations

In our proofs, we mostly use induction and coupling together. Coupling is a widely used
method in Markov decision models, especially in showing the stochastic optimality of a specified
policy; see [10] for some examples in the control of queueing systems and [18] for some
examples in stochastic scheduling. In the context of our model, a question that often arises is
that of the relative value of one state versus another. To investigate this, we define a number of
systems that have the same cost structure and dynamics as the model described in Section 2.2,
and start in different states. Furthermore, they are coupled in the realizations of arrivals and
service completions, and follow policies related in a way that will be specified below. We
describe the coupling process and the policies for two systems A and B only; the extension to
more than two systems is straightforward.

First, we explicitly couple all the random variables for systems A and B as in an algorithm
for simulation, or construction, of realizations. Specifically, both systems will have the same
arrival stream. Moreover, the service times of jobs are coupled as follows. If the coupled jobs
are of the same class then they depart at the same time; otherwise, we use the assumption that
µ1 ≤ µ2 (from which it follows that class-1 jobs are ‘slow’). We let ξ be a uniformly distributed
random variable in (0, 1), and we generate the service time of the class-1 job, say job d1, and
the class-2 job, say job d2, using the same ξ , meaning that job d2 has a shorter service time than
job d1 with probability 1. In terms of discrete time, this translates to the following: both jobs
leave the system with probability µ1, and a class-2 job departs, leaving the coupled class-1 job
in the system, with probability µ2 − µ1. Thus, coupling does not allow a coupled class-1 job
to leave the system while the coupled class-2 job is still there. The introduction of coupling
brings certain restrictions on the dynamics of the two systems, implying relationships between
the generated profits that facilitate the comparison of the different states.

In terms of the policies followed, we let π be an optimal policy obtained as a solution to
(1) and (2). Hence, π = (πn)n≥1 specifies a rule to follow in each state (x; j) for every
period n. Moreover, we can compute πn for any given n using dynamic programming. We now
let system A always follow the optimal policy π , whereas system B follows π except during a
period m, when it follows a feasible rule, πm

B , that is a modification of πm. In order to ensure
its feasibility, this rule depends on the initial state, xB, of system B. In other words, in period m

system B follows a rule that depends only on xB and πm. In particular, πm
B depends on πm(xA),

where xA is the initial state of system A. However, there is no dependence of πm
B on the sample

path of system A, or on any realizations of the coupling process ξ . In this framework, the
policy that system B follows belongs to the class of history-dependent policies for system B.
Therefore, if un

B(x) is the value function of system B, we have un
B(x) ≤ un(x) for all x and

all n, an inequality we use in our proofs.

2.5. Effect of an additional job

In our analysis below, the effect of admitting one class-i job is important. To see this, we
let Dn(ki)(x) = un(x + ek) − un(x + ei ) denote the difference between the total expected
discounted rewards of two systems A and B, where system A starts in state x ‘plus’ one class-k
job and system B starts in state x plus a class-i job. Note that k = 0 means system A is in
state x, i.e. there is no additional job. We occasionally omit the arguments x and n when there
is no danger of confusion.
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The four functions of interest are Dn(01), Dn(02), Dn(21), and Dn(12). We can interpret
the difference Dn(0i)(x) as the loss in future rewards because of the increased load caused
by the acceptance of a class-i job, or, equivalently, the expected burden that an additional
class-i job brings to the system in state x when there are n remaining transitions. Similarly,
the difference Dn(21)(x) represents the expected additional burden, when in state x + e2, of
changing a class-2 job that is already in the system to a class-1 job.

If the arrivals were single, the admission policy would compare the effects of two actions
in state x upon a class-i arrival, namely accepting a class-i job and moving to state x + ei or
rejecting it and remaining in state x. Thus, it would be better to accept a class-i job if and only
if we had

un(x) ≤ ri + un(x + ei )

or, equivalently,
Dn(0i)(x) ≤ ri . (3)

When (3) holds for all x ∈ S for some class i, it specifies class i as a preferred class in a system
with single-class batches, since in such a system it is optimal to accept as many jobs as possible
from a class-i batch. To see this, assume, by contradiction, that there exists an optimal policy
under which the system moves to state y with yi < xi + ji and y1 + y2 < c, meaning that this
optimal policy rejects at least one job from the arriving class-i batch while the system has at
least one idle server. Then, from the optimality equation (1), we have un(y) > ri +un(y + ei ),
which contradicts our assumption that (3) holds for all x ∈ S for class i.

On the other hand, when mixed-class batches are possible, (3) is not sufficient to characterize
a class as being preferred. Indeed, assume that only one server is empty and a mixed batch
has arrived. Then only one job can be accepted, which calls for a comparison of the actions of
accepting a class-i or a class-k job. It is better to accept a job of class i rather than of class k

in state x if
rk + un(x + ek) ≤ ri + un(x + ei )

or, in terms of Dn(ki)(x),
Dn(ki)(x) ≤ ri − rk. (4)

Therefore, a sufficient condition for class i to be preferred is that both (3) and (4) hold for i for
all x. When class i is preferred, free servers are filled with class-i jobs first, and only then is
the admission of jobs of the other class considered.

3. Existence of a preferred class

We define a preferred class as the class whose jobs are always admitted to the system
whenever there are available servers. As discussed earlier, this definition leads to different
characterizations of preferred class(es) with single-class and mixed batches, which are con-
sidered separately in this section. In fact, the results for single-class batches, as well as their
proofs, are very similar to those for systems with single arrivals (see [15]). Hence, we will only
state the results, and our corresponding intuitions, for this case.

In determining preferred class(es), two different criteria can be considered: lump rewards
and average rewards. We would expect that whenever the corresponding reward of class i is
higher than that of the other class, class i is preferred. We will discuss the validity of both
criteria in conjunction with the related results.

Before separately analyzing the systems with mixed and single-class batches, we prove the
following result, which applies to both systems.
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Lemma 1. For all x ∈ S and all n ≥ 0,

(i) Dn(0i)(x) ≥ 0 for i = 1, 2, and

(ii) Dn(21)(x) = −Dn(12)(x) ≥ 0.

Proof. We prove the statements by a sample path analysis.

(i) Assume that system A is in state x and system B in state x + ei during period n. We let
system B move to state y∗ = yn(x + ei; j), following the optimal policy, and let system A
move to state y∗ − ei . In other words, systems A and B always accept the same numbers of
jobs from each class. We couple the two systems via the service and interarrival times, so that,
except for the additional job in system B, all the departure and arrival times are the same in
both systems. Then all future rewards of systems A and B are the same:

Dn(0i)(x) = un(x) − un(x + ei ) ≥ un
A(y∗ − ei ) − un(y∗) = 0,

where un
A is the expected discounted return of system A.

