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THE OSCILLATION OF FOURTH ORDER
LINEAR DIFFERENTIAL OPERATORS

ROGER T.LEWIS

Define the self-adjoint operator
L4y — (r y//)ll _— (qyl)/ + py

where 7(x) > 0 on (0,00) and ¢ and p are real-valued. The coefficient ¢ is
assumed to be differentiable on (0, co ) and 7 is assumed to be twice differenti-
able on (0, o).

The oscillatory behavior of Ly as well as the general even order operator has
been considered by Leighton and Nehari [5], Glazman [2], Reid [7], Hinton
[3], Barrett [1], Hunt and Namboodiri [4], Schneider [8], and Lewis [6].

The operator L, is said to be oscillatory on (0, ) if for every ¢ > 0 there
are numbers ¢ and b and a function y, y = 0, such thatb > a > ¢, Lyy = 0,
and

(1) y(@@) =9"(a) =0 =1y"(b) = y(0).

Otherwise, L, is said to be nonoscillatory on (0,0 ).
Givena > 0, define Z (b) for all b > a to be the set of all real-valued functions
v with the following properties:
(i) y and ¥’ are absolutely continuous on [a, 0],
(i1) ¥"" is essentially bounded on [a, b], and
(iii) (1) holds.

THEOREM 1. The following two statements are equivalent.
(i) The operator Ly is nonoscillatory on (0, o0 ).
(ii) There exista > 0 such that forallb > a,y # Oandy € Z(b) implies that

b
f r@")* 4+ ¢ + py* > 0.

The reader should consult Reid’s paper [7] for a proof of Theorem 1. The left
side of the above inequality is referred to as the quadratic functional for L,
and is denoted by 7,(v).

A consequence of Theorem 1 is the fact that if for all ¢ > 0 we can find a
b > a and a function y € Z (b) such that y = 0 and

b
2) f rO")* +q0") + vy 20,
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then L, is oscillatory on (0, ). This method of proof was utilized indepen-
dently by Glazman [2] and Hinton [3]. All of the theorems which follow also
utilize this method of proof.

Hunt and Namboodiri [4] showed that if

f @ Pp = —0, p=0, and f =0,

then (—1)"(r y™)® + py is oscillatory on (0, o). The following theorem
shows that for z = 2 and » bounded the sign restriction on p is not necessary.
We shall adopt the notation that f, (x) = max {0, f(x)}.

TaEOREM 2. If r(x) = M,

fg+<oo, andf x'p = —o0,

then Ly is oscillatory on (0, c0).
Proof. Given a > 0, define w(x) to be the third degree polynomial satisfying
w(0) =0 = ' (0), (1) = a + 1, and o' (1) = 1. Define y(x) as follows:

0, x<a
w(x — a), e=x<a+1

X, a+1=x<b;
yx) = =@ =00 —1)¥/2+ b0 +1/2, by 2 x <bi+ 2 = b,

—x + by + b1, by £ x < b3

b — x)2/2, by 2 x<b3+1=0b

0: b§x

Given b1, bs can be chosen so thaty and y’ will be continuous at b;. Consequently,
v will be an element of Z (b).
Since r(x) = M, it follows that

v \2 [ ! 7N\2 ]
far(y)ngo(w)+3 .
Also,
] a+1 b1 b (=)
j;[q(y')2+1>y2]§fa [q@')2+Py2]+L+lx2P+fblpy2+ fa“qu

since (y')? = 1on [a 4+ 1,0].
Since

fmxzp = —0,

there is a number ¢ such that ¢ = ¢ implies that

a+1 1 © t
2% 2 7\2 2
fa la6") +py]+M|:f0 ") +3]+fa+19++fa+l“’<°’
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We will next show that

b
f by’ < 0.
b1

Then, we will have that inequality (2) holds, and the proof will be complete.
Let

00) = f:x%dx\

and b, be its last zero on [a, 00 ). Integration by parts yields the inequality

b b 9
fbpyw:—be(%) 1y — ) d

< - j:mq Q (%) ty —y)dt

since fort € [by + 1,5],Q() £ 0,y'(t) < 0,and y(¢) = 0. For ¢t € [by, by + 1]
calculations show that

ty'(t) — y(@) = (0.2 —#)/2 £ 0.

Therefore,
b
f Py <0 since ¥(¢) = 0and Q) =< Oon [b1, b1 + 1].
b1

‘The next theorem considers L, when p is integrable. In this case we define

Pi(x) = f:o p.

THEOREM 3. If

—0 < f p <0, thenr(x) < M,q =0, and
f x*Py = —0 for0 £ a = 1, then then L, is oscillatory on (0, o0).

Proof. Given a > 0, let w(x) be the third degree polynomial which satisfies
the conditions

w(0) = 0 = & (0), w(1) = (a + 1)% and & (1) = Bla + 1)
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where 8 = (a 4 1)/2. Define y(x) as follows:

0, x<a

w(x —a), a<x=a+1

x5, ea+1<x=bh
y(x) = —(x - b2)2/2 + b]ﬂ + (b1 - b2)2/2, bl < x é b2

v (bs), by < x = b3

1y(b+a—x), by <x =0

LO, b < x.

Given b; we choose b, so that 3’ is continuous at b1, and given b; we pick b so
that & — b3 = by — a. Hence, for by =2 ¢ + 1 and b3 = b, we will have that
vy ED©D).

Calculations show that since b2 — b; = 1 then
b 1 o
f r(y”)2 < Q‘M[f (wn)2 + ,32(6 _ 1)2 f (xB—2)2dx + I:I .
a 0 a
By integrating by parts, we obtain the equality

b 9 b
fpy =2f ¥y'P1.

Since
f x"P; = —0 anda = 28 — 1,
there is a number ¢ such that ¢ = ¢ implies that
b a+1 t
14 f r(") + 2 f yy'Py + 28 f x®7'py < 0.
a a a+1
Let
12
QW) = f %*Py

and b; be the last zero of Q(¢). Then,

b2 b2 r\ 7
2 f yy'Py = —2 f o) (y?”—) dt
b1 b1

< =2 f” Q(t)Lyl);:—y—]dt<0

b

sincey =21,0=y =1,y = —1,and Q(¢) =< 0 on [by, b3].
Since |P,| — 0 as x — 0, we can pick b; so that

2(b2 — a)|P1(x) |y (b2) max 'l =1
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for all x = b3. Hence,

b b
2f yy'P1 <2 f [yy" - Pi| £ 1.
b2 b3

Therefore, inequality (2) holds for y, and the proof is complete.

Most theorems concerning the oscillation of L, place the burden of making
the quadratic functional negative for some y € & (b) upon either p or ¢, but
not both. The next two theorems investigate how the combined negativity of
p and ¢ can cause L, to be oscillatory.

THEOREM 4. If r is bounded, q is bounded above, p is non-positive, and

fm @’p 4 q) = —o0,

then Ly is oscillatory on (0, ).

Proof. Given a > 0, for 8 = 1 choose w(x) as in Theorem 3. Define y(x)

as follows:
0, x<a
w(x — a), e=x<a-+1
x, a+1=Zx < by
_ —(x—b2)2/2+b1—|—1/2, b1§x<b1+1=bg
YO = L b)2/2 4 b4 1/2, by =« S bs
—(b3 - bg)(x - b';) + y(bs), bg <x < b4
(x — b)?/2, by Z2x<b
0, b < x.

Given b; it is clear that b, and b can be chosen to insure the continuity of v
and y’. This will require that b — by = b3 — bs.

Since 0 < 7(x) = M and if we require that b3 — b, < 1, then calculations
show that

f:f(:v")2 < M[ fol (") + 3]_

Since p = 0, ¢ = N for some constant N, and ()2 = 1 on [b,, bs], then

f: [g(")* + py'] = f:ﬂq(y')2 + f:l (@ +x") + N+ fb:q(y')?_

Since

IA

f: (@+x"p) > —0 as t— o

a

there is a constant b; such that ¢ = b, implies that

1 atl 1
f r(y")“rf 90')" + fﬂ (¢ +x'p) + N+ 1<0.
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We need only to show that b3 — b, can be made so small that

b
f q(y)’ £ 1.
b2

First, note that by considering the graph of v on [bs, b] we know that
b— 0y =24bys— b3 =2+ y(b2)/(bs — ba).

Consequently,

fb q(")? S N(bs — b2)’(b — ba) < N(bs — b2) (2(bs — bs) + y(b2)).

Therefore, we can choose b3 so that

b
f ¢() = 1,
b2

and the proof is complete.

Theorem 4 shows that for M > 0, (My")" — (gy')’ + py is oscillatory on
(0, o0 ) where

g(x) = Asin Bx and p(x) = —q4(x)/x?
or
glx) =C>0 and px) = —(Cx + 1)/x3.
THEOREM 5. If r(x) < Mx*fora <1,p =0,¢ =0, and
Jim inf £ f T g+ ) < —4M,

then Ly 1s oscillatory on (0, 00 ).

Proof. For 0 = p < 1, let w,(x) be the third degree polynomial with the
following properties:

w,(0) =0 =w,/(0) and w1 —p) =1=0w/(1 —p).
Also, let B(x) = x2/2, and define y(x) as follows:

0, x < pp
wu((x — up)/p), wp = x < p
x/p, p=x <R
—R-w,((1 = p)(2R —x)/R)/p(1 — 1)
_ + R/p+ R/p(1 — ), R <x £2R
y() =1 ,2R), 2R < x < S
—=B((x — S5)/S) + y(2R), S=x<2S
—(x —25)/S+ y(2R) — 1/2, 2S=x<T
T.B8((x — 2T)/T)/S, T<x<2T
0, 2T = x.
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If p > 0 then calculations show that

B
N u Sa—-l Ta—l
+ 2% (———ZST——)] .

Calculations also show that
o 4 +u+ 1)
_ 772 (o 2]
Fu) = fo (W) = =

Note that F(u) is increasing on [0, 1), and F(0) = 4.
Since

lim inf x"° f (q + £*p) dt < —4M,

there is a sequence {p;) — o as k — 00 and a number § > 0 such that
lim p~ f (g + *p)dt = —4M — 6.
k>

Since F(0) = 4 and F is continuous at 0, we can choose u such that 0 < p <1
and F(u) = 4 4+ 6/6M. For a given a > 0 there is a positive integer N such
that & = N implies that

f (q + £2p)dt < 4M—€f

and pp; = a. Let p = py. Since

lim p*—* f(q+tp)dt<—4M—3—5-

T

we can choose R so large that

®
Pt f (q + £'p)dt < —4M — %,
p
R = 2p, and

1—p ”
2(1—M)f 1R1)“z>‘ “6—

Pick S so large that

Qapd—a(Sa—1 4 Ta-1) /S < §/6M

when T = 2S. Choose 7" = 2S so that y(x) is continuous at x = 7, i.e.,
T =S+ 25y(2R)/3. Note that since R = 2p then y(2R) = 2, and this
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implies that 7" > 2S. Consequently,

sz r(y")2 < ]\[P‘"~3 (4 + _6_)
up - 2M)

Since p and ¢ are not positive
i 2 2 2 a—3 0 l-a ® 2
r@") +90) +py S0 [AM 5+ (¢+1rp)| <O
Bp P
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