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Summary. We call a digraph "antisymmetrical" if there is an automorphism 
6 of its graph, of period 2, which reverses the direction of every edge and maps 
no edge or vertex onto itself. We construct a theory of flows invariant under 6 
for such a diagraph. This theory is analogous to the Max Flow Min Cut theory 
for ordinary flows in digraphs. It is found to include that part of the theory of 
undirected graphs which discusses the existence of spanning subgraphs with a 
specified valency at each vertex. 

1. Skew paths. The graphs of this paper are finite. Each graph G is defined 
by a set of V(G) of vertices, a set E(G) of edges, and a relation of incidence which 
associates with each edge two vertices, possibly coincident, called its ends. An 
edge is a link or a loop according as its ends are distinct or coincident. 

A digraph D is a graph in which one end of each edge is distinguished as the 
positive and the other as the negative end. If A is an edge with negative end x 
and positive end y, we say it is directed from x to y. If x Ç X Ç V(D) and 
y G Y Ç V(D), we say that A joins X to F. 

A subgraph of G is a graph H such that V(H) C V(G), E(H) Ç E(G), 
and each edge of H has the same ends in H as in G. A subgraph i f of G is 
detached if no edge of G has one end in V(H) and the other in V(G) — V(H). 
A non-null detached subgraph if of G is a component of G if no other such sub­
graph of G is a subgraph of H. It is easy to show that each edge or vertex of G 
belongs to exactly one component of G. Subdigraphs, detached subdigraphs, and 
components of a digraph D are defined in the same way, with the additional 
proviso that each edge of a subdigraph K of D must have the same positive 
end and the same negative end in K as in D. A graph or digraph with only one 
component is connected. 

A path in a digraph D is an existent sequence 

(1) P = (a0, Ah ah A2, . . . , An, an) 
which satisfies the following conditions: 

(i) The terms of P are alternately vertices at and edges AjofD. 
(ii) IflKj<^n,Aj is directed from a y_i to ajt 

Clearly the edges and vertices occurring in a path P are confined to a single 
component of D. We call P a path from aQ to an. Its origin is a0 and its terminus 
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is an. The number n is the length s(P) of P . We denote the sets of all vertices 
and edges of D occurring in P by V(P) and E(P) respectively. We speak of P as 
passing through the vertices of V(P) and as traversing the edges of E(P). 

The path P is re-entrant if a0 = an and simple if no vertex occurs twice. If 
s (P) = 0, that is if P has only the one term a0, then P is degenerate. 

Let P and Q be paths in Z) from x to y and from y to z respectively. We can 
construct a path from x to z in D by taking the terms of P in order and con­
tinuing with the terms of Q, other than the first, in order. This path is the pro­
duct PQ of P and Q, in that order. Multiplication of paths is clearly associative. 
We therefore write a product (PQ)R or P(QR) simply as PQR. We note the 
following rule. 

1.1.-4 path P of length n can be written as a product QR, where Q is the part of P 
extending from the first term to the kth vertex-term ( l < £ < w + l ) . 

A reverse-mapping 6 of D is defined by a 1-1 mapping x —> x* = 6x of V(D) 
onto itself, together with a 1-1 mapping A —* A* = 6A of JE(-D) onto itself, 
provided that the following conditions are satisfied: 

(i) Ifxis an edge or vertex ofD, then (x*)* = x and x* 9e x. 
(ii) If an edge A is directed from x to y, then A* is directed from y* to x*. 

If a reverse-mapping of D exists, we say D is antisymmetrical. In this paper 
we suppose each antisymmetrical digraph to be taken with a fixed reverse-
mapping 6. If two edges or vertices correspond under 0, we say that they are 
conjugate. 

In the remainder of this section we suppose D to be antisymmetrical. US 
is a subset of V(D) or E(D), the class of conjugates of the members of 5 is the 
conjugate set 5* or 6S of S. If K is a subdigraph of D, there is a conjugate sub -
digraph i£* or OK of -D whose vertices and edges are the conjugates of the 
vertices and edges respectively of K. A subset of V(D) or E(D)} or a subdigraph 
of D, may be self-conjugate. 