(ii) Assume that system A starts in state x + e2 and system B in state x + e1, where we now
couple the additional class-2 job, say job d2, in system A with the additional class-1 job, say
job d1, in system B (as well as all other service and interarrival times) such that, as discussed
earlier, if d1 leaves the system then d2 also leaves. Then we can let system B follow the optimal
policy, moving to state y∗ = yn(x + e1; j), and let system A accept exactly the same jobs, so
that it moves to state y∗ − e1 + e2. Now, as before, all future rewards of the systems are equal:

Dn(21)(x) = un(x + e2) − un(x + e1) ≥ un
A(y∗ − e1 + e2) − un(y∗) = 0.

This lemma shows that it is always preferable to be in a state where there are fewer or faster
jobs. Recall that un(x) is equal to the expected discounted total reward of the system under
an optimal policy when there are n transitions remaining. Since rewards are collected at the
beginning of service, jobs that are already in the system do not contribute to un(x). Therefore,
the jobs initially in the system bring only more burden, by blocking acceptance of future jobs.

3.1. Mixed batches

In this section, we assume that there exists a batch j = (j1, j2) with j1 > 0, j2 > 0, and
pj1j2 > 0, meaning that we have batches consisting of both classes. Whenever a mixed batch
arrives at the system, i.e. when a batch j , j1 > 0, j2 > 0, arrives, we must compare at least
three actions: having an empty server or having a server work on a class-1 or a class-2 job.
As discussed earlier, in Section 2.5, there can be at most one preferred class for these systems.
Moreover, class i is preferred if Dn(ki)(x) ≤ ri − rk and Dn(0i)(x) ≤ ri, i �= k, for all x and
for all n. Therefore, the effect of changing a class-i job to class k, as measured by Dn(ki)(x), is
as important as the effect of an additional class-i job, as measured by Dn(0i)(x), in determining
the preferred class.

We first present the sufficient conditions for class 2 to be preferred.

Proposition 1. If r2 ≥ r1 then class 2 is the single preferred class.

Proof. Assume that r2 ≥ r1. It suffices to show that Dn(12)(x)≤r2−r1 and Dn(02)(x)≤r2
for all x and all n.
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To prove the former statement, we use Lemma 1 and the assumption that r2 ≥ r1 to
immediately obtain

Dn(12)(x) ≤ 0 ≤ r2 − r1 for all x ∈ S and all n.

Hence, we need only show that Dn(02)(x) ≤ r2 for all x and all n. Now, D0(02)(x) ≤ r2 if
u0(x) = 0 for all x ∈ S. Thus, assume that Dn(02)(x) ≤ r2 for all x and some n, and consider
Dn+1(02)(x). Let system A be in state x and system B be in state x + e2 during period n + 1.
We let system A take optimal actions y∗ = yn+1(x; j), and let system B imitate these actions
whenever possible. If system A accepts at least one class-2 job, meaning that y∗

2 > x2, then
both systems end up in the same state with a difference of r2 in rewards, since system B rejects
one of the class-2 jobs that system A accepts. If y∗

2 = x2 and y∗
1 +y∗

2 < c then system B moves
to state y∗ + e2, meaning that system B accepts exactly the same jobs as system A, resulting in
the same amount of reward. If y∗

2 = x2 and y∗
1 + y∗

2 = c, meaning that y∗
1 > x1, then system B

moves to state y∗ + e2 − e1, accepting one fewer class-1 job than system A, so the difference
in the rewards of the two systems is r1. If the extra job in system B leaves, which happens with
probability µ2, then the two systems couple with no difference in rewards. If there is any other
service completion then the difference between the two systems remains the same, due to the
extra class-2 job in system B. If un+1

B (x + e2) is the expected discounted return of system B,
then

Dn+1(02)(x) = un+1(x) − un+1(x + e2) ≤ un+1(x) − un+1
B (x + e2)

≤ λ max
z∈S

{r2, D
n(02)(z), r1 + Dn(12)(z)}

+ (c − 1)µ2 max
z∈S

{Dn(02)(z)}
≤ λ max{r2, r2, r1 + r2 − r1} + (c − 1)µ2r2

< r2,

where the first inequality holds because the policy followed by system B is not necessarily
optimal, the second is due to the coupling described above, and the third follows by the induction
hypothesis Dn(02)(x) ≤ r2 and the fact that Dn(12)(x) ≤ r2 − r1 under the assumption that
r2 ≥ r1. Hence,

Dn(02)(x) ≤ r2 and Dn(12)(x) ≤ r2 − r1 for all xand all n,

implying that class-2 jobs are preferred.

We can state Proposition 1 in terms of the lump reward criterion to determine preferred
class(es): if the lump reward of class 2 (the faster class) is higher, then class 2 is preferred.
Obviously, class 1 (the slower class) is not necessarily preferred if r1 > r2, as we may have
µ1 	 µ2. Hence, the criterion of lump rewards favors class 2 by emphasizing its advantage of
being ‘fast’. Indeed, the condition given in Proposition 1 is a strong requirement, as we could
expect class 2 still to be preferred even if r2 were slightly lower than r1. In fact, we will find
a weaker condition on the ri for class 2 to be preferred, when the system receives single-class
batches (see Proposition 3, below).

We now derive a sufficient condition for class 1 to be preferred. However, this requires more
effort, since we have to consider the differences Dn(01)(x) and Dn(21)(x) simultaneously.
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924 E. L. ÖRMECİ AND A. BURNETAS

Lemma 2. If
(λ + µ1 + β)r2(µ2 + β) ≤ (λ + µ2 + β)r1(µ1 + β)

then, for all x ∈ S and all n ≥ 0,

(i) Dn(01)(x) ≤ λr1

λ + µ1 + β
and

(ii) Dn(21)(x) ≤ r1 − r2.

Proof. We first note that, under the assumption of the lemma, r1 ≥ r2. We use induction
on the number of transitions, n. Both statements are satisfied if u0(x) = 0 for all x ∈ S.
Assume that both are true for a general n. Then, note that Dn(01)(x) ≤ r1 for all x ∈ S, by
part (i). We now have to consider two pairs of systems, one for Dn+1(01)(x) and the other for
Dn+1(21)(x).

(i) Consider the first pair. Assume that system A is in state x and system B in state x +e1 during
period n+1. We let system A follow an optimal policy and set y∗ = yn(x; j). System B takes
the same action as system A, whenever it is possible. If y∗

1 > x1 then system B also moves
to state y∗, rejecting one of the class-1 jobs system A accepts, meaning that the two systems
couple with a difference in rewards of r1. If y∗

1 = x1 and y∗
1 + y∗

2 < c then system B moves
to state y∗ + e1. In this case, system B accepts exactly the same jobs as system A, resulting
in the same amount of reward. If y∗

1 = x1 and y∗
1 + y∗

2 = c, meaning that y∗
2 > x2, then

system B moves to state y∗ + e1 − e2, accepting one fewer class-2 job than system A, so the
difference in the rewards of the two systems is r2. With the departure of the additional class-1
job in system B, both systems enter the same state with no difference in reward, whereas all
other service completions keep the difference between the two systems the same, due to the
extra class-1 job. Thus,

Dn+1(01)(x) ≤ un+1(x) − un+1
B (x + e1)

≤ λ max
y∈S

{r1, D
n(01)(y), r2 + Dn(21)(y)}

+ (cµ2 − µ1) max
y∈S

{Dn(01)(y)}

≤ λ max{r1, r2 + r1 − r2} + (cµ2 − µ1)
λr1

λ + µ1 + β

= λr1 + (1 − λ − µ1 − β)
λr1

λ + µ1 + β

= λr1

λ + µ1 + β
,

where the first and second inequalities are due to the policy followed by system B, the third is
due to the induction hypotheses Dn(01)(x) = λr1/(λ+µ1+β) < r1 and Dn(21)(x) ≤ r1−r2,

and the equalities are due to uniformization, i.e. λ + cµ2 + β = 1, and some algebra. Thus,
the first statement holds for all x ∈ S and all n ≥ 0.

(ii) Now consider the second pair of systems. Let system A′ be in state x + e2 and system B′
be in state x + e1 during period n + 1. System A′ takes the optimal actions, where we set
y∗′ = yn(x + e2; j), and we let system B′ accept exactly the same jobs as system A′, meaning
that system B′ moves to state y∗′ + e1 − e2 during this period, producing no difference in the
rewards of the two systems. As in Lemma 1, we couple the additional class-2 job, say job d2, in
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system B′ with the additional class-1 job, say job d1, as well as all other service and interarrival
times. Then, if d1 leaves the system, which happens with probability µ1, then d2 also leaves.
The departure of d1 leads the two systems to couple with no difference in rewards; the departure
of d2 alone, which happens with probability µ2 − µ1, takes the systems to two different states,
x + e1 and x, again with no difference in rewards; and, whenever there is any other transition,
both systems retain their additional jobs, meaning that the difference between the two systems
is due only to changing a class-1 job to class 2. Thus,

Dn+1(21)(x) ≤ λDn(21)(y∗′ − e2) + (µ2 − µ1)D
n(01)(x)

+ (c − 1)µ2 max
y∈S

{Dn(21)(y)}
≤ (λ + (c − 1)µ2) max

y∈S
{Dn(21)(y)} + (µ2 − µ1) max

y∈S
{Dn(01)(y)}

≤ (1 − µ2 − β)(r1 − r2) + (µ2 − µ1)
λr1

λ + µ1 + β

= r1 − r2 + r2(µ2 + β) − r1(µ1 + β)
λ + µ2 + β

λ + µ1 + β

≤ r1 − r2,

where the first inequality is due to the coupling, the third follows by uniformization and the
induction hypotheses for Dn(01)(x) and Dn(21)(x), and the last one is due to the assumption
that

(λ + µ1 + β)r2(µ2 + β) ≤ (λ + µ2 + β)r1(µ1 + β).

This proves the second part of the lemma.

We can now conclude that class-1 jobs are preferred under the following condition.

Proposition 2. If

(λ + µ1 + β)r2(µ2 + β) ≤ (λ + µ2 + β)r1(µ1 + β),

then class 1 is the single preferred class.

The condition specified in this proposition compares the average rewards of the two classes.
A class-i job stays in the system for an exponential amount of time with rate µi + β, since it
either finishes its service with rate µi or the system closes down with rate β. Thus, a class-i
job with a lump reward of ri brings an average reward of ri(µi + β). Proposition 2 shows that,
when the average reward of class 1 (the slower class) is higher than that of class 2, class 1 is
preferred. In a queueing environment with two classes of job, this criterion would determine a
preferred class, as shown in [6]; however, in a loss system it favors slower jobs: if both classes
bring the same average reward per unit time, then the system will prefer the one whose jobs
occupy a server for a longer time, as this server will then generate a reward for a longer period.
The difference between loss and queueing systems is due to the fact that a queueing system is
not concerned with the ‘occupation’ time of a server, since all jobs can wait, i.e. there is no loss
of work.

On the other hand, class 2 (the faster class) is not necessarily preferred if r1(µ1 + β) <

r2(µ2 + β). Consider a firm that must choose one from two jobs, one of which brings a $1000
profit each month for 12 months and the other a $1200 profit per month for only 3 months.
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The possibility that the firm will have no job after 3 months works in favor of the job of longer
duration. Hence, class-2 jobs with higher average rewards can be rejected if µ1 	 µ2. We
finally note that the average reward criterion favors class 1 more than the lump reward criterion
favors class 2: class 1 can still be preferred even if its average reward is slightly lower than that
of class 2, whereas our results cannot guarantee that class 2 is preferred when the lump reward
of class 2 is slightly lower than that of class 1; compare Proposition 2 with Proposition 1.

As we expected, the condition for class 1 to be preferred excludes the condition for class 2 to
be preferred, since at most one class can be preferred when the system receives mixed batches.
Moreover, there is a range of parameters over which we do not know if there exists a preferred
class.

Corollary 1. If the parameter values are such that

λ + µ2 + β

λ + µ1 + β
<

r2(µ2 + β)

r1(µ1 + β)
<

µ2 + β

µ1 + β
, (5)

then our results are inconclusive regarding the existence of a preferred class.

In Subsection 3.3, we will numerically analyze systems satisfying condition (5). Note that,
for all λ, µ1, and µ2, the range given by (5) is nonempty, meaning that, for all possible arrival
and service rates, there are rewards, ri , for which our results cannot guarantee the existence of
a preferred class. As we will see in the next subsection, this is not the case for systems with
single-class batches.

3.2. Single-class batches

In this section, we assume that
∑c

j1=1 pj10 +∑c
j2=1 p0j2 = 1, meaning that the batches can

have jobs of only one class. In this system, we must consider the trade-off between having an
empty server and a server occupied by a class-i job upon the arrival of a batch with ji class-i
jobs. In this case, if Dn(0i)(x) ≤ ri for all x and all n, then class i is preferred. Since we do
not have to compare the actions of having a server work on a class-1 job or a class-2 job, the
system can have 0, 1, or 2 preferred classes.

For preferred classes in systems receiving single-class batches, we present the results without
proof, since the corresponding proofs are very similar to those in systems with single arrivals
(see [15]). The following proposition summarizes them.

Proposition 3. Let λi be the arrival rate of batches with class-i jobs, meaning that λ1 =
λ

∑c
j1=0 pj10 and λ2 = λ

∑c
j2=0 p0j2 . The following statements hold.

(i) If λ1r1 ≤ (λ1 + µ2 + β)r2 then Dn(02)(x) ≤ r2 for all x ∈ S and all n; hence, class 2
is a preferred class.

(ii) If r2(µ2 + β)λ2 ≤ r1(µ1 + β)(λ2 + µ2 + β) then, for all x ∈ S and all n,

Dn(21)(x) ≤ (µ2 − µ1)r1

µ2 + β
and Dn(01)(x) ≤ r1;

hence, class 1 is a preferred class.
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The conditions for both classes to be preferred are relaxed in systems with single-class
batches: in mixed batches, the condition r2 ≥ r1 guarantees class 2 to be preferred, whereas
now class 2 is still preferred even when r2 is slightly lower than r1. The condition on the
average rewards for class 1 to be preferred is also relaxed in single-class batch systems; compare
Propositions 2 and 3.

As mentioned earlier, the results of Proposition 3 are the same as those for systems receiving
single class-i jobs according to a Poisson process with rate λi (see [15] for results on systems
with single arrivals). This is a natural consequence of their common acceptance criterion for a
class-i job, i.e. Dn(0i)(x) ≤ ri , which translates to the same trade-off for both systems at each
arrival epoch. Moreover, ‘being preferred’ is a global property: if class i is preferred then jobs
of this class are accepted whenever there is an available server, regardless of the current state
of the system. Therefore, the effect of batch arrivals vanishes when the issue is determining
the preferred class(es).

3.3. A discussion of preferred classes

We have discussed the meaning of ‘being preferred’, and derived sufficient conditions for a
class to be preferred in systems with single-class batches and systems with mixed batches. This
subsection mainly discusses the existence of a preferred class through numerical examples;
thus, the meaning of ‘no preferred class’ also becomes important. In the most general terms, a
system with ‘no preferred class’ can be regarded as a system that changes its preference of class
with respect to the state of the system. Such a dependence on the state is surprising since we
expect one of the classes to have ‘globally better’ qualities in terms of its service rates, µi , and
rewards, ri . However, we have observed systems with no preferred class, all of which receive
mixed batches, meaning that the change in their preferences is rather ‘mild’, as we will discuss
below.

Now consider the meaning of ‘no preferred class’ in systems receiving single-class batches
and systems receiving mixed batches. Recall that in the former systems, class i is preferred
if D(0i)(x) ≤ ri for all x, whereas the latter systems require D(0i)(x) ≤ ri , i �= k, and
D(ki)(x) ≤ ri − rk for all x for class i to be preferred. Thus, a system has no preferred class,
regardless of whether the system receives mixed or single-class batches, if there exist two states
x and x′ such that D(0i)(x) > ri , D(0k)(x) ≤ rk , D(0i)(x′) ≤ ri , and D(0k)(x′) > rk .
This indicates a major change in the preference of the system with respect to the state, as an
idle server is preferred over each class in different states, a situation that we never observe in
our examples. In addition, a system receiving mixed batches and satisfying D(0i)(x) ≤ ri for
all x does not have a preferred class if it contains two states x and x′ with D(ik)(x) > rk − ri
and D(ik)(x′) ≤ rk − ri . Such a system accepts as many class-i jobs as possible when the
incoming batch consists only of such jobs, while it rejects at least one class-i job in the presence
of jobs of the other class. In fact, all the systems we have observed as having no preferred class
have satisfied D(0i)(x) ≤ ri for all x for both i = 1 and i = 2, while violating the condition
D(ki)(x) ≤ ri − rk for some state(s) x. In other words, these systems accept as many jobs as
possible from all single-class batches, but prefer different classes in different states when the
batches consist of jobs of both classes. This suggests that systems with no preferred class have
a ‘very mild’ change in their preference of class(es) with respect to the state of the system.

In this subsection, we present examples of systems receiving mixed batches, and numerically
explore the optimal strategy in a large set of systems for which our results are inconclusive,
i.e. when the parameters satisfy (5). However, as the above discussion suggests, they also give
insight into systems with single-class batches.
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Example 1. We consider a system with five servers over an infinite horizon, and set β = 1,
µ1 = 1, r2 = 1, p10 = 1

6 , p02 = 29
60 , p13 = 1

3 , p55 = 1
60 , and let r1 vary between 1.1

and 6.1, λ vary between 1 and 31, and µ2 vary between 1.1 and 6.1, all in increments of 0.1.
This way, a total of 750 000 examples is created, 129 686 of which satisfy (5). In all of these
129 686 examples, when a batch j = (0, 2) arrives, the optimal policy is to accept as many
class-2 jobs as possible. In 79 031 of them, a class-1 job is rejected in at least one state.
However, this does not mean that class 2 is preferred in all these systems, since there are two
different kinds of optimal policy that give higher or ‘equal’ priority to class 1. For the first kind,
which were observed 6094 times, class 1 is the preferred class, i.e. when a mixed batch arrives,
the system first accepts as many class-1 jobs as possible, and only then, depending on the
availability of the servers, accepts class-2 jobs. Policies of the second kind provide examples
with no preferred class: in 11 215 examples, an empty system receiving a batch (5, 5) chooses
to move to states (4, 1), (3, 2), (2, 3), or (1, 4), rather than (5, 0) or (0, 5), which obviously
violates D(ki)(x) ≤ ri − rk for all x for both i = 1 and i = 2. Note that all of these systems
satisfy D(0i)(x) ≤ ri for all x for both i = 1 and i = 2. Hence, when the arriving batch
consists of only one class, specifically when j = (1, 0) or j = (0, 2), optimal policies accept
as many jobs as possible in all states.

In light of this example, the optimal policies of the ‘inconclusive’ parameter region can be
grouped into three categories: one with class 1 as the preferred class, one with no preferred
class, and one with class 2 as the preferred class. Let L1 be the left-most and L2 be the right-
most expressions in (5). The optimal policies of the systems considered in Example 1 lead to
the following crude observations. Class 1 is preferred when the ratio r2(µ2 +β)/r1(µ1 +β) is
close to L1. As this ratio increases, we first observe no preferred class, and then class 2 becomes
preferred. When the ratio becomes large, class-1 jobs can be rejected in some states. However,
the cut-off points for the changes in the optimal policies cannot be pinpointed. In our next
example, we show the relation between the optimal policies and the ratio r2(µ2+β)/r1(µ1+β)

more precisely in a two-server system.

Example 2. Consider a system with two servers over an infinite horizon, and set β = 1, λ = 30,
µ1 = 2, µ2 = 3, r1 = 1, p10 = 1

6 , p01 = 1
3 , and p22 = 1

2 . With L1 and L2 as given above,
we then have L1 = 34

33 and L2 = 4
3 , meaning that if r2 varies between 17

22 and 1, the whole
inconclusive region given in Corollary 1 will be explored. Figure 1 shows the optimal policies
as r2 changes in increments of 1

220 . There are several exceptional increments, corresponding
to the changes in the structures of the optimal policies.

We plot whether or not it is optimal to admit an incoming class-i job in all states, which
corresponds to the optimal number of jobs to be accepted when a batch of (1, 0) or (0, 1) arrives.
Actions indicated as ‘accept none’ refer to the rejection of all jobs due to the system being full.
The plots also show the optimal action for state (0, 0) when a batch (2, 2) arrives, which can
be interpreted as the ‘best’ state for the empty system to move into when it has the option.
Figure 1 does not describe the optimal actions in states (1, 0) and (0, 1) when a batch (2, 2)

arrives; these are as follows: all of the actions try to reach a state that is closer to the ‘best’ state,
meaning that in case (a) it is optimal to accept one of the class-1 jobs from batch (2, 2) in both
states (1, 0) and (0, 1), in cases (c), (d), (e), and (f) it is optimal to accept one of the class-2
jobs in these states, whereas in case (b) it is optimal to accept a class-1 job in state (0, 1) and a
class-2 job in state (1, 0).

For r2 = 17, class 1 is known to be preferred, as shown in the figure. Class 1 is still preferred
when r2 = 1702

2200 . However, the system with r2 = 1703
2200 does not have a preferred class, due to
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Figure 1: Illustration of optimal policies for the system in Example 2 with (a) r2 = 17
22 and r2 = 1702

2200 ,

(b) r2 = 1703
2200 , (c) r2 = 1704

2200 , r2 = 1710
2200 , . . . , 1920

2200 , and r2 = 1921
2200 , (d) r2 = 1922

2200 , . . . , 1924
2200 , (e) r2 = 1925

2200
and r2 = 1930

2200 , . . . , 20
22 , and (f) r2 = 2010

2200 , . . . , 22
22 = 1.

the optimal actions in all states when a batch j = (2, 2) arrives. For example, it is optimal
to accept one job of each class while rejecting one of each in state (0, 0; 2, 2). Class 2 then
becomes preferred after an increment in r2 of only 1

2200 = 4.55 × 10−4, since the system with
r2 = 1704

2200 prefers class 2. Notice that jobs of both classes are always accepted in cases (a), (b),
and (c) when the batches consist of only one class. Class 2 is preferred in all other cases, and
the rejection region for class 1 grows as r2 increases.

All examples of systems with no preferred class admit all jobs in single-class batches of
either class. We have discussed how there are advantages and disadvantages to both classes
and how, apparently, under certain conditions a combination of the two classes creates a good
mix, yielding higher revenues in the long run. In other words, for systems with no preferred
class, neither class has strict priority over the other; rather, their overall qualities, determined by
their service rates, µi , and rewards, ri , are compatible. This also provides strong evidence for
expecting that systems receiving mixed batches with no preferred class would have two preferred
classes if the system were receiving only single-class batches. Therefore, we conjecture that
systems receiving single-class batches always have at least one preferred class. In fact, systems
with single-class batches are very similar to single-arrival systems in terms of the existence of
a preferred class, so for further details we refer the reader to [15]. We also observe that the
structure of the optimal policy changes under a small increment in the parameters, which to
some extent justifies the gap in our results regarding the existence of preferred class(es).

Finally, we have three remarks on the relation between the number of servers and the arrival
and service rates of jobs with preferred class(es). These remarks apply to both single-class and
mixed batch systems.

Remark 2. In all results in this section, the inequalities and the conditions on the parameters
are independent of the number of servers. At first sight, this is surprising. However, it is not
really so remarkable, as all these results provide sufficient conditions for always accepting jobs
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of some class; the main issue is then with what decisions are to be made when almost all of the
servers, or, more precisely, all but one of the servers, are busy, regardless of how many there
are.

Remark 3. Whether or not a class is preferred also depends on the arrival stream of jobs: in [15]
an example was presented of a system with single arrivals, in which classes are preferred on
the basis of differing sets of arrival rates, even though the service rates, µi , and the rewards, ri ,
are kept fixed.

Remark 4. The two criteria we have considered, i.e. lump rewards and average rewards, fail to
determine a preferred class correctly when µ1 	 µ2. In fact, for the other extreme, µ1 = µ2,
Örmeci and Burnetas [13] completely characterized an optimal policy: jobs of the class bringing
the highest reward are preferred, and the optimal admission policy for jobs of the other classes
is of sequential threshold type, where the thresholds are monotone.

4. Monotonicity of the optimal value functions

Intuitively, we expect that it should be less profitable to accept jobs when there are many jobs
already in the system, or, equivalently, that the benefit of additional jobs should decrease as the
number of jobs already in the system increases. This conjecture leads to optimal policies with
monotone thresholds in single-arrival systems. Altman et al. [2] showed the submodularity
of the value functions, which guarantees the existence of an optimal threshold policy for a
stochastic knapsack with two classes of job. For these knapsacks, the monotonicity of thresholds
cannot be guaranteed, as the concavity of the value functions has not been proven for all possible
parameter values. In the examples we have constructed, concavity is never violated but, due to
the boundary conditions on the loss system, and having multiple servers and batch arrivals, we
could not prove it analytically. In fact, even for systems with single arrivals, which correspond
to stochastic knapsacks of unit size, bi = 1, Örmeci et al. [15] were able to establish concavity
only under very restrictive conditions on the parameters, which imply certain upper bounds on
Dn(ik). However, this method fails for systems receiving batch arrivals.

Our next lemma proves the submodularity of the optimal value functions for systems with
batch arrivals, a mathematically challenging result due to the boundary effects, multiple servers,
and batch arrivals.

Lemma 3. For all x + e1 + e2 ∈ S, we have

un(x) − un(x + e2) − un(x + e1) + un(x + e1 + e2) ≤ 0 for all n ≥ 1, (6)

whenever the inequality holds for n = 0.

The proof of the lemma is complicated, and so it is given in Appendix A along with several
definitions (which are not used in any of our other results) and another lemma.

We now discuss the implications of Lemma 3. Unfortunately, submodularity cannot guar-
antee an optimal threshold policy when batch arrivals are allowed. However, it shows that
optimal policies are more reluctant to accept class-i jobs when the number of class-k jobs,
k �= i, increases in the system, which then reduces the number of potentially optimal actions
in certain states. To see this, we first rewrite (6) in terms of Dn(0i)(x) = un(x) − un(x + ei )

for i = 1, 2:
Dn(02)(x) ≤ Dn(02)(x + e1),

Dn(01)(x) ≤ Dn(01)(x + e2).
(7)
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We have interpreted the difference Dn(0i)(x) as the expected burden that an additional class-i
job brings to the system in state x. Hence, these inequalities imply that the burden of the
system due to an additional class-i job is increasing in the number of class-k jobs, k �= i. This
is essentially the implication we stated above: when the number of class-k jobs increases, the
system is more reluctant to accept class-i jobs. In addition, we would like to show that the
optimal policy tends to reject class-k jobs as the number of class-k jobs increases. This would
typically require us to establish concavity of the value functions in xk for a fixed xi . However,
as mentioned above, concavity has not been proven generally even for systems with single
arrivals.

To investigate the implications of Lemma 3 on the structure of the optimal policy, we now
observe that (6) implies a seemingly stronger inequality almost immediately. We first iterate
on x + e1 using (7), to obtain

un(x) − un(x + e2) ≤ un(x + b1e1) − un(x + b1e1 + e2)

for all b1 ≥ 0. This can be rewritten as

un(x) − un(x + b1e1) ≤ un(x + e2) − un(x + b1e1 + e2). (8)

We now iterate on x + e2 using (8), to obtain

un(x) − un(x + b1e1) ≤ un(x + b2e2) − un(x + b1e1 + b2e2) (9)

for all b2 ≥ 0. This inequality looks more general than (6), although they are obviously
equivalent. It will be more convenient to use (9) in the subsequent results of this section as well
as in the proof of Lemma 3 in the appendix. Now we can deduce the following property of an
optimal policy.

Theorem 1. Let y∗ = yn(x; j). Then, for i, k = 1, 2 with k �= i, either

y∗
k = min{c − y∗

i , xk + jk}
or it is never optimal to accept bk class-k jobs in states y∗ + biei , where bi ≥ 0 and

bk = 1, . . . , min{c − y∗
i − bi, xk + jk} − y∗

k .

Proof. Let y∗ be such that y∗
i is the optimal number of class-i jobs to have in the system

immediately after state (x; j), when there are n more observation points remaining in the
horizon. Then it is clear that having y∗

k ≤ min{c − y∗
i , xk + jk} is feasible. The optimal policy

may accept as many class-k jobs as possible, in which case y∗
k = min{c − y∗

i , xk + jk}, one
of the possible cases stated in the theorem. Thus, assume that this is not the case, i.e. y∗

k <

min{c − y∗
i , xk + jk}. Hence, the optimal policy could accept more class-k jobs – since a

strictly positive number, xk + jk − y∗
k , of class-k jobs are rejected while there is a strictly

positive number, c − y∗
i − y∗

k , of free servers – but chooses to reject them. Then

bkrk + un(y∗ + bkek) < un(y∗) for bk = 1, . . . , min{c − y∗
i , xk + jk} − y∗

k ,

from which we have

0 < un(y∗) − un(y∗ + bkek) − bkrk ≤ un(y∗ + biei ) − un(y∗ + biei + bkek) − bkrk
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Table 1: Optimal admission policy for Example 3.

x1

x2 0 1 2 3 4

0 30, 01, 13, 05 30, 11, 13, 14 30, 21, 23, 23 30, 31, 32, 32 40, 41, 41, 41
1 21, 02, 04, 05 21, 12, 14, 14 21, 22, 23, 23 31, 32, 32, 32
2 12, 03, 05, 05 12, 13, 14, 14 22, 23, 23, 23
3 13, 04, 05, 05 13, 14, 14, 14
4 04, 05, 05, 05

for bk = 1, . . . , min{c − y∗
i , xk + jk} − y∗

k and all bi ≥ 0 with y∗ + biei + bkek ∈ S, where
the second inequality follows from (9) with x = y∗. Hence, when y∗

k < min{c − y∗
i , xk + jk}

it is not optimal to accept bk class-k jobs in states y∗ + biei , where bi ≥ 0 and

bk = 1, . . . , min{c − y∗
i − bi, xk + jk} − y∗

k .

Note that we must have bk ≤ min{c−y∗
i −bi, xk +jk}−y∗

k , to ensure that y∗+biei +bkek ∈ S,
and bk ≥ 1 for bi = 0.

This theorem specifies a relation between y∗
1 and y∗

2 , rather than specifying y∗
1 or y∗

2 or
both. In two cases, we already know one component of y∗: when batches consist of only
class i we have y∗

k = xk , and when class i is known to be a preferred class we have y∗
i =

min{c − xk, xi + ji}. However, the remaining component of y∗ still cannot be determined.
Hence, Theorem 1 can be used only to restrict the space for the optimal actions of other states.
We illustrate this in the following example.

Example 3. We consider a system with five servers over an infinite horizon, and set µ1 = 2,
µ2 = 3, r1 = 1, r2 = 204

220 , β = 1, λ = 30, p50 = 1
6 , p01 = 1

3 , p23 = 29
60 , and p55 = 1

60 . In
Table 1, we present the optimal policy for this example. Each entry, which corresponds to a
state x, is divided into four, where the first part is y(x; (5, 0)), the second y(x; (0, 1)), the third
y(x; (2, 3)), and the fourth y(x; (5, 5)). For example, in state (1, 2) it is optimal to reject all
class-1 jobs and to accept as many class-2 jobs as possible from all kinds of batches.

We first observe several characteristics of the optimal policy. Class 2 is preferred, although
the existence of a preferred class is not guaranteed as the parameters of the system satisfy (5).
Moreover, the optimal policy is not a trunk reservation policy, i.e. a policy determined by trunk
reservation parameters, t1 and t2, such that an additional class-i job is rejected if x1 + x2 + 1 >

c − ti and accepted otherwise. In this example, an additional class-1 job is accepted in state
(0, 3) since y((0, 3); (5, 0)) = (1, 3), and rejected in state (3, 0) as y((3, 0); (5, 0)) = (3, 0).

To illustrate the use of Theorem 1, consider the state x = (1, 1), and let y∗ = y(x; j). For
j = (5, 0) we have y∗ = (2, 1), meaning that y∗

1 = 2 < min{c − y∗
2 , x1 + j1} = 4. Then, we

can deduce that it is neither optimal to accept one or two class-1 jobs in x = (2, 1), nor to accept
one class-1 job in x = (2, 2), in agreement with Table 1. For j = (2, 3) we have y∗ = (1, 4).
Therefore, y∗

k = min{c − y∗
i , xk + jk} for k = 1, 2, which gives no further information about

other states.

As this example shows, Theorem 1 does not yield a precise description of the structure of the
optimal policy. For stochastic knapsacks, submodularity alone guarantees the existence of an
optimal threshold policy. In systems with batch arrivals, on the other hand, submodularity and
concavity of the value functions together can establish the existence of an optimal threshold
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policy. However, as discussed above, concavity has not been proven for all values of the
parameters even in unit-sized stochastic knapsacks.

5. Conclusions and possible extensions

In this paper, we have addressed the problem of dynamic admission control in a two-class
Markovian loss system receiving batch arrivals, where classes have different service rates. We
assumed that batches can be partially accepted, as Örmeci and Burnetas [13] have shown that
the value functions corresponding to batch acceptance do not satisfy any type of monotonicity.
Each batch arriving at the system may consist of either a single class of job or several classes.
We have differentiated between these two systems in all the issues regarding the structure of
optimal policies. The structure of optimal admission policies was examined with respect to two
characteristics: the existence of a preferred class and the submodularity of the value functions
and its implications on the optimal policy. We derived two sets of conditions sufficient for
there to be a preferred class, one for single-class batches and one for mixed batches. The
submodularity of the value functions will be established in the following appendix. In batch
systems, submodularity can only decrease the number of states that can be optimal, rather than
specify an optimal threshold policy.

As a result, various aspects of dynamic admission control of systems with batch arrivals
have been analyzed. Natural extensions of this work include the cases of general (rather than
exponential) interarrival times, and random (instead of fixed) rewards. The admission of jobs
to the system can also be controlled via pricing. Thus, the controller of the system can propose
a price for which the system is willing to serve the incoming jobs. This kind of control has
been considered in the context of social optimization for different queueing systems; see, e.g.
[12], [9], and [23]. Note that either dynamic or static pricing may be considered, respectively
depending on whether or not the prices depend on the state of the system.

Appendix A.

To prove Lemma 3, we must consider all possible actions in four different states: x, x + e1,
x + e2, and x + e1 + e2. Thus, it is essential to specify the sets of states reachable from each
of these states, and the relations within these sets, when a batch j arrives at the system. Let
x1 = x + e1, x2 = x + e2, and x̄ = x + e1 + e2. Then we define the following sets for a given
(x; j) with x1 + x2 + 2 ≤ c:

S0 = S(x; j) ∩ S(x + e1 + e2; j),

Sx• = {x},
Sx

x1 = {(y1, x2) : x1 < y1 ≤ x1 + j1} ∩ S,

Sx
x2 = {(x1, y2) : x2 < y2 ≤ x2 + j2} ∩ S,

Sx = Sx• ∪ Sx
x1 ∪ Sx

x2 ,

Sx̄• = {(x1 + j1 + 1, x2 + j2 + 1)} ∩ S,

Sx̄
x1 = {(x1 + j1 + 1, y2) : x2 + 1 ≤ y2 < x2 + j2 + 1} ∩ S,

Sx̄
x2 = {(y1, x2 + j2 + 1) : x1 + 1 ≤ y1 < x1 + j1 + 1} ∩ S,

Sx̄ = Sx̄• ∪ Sx̄
x1 ∪ Sx̄

x2 .
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In words, S0 is the set of states reachable from both x and x + e1 + e2, and, so, from x + e1
and x + e2 also. Sx is the set of states reachable from x but not from x̄, whereas Sx̄ is the set
of states reachable from x̄ but not from x. Sx• is a singleton and it is reachable only from x,
whereas Sx̄• is either a singleton or the empty set, and is reachable only from x̄. The sets Sx

xi ,

i = 1, 2, are reachable from x and xi , but not from x̄ or xk , k �= i; similarly, the sets Sx̄
xi ,

i = 1, 2, are reachable from x̄ and xi , but not from x or xk , k �= i. Also, note that the set Sx̄
xi

is empty if x1 + x2 + 2 + ji > c. Lemma 4 summarizes all useful (and also obvious) relations
among these sets, and is presented without proof since all the relations are very easy to verify.

Lemma 4. The following relations hold among the sets defined above.

(i) S0 = S(x + e1; j) ∩ S(x + e2; j).

(ii) Sx = S(x; j) \ S(x + e1 + e2; j).

(iii) Sx̄ = S(x + e1 + e2; j) \ S(x; j).

(iv) Sx
x1 ⊆ S(x + e1; j) ∩ S(x; j).

(v) Sx
x1 ∩ S(x + e2; j) = Sx

x1 ∩ S(x + e1 + e2; j) = ∅.

(vi) Sx
x2 ⊆ S(x + e2; j) ∩ S(x; j).

(vii) Sx
x2 ∩ S(x + e1; j) = Sx

x2 ∩ S(x + e1 + e2; j) = ∅.

(viii) Sx̄
x1 ⊆ S(x + e1; j) ∩ S(x + e1 + e2; j).

(ix) Sx̄
x1 ∩ S(x + e2; j) = Sx̄

x1 ∩ S(x; j) = ∅.

(x) Sx̄
x2 ⊆ S(x + e2; j) ∩ S(x + e1 + e2; j).

(xi) Sx̄
x2 ∩ S(x + e1; j) = Sx̄

x2 ∩ S(x; j) = ∅.

We can now present the proof of Lemma 3.

Proof of Lemma 3. Setting u0(x) = 0 for all x satisfies (6). Assume that the statement is
true for a general n. Then (9) holds, as shown in Section 4. We first show that the vn satisfy (6).
To do so, we define δn as

δn = vn(x; j) − vn(x + e2; j) − vn(x + e1; j) + vn(x + e1 + e2; j),

and will show that δn ≤ 0 for all possible actions.
Let y∗ = (y∗

1 , y∗
2 ) = yn(x; j) and

y∗′ = (y∗′
1 , y∗′

2 ) = yn(x + e1 + e2; j),

meaning that y∗ and y∗′ are the optimal states to go to from states (x; j) and (x + e1 + e2; j),
respectively. Now we distinguish four cases according to the actions taken.

Case I: y∗ ∈ S0 and y∗′ ∈ S0. In this case, both y∗ and y∗′ are reachable from states x + e1
and x + e2, since S0 = S(x + e1; j) ∩ S(x + e2; j) by Lemma 4(i). Thus, we let one of the
latter states go to state y∗ and the other one to y∗′. Then the difference of immediate rewards
in δn is 0, and we have

δn ≤ un(y∗) − un(y∗) − un(y∗′) + un(y∗′) = 0,

since the vn are optimal.
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Case II: y∗ ∈ S0 and y∗′ ∈ Sx̄ .

Case II.1: y∗′ ∈ Sx̄
x1 . Since S0 = S(x + e1; j) ∩ S(x + e2; j) by Lemma 4(i), y∗ is a feasible

action in state (x + e2; j) and, because Sx̄
x1 ⊆ S(x + e1; j) by Lemma 4(viii), y∗′ is

reachable from state (x + e1; j). Thus,

δn ≤ un(y∗) − un(y∗) − un(y∗′) + un(y∗′) = 0.

Case II.2: y∗′ ∈ Sx̄
x2 . This is very similar to case II.1. We only need to observe that y∗′ is

feasible for state (x + e2; j), since Sx̄
x2 ⊆ S(x + e2; j) by Lemma 4(x), and that y∗ is

reachable from (x + e1; j), since S0 ⊆ S(x + e1; j) by Lemma 4(i). It then follows that
δn ≤ 0.

Case II.3: y∗′ ∈ S2• . Since y∗′ = (x1 + j1 + 1, x2 + j2 + 1), it cannot be reached from either
(x + e2; j) or (x + e1; j). Therefore, we cannot use the same technique as above.
Instead, we first observe that the state (y∗

1 , y∗′
2 ) is reachable from the state (x + e2; j)

and that (y∗′
1 , y∗

2 ) is reachable from (x + e1; j). Also notice that both (y∗
1 , y∗′

2 ) ∈ S and
(y∗′

1 , y∗
2 ) ∈ S, since y∗

1 < y∗′
1 and y∗

2 < y∗′
2 due to the assumptions in this case. Thus,

δn ≤ un(y∗
1 , y∗

2 ) − un(y∗′
1 , y∗

2 ) − un(y∗
1 , y∗′

2 ) + un(y∗′
1 , y∗′

2 ) ≤ 0,

where the first inequality is due to the optimality of the vn and the feasibility of the
actions (y∗

1 , y∗′
2 ) and (y∗′

1 , y∗
2 ), and the second is due to (9) with x = y∗, b1 = y∗′

1 − y∗
1 ,

and b2 = y∗′
2 − y∗

2 .

Case III: y∗ ∈ Sx and y∗′ ∈ S0. Here we must consider three subcases, y∗ ∈ Sx
x1 , y∗ ∈ Sx

x2 ,
and y∗ = x, each of which is similar to the corresponding subcase of case II; hence, the details
are omitted.

Case IV: y∗ ∈ Sx and y∗′ ∈ Sx̄ . In case, we have nine subcases, most of which are proven
similarly. We consider two cases in detail and only mention the similarities of the others.

Let y∗ ∈ Sx
x1 and y∗′ ∈ Sx̄

x1 . Then y∗ and y∗′ are both reachable from (x + e1; j) but not
from (x + e2; j). Now observe that (y∗

1 , y∗′
2 ) is reachable for (x + e2; j) and (y∗′

1 , y∗
2 ) is

reachable for (x + e1; j). Moreover, (y∗
1 , y∗′

2 ) ∈ S and (y∗′
1 , y∗

2 ) ∈ S: since y∗ ∈ Sx
x1 , we have

x1 < y∗
1 ≤ min{x1 + j1, c − x1} andy∗

2 = x2, and, becausey∗′ ∈ Sx̄
x1 , we havey∗′

1 = x1+j1+1
and x2 + 1 ≤ y∗′

2 < x2 + j2 + 1, meaning that y∗
k ≤ y∗′

k for k = 1, 2. Thus,

δn ≤ un(y∗
1 , y∗

2 ) − un(y∗′
1 , y∗

2 ) − un(y∗
1 , y∗′

2 ) + un(y∗′
1 , y∗′

2 ) ≤ 0,

by (9) with x = y∗, b1 = y∗′
1 − y∗

1 , and b2 = y∗′
2 − y∗

2 , as in case II.3.
In the following cases, we let (x +e2; j) move to (y∗

1 , y∗′
2 ) and (x +e1; j) to (y∗′

1 , y∗
2 ):

(i) y∗ ∈ Sx
x1 and y∗′ ∈ Sx̄• ,

(ii) y∗ ∈ Sx
x2 and y∗′ ∈ Sx̄

x2 ,

(iii) y∗ ∈ Sx
x2 and y∗′ ∈ Sx̄• ,

(iv) y∗ ∈ Sx• and y∗′ ∈ Sx̄
x1 ,

(v) y∗ ∈ Sx• and y∗′ ∈ Sx̄
x2 ,

(vi) y∗ ∈ Sx• and y∗′ ∈ S x̄• .
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Notice that in all these cases either y∗ or y∗′ is not reachable from either (x + e1; j) or
(x + e2; j), or both states can be reached from only one of them. Thus, we cannot cancel
out the terms; instead, we have to let one of these states move to (y∗

1 , y∗′
2 ) and the other one

to (y∗′
1 , y∗

2 ). Moreover, it can be easily verified that y∗
k ≤ y∗′

k for k = 1, 2 in all these cases,
meaning that (y∗

1 , y∗′
2 ) ∈ S and (y∗′

1 , y∗
2 ) ∈ S.

If y∗ ∈ Sx
x1 and y∗′ ∈ Sx̄

x2 , then y∗ is reachable from (x + e1; j) and y∗′ is reachable from
(x + e2; j). Then by the optimality of the vn,

δn ≤ un(y∗
1 , y∗

2 ) − un(y∗
1 , y∗

2 ) − un(y∗′
1 , y∗′

2 ) + un(y∗′
1 , y∗′

2 ) = 0.

Similarly, when y∗ ∈ Sx
x2 and y∗′ ∈ Sx̄

x1 , y∗ is reachable from (x + e2; j) and y∗′ is reachable
from (x + e1; j).

Thus, for all possible cases we have δn ≤ 0.
We now consider un+1. There are four systems starting from four different states: x, x +e2,

x+e1, and x+e1 +e2. We couple all these systems so that, except for the additional customers,
they all behave in the same way. Moreover, we couple the class-1 customers in systems starting
in states x + e1 and x + e1 + e2, and we couple the class-2 customers in systems starting in
states x +e2 and x +e1 +e2. Then, if the additional class-i job departs from the system starting
in state x + ei , the additional class-i job in x + e1 + e2 also departs. Thus,

un+1(x) − un+1(x + e2) − un+1(x + e1) + un+1(x + e1 + e2)

= λ
∑
j1,j2

pj1,j2 [vn(x; j) − vn(x + e2; j) − vn(x + e1; j) + vn(x + e1 + e2; j)]

+ x1µ1[un(x − e1) − un(x − e1 + e2) − un(x) + un(x + e2)]
+ µ1[un(x) − un(x + e2) − un(x) + un(x + e2)]
+ x2µ2[un(x − e2) − un(x) − un(x + e1 − e2) + un(x + e1)]
+ µ2[un(x) − un(x) − un(x + e1) + un(x + e1)]
+ α[un(x) − un(x + e2) − un(x + e1) + un(x + e1 + e2)]

≤ 0,

where α = cµ2 − (x1 + 1)µ1 − (x2 + 1)µ2. The terms in the summation are less than or equal
to 0 since the vn are shown to satisfy the inequality, the µ1 and µ2 terms are 0, and all other
terms are nonpositive by the induction hypothesis.

Thus, the value functions un satisfy (6) for all n whenever u0 does. This completes the proof.
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