If P = (a0, -4i, ai, -42, • . . , Ani an) is a path in Z? from a0 to aw, it is clear that 
the sequence 

P* = (an*,An*,...,A2*,a1*,A1*,a0*) 

is a path in D from a„* to a0*. We call it the conjugate path to P . 
Let i f be a fixed self-conjugate subset of E{D). A path P in D is sfeew mad i f 

if there is no A G £(-D) — M such that P traverses both A and ^4*. When M 
is null, we say simply that such a path is skew. 

1.2. 7/ a p a ^ P iw Z> is simple or skew mod M, then P* is simple or skew mod M 
respectively. If Pis skew mod M, thenE(P) Pi E(P*) C M. 

2. Capacities. Let D be an antisymmetrical digraph. With each edge 
A of D let there be associated a non-negative integer c{A) called the capacity of 
A. We impose the condition 

(2) c(A*) = c(A). 
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If X and Y are subsets of V(D), we write J(X, Y) for the sum of the 
capacities of the edges joining X to Y. We abbreviate J{\x\, F), J(X, {y}), and 
J(\X}J Î3 ;})asJ(x, F), J(X, y), and J(x, y) respectively. 

Let Ube any subset of V(D). Write V = V(D) - U. If u G 27 and i; G F, 
we say that U is a cut between u and z; in D. We define the capacity c(U) of £/ 
by 

(3) c(U) = / (£ / , F). 

The core of t/is the subdigraph K = K(U) oiD specified as follows: 

(i) V(K) is the set of all vertices x of D such that {x, x*} is a subset of U. 
(ii) E(K) is the set of all edges A of D such that c(A) > 0 and both ends of A 

are in V(K). 

We note that the core of U is self-con jugate. If C is a component of K, we 
say that the subgraph C VJ C* of K defined by the edges and vertices of C and 
C* is a nucleus of U. Thus the nuclei of U are non-null detached self-conjugate 
subdigraphs of K, and no one of them has another such subdigraph of K as one 
of its own subdigraphs. Moreover, each edge or vertex of K belongs to exactly 
one nucleus of U. 

For each nucleus N of U we write 

(4) t(N) = J(V(N), V), 

(5) t0(N) = J(U- V(N), V(N)). 

We say N is an odd or even nucleus of U according as t(N) is odd or even. We 
write n ( U) for the number of odd nuclei of U, and define the effective capacity 
k(U)oiUby 

(6) k(U) = c(U) - /*(£/). 

For each odd nucleus TV we must have t(N) > 1. Hence, by (3) and (4), 

(7) k(U)>0. 

2.1. Suppose k(U) = 0. Then each edge joining U to V has capacity 1 or 0, and 
each such edge of unit capacity has its negative end in an odd nucleus of U. 
Moreover, each odd nucleus N of U satisfies t (N) = 1. 

Proof. c(U) is the sum 2i of the capacities of the edges of D directed from 
vertices of odd nuclei of U to vertices of V, together with the sum 22 of the 
capacities of the other edges joining U to V. By (4) we have Si > /*(£/), with 
equality if and only if t(N) = 1 for each odd nucleus N. 

By hypothesis, c(U) = fi(U). Hence Si = /x(£7) and S2 = 0. The theorem 
follows. 

2.2. Let N be any nucleus of U. Let A be an edge of D, of non-zero capacity, which 
is directed from a vertex x of U — V(N) to a vertex y of V(N). Then x* G V. 
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Proof. Suppose x* € U. Then x G V{K) and A £ E{K). But this is im­
possible since N is a detached subdigraph of i£. 

COROLLARY. t0(N) < t(N). 

A nucleus N of £/ is simple if it is connected and satisfies tQ(N) = /(iV). 
The set 27 is simple if each of its nuclei is simple. 

2.3. Choose x G F and wr& W = Z7 U {x}. Let n be the number of odd nuclei N 
of U such that 

J(V(N),x) +J(x, V(N)) > 0. 

Let p and a be the numbers of odd and even nuclei N of U respectively such that 

J(V(N),x) = 1 mod 2. 

Let j3 be 0 or 1 according as 

n + p + q + J(x, V - {x}) + J(x*, V - {x, x*\) 

is even or odd. Then the following propositions hold: 

(8) c(W) = c(U) - J(U, x) + J(x, V - {x}), 

(9) fi(W) = n(U) -p + q ifx*£V} 

(10) fi(W) = v(U) - n + 0 ifx*£U. 

Proof. Equation (8) follows at once from the definitions. 
If x* G V, it is clear that K(W) = K(U). Hence the nuclei of M^are those of 

U. But p of them change parity from odd to even and q of them from even to 
odd when Uis replaced by W. Hence (9) holds. 

If x* G U, then K(W) is obtained from K(U) by adjoining the two vertices 
x and x* and the appropriate edges. Clearly n(U) — n of the odd nuclei of U 
remain as odd nuclei of W, but the others become subdigraphs of a new nucleus 
Nx which has x and x* as two of its vertices. Similarly, an even nucleus of U 
either remains as an even nucleus of W or becomes a subdigraph of Nx. We 
have, moreover, 

t(Nx) ^n + J(x, V - {x}) +p + q + / (** , V - {x}) 
= p mod 2. 

Thus (10) holds. 

Let us now write M for the set of all edges A of D such that c(A) > 2. A path 
P in D is admissible if it satisfies the following conditions: 

(i) P is simple. 
(ii) If A e E(P)fthenc(A) > 1. 

(iii) P is skew mod M. 

2.4. Let u and v be distinct vertices of D. Let U be a cut between u and v such that 
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k ( U) = 0 and u belongs to no odd nucleus of U. Then there is no admissible path 
from utovinD. 

Proof. Assume such a path P to exist. There is a first edge A of P directed 
from some x G U to some y £ V. Each edge of P preceding A has both ends in 
U. But x belongs to an odd nucleus N of U, by 2.1. Since u is not in V(N), 
there is an edge B of P, preceding A, which joins U — V(N) to V(N). Then 
P* joins F(iV) to V, by 2.2. Hence 4 = 5* g M by 2.1 and so {A, A*} QE(P). 
Thus P is not admissible, contrary to assumption. 

From now on we denote the number of elements of a finite set 5 by \S\. A 
subset Zy of V(D) is regular if it is simple and each of its nuclei is odd. It is 
regular mod u, where u G Uy if it is simple and each nucleus is odd, except that 
t(N) = 0 for any nucleus N satisfying u G V(N). 

If u G V(D), we define the accessible set Ac(D, u) of u in D as the set of all 
vertices x of D such that there is an admissible path in D from u to x. Clearly 
all the vertices of any such path are in Ac(D, u). 

2.5. If u G V(D), then Ac(D, u) is regular mod u and its effective capacity is 
zero. 

Proof. | P (P ) | is even, by the definition of an antisymmetrical digraph. If 
|P (P ) | = 0, then Ac(D, u) = u, and the theorem is trivially true. Assume as 
an inductive hypothesis that the theorem holds whenever \E(D)\ is less than 
some positive even integer 2g, and consider the case |-E(2^)| = 2g. Write 
U = Ac(D,u). 

Suppose first that c(U) = 0. Let N be any nucleus of U. Then t(N) = 0 = 
t0(N), by 2.2, Corollary. Since V(N) <^Ac(D,u)} it follows that u G V(N). 
If N consists of two distinct conjugate components C and C* of K(U), we may 
suppose that u is in V(C). But then no edge of JD, of non-zero capacity, joins 
U- V(C*) to F(C*), and this is impossible since V(C*) QAc(D,u). We 
deduce that U is regular mod u. But k(U) = 0 , by (6) and (7). Thus the 
theorem holds in this case. 

We may now assume that c(U) > 0. Choose^ G E(D)y of non-zero capacity, 
directed from a vertex x of U to a vertex y of F = F(.D) — U.U P is an admis­
sible path from u to x, then P(x, -4, y) is not admissible. Hence c(A) = 1 and 
A* G £ ( P ) . 

Let D\ be the antisymmetrical digraph obtained from D by deleting the edges 
A and A*. We retain for the other edges the same capacities as in D, and we 
use the reverse-mapping induced by that of D. Write U\ = Ac(D1} u). Evidently 
J7i C U. Write T = U - Ui. 

We have x G P, for otherwise there is an admissible path P from w to x in 
P not traversing A or ^4*, and P(x, A, y) is an admissible path from w to y in Z>. 

Let Z be the set of all edges B, of non-zero capacity, joining Ui to P in D\. 
Let each such P be directed from xB to yB. By 2.1 and the inductive hypothesis, 
xB belongs to an odd nucleus NB of Ui, and B is the only edge of P i of non-zero 
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capacity joining V(NB) to V(DX) - Ui. By 2.2 B* is the only edge of Dx of 
non-zero capacity joining U\ — V(NB) to V(NB). Moreover, c(B) = c(B*) = 1, 
by 2.1. 

If x* G V{NB), where 5 G Z, then x G V(NB) C P i . Bu t this is impossible 
since x G P . We deduce t h a t x* G P, for otherwise each admissible pa th from 
w to x in P would traverse both B and P * for some B G Z. 

Let P 0 be the set of all t G 2" such t ha t some admissible pa th from u to tin D 
traverses A * and thereafter passes only through vertices of P. T h u s x* G T0. 

Suppose z is common to JJ\ and (Po)*. Then z* G Po- Hence there is an 
admissible pa th P in P i such t h a t V(P) C P0 , from x* to 0*. Bu t P * is admis­
sible, by 1.2. Let Z\ be the last ver tex of P * in U\. Consider the product P x P 2 , 
where P\ is an admissible pa th in D± from u to Z\ and P 2 is the par t of P * 
extending from Z\ to x. This product is admissible since V{P\) Q L\ and 
V((P2)*) Q T. Again we have the contradict ion t h a t x is in U\. W e deduce 
tha t ( P 0 ) * n f/iis null. 

No edge B of Di , of non-zero capacity, is directed from some Xi G U\ to 
some x2 G (Po)*. For suppose B has this property and P is an admissible pa th 
in Di from u to Xi. Then P ( x i , B, x2) is admissible since (x2)* G P. Hence 
x2 G (Po)* ^ f/i, contrary to the preceding result. 

We can now show tha t Z is null. For suppose B is in Z. T h e n yB G P. Bu t 
P * joins Ui - V(NB) to F(iVB) , and so (yB)* G C/i. Since (P 0 )* H [/ri is null, 
we mus t have yB G T — P 0 . Accordingly we can choose B and an admissible 
pa th P in D from w to a member of P — P 0 so t ha t 

P = P 1 ( ;y*, ,4*,x*)P 2 ( r , C,s)Pz, 

where F ( P i ) C ^ , F ( P 2 ) Ç P0 , 5 G E/i, and P is the first edge of Z in P 3 . 
Then r G Po and 5 G V(-AT'B). Bu t this implies t ha t C* is directed from s* G Z7i 
to r* G (Po)*, contrary to the preceding result. We deduce t ha t Z is null and 
therefore P = P 0 . 

We may now assert t ha t T ^J T* does not meet Ui, and t h a t A* is the only 
edge of D, of non-zero capacity, joining Ui to T \J P*. Let D2 be the ant i -
symmetrical subdigraph of D given by the vertices of P \J P* and the edges 
having both ends in T U P*. We use the reverse-mapping and capacity-set 
induced by those of P . Wri te U2 = Ac(D2, x*). T h e product of an admissible 
pa th in P i from u to y*, the pa th (y*, A*, x*) in D, and an admissible pa th in 
P 2 from x* to w G U2 is an admissible pa th in D from u to w. T h u s 

U2 C Po = P. 

Moreover, such a pa th exists for each ze; G Po- Hence U2 = P a n d 

U = Ui U C/2. 

4̂ is the only edge of non-zero capacity joining T VJ T* to V. For suppose B 
is another . There is an admissible pa th P in D from w to the negative end of B. 
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This must traverse B*. But then B* must join JJ\ to T U T*, contrary to the 
above assertion. 

We have seen tha t x and x* are both in T. Hence there is a nucleus Nx of U2 

in D2 t ha t contains x and x* as vertices. 
Since A* is the only edge of D, of non-zero capacity, joining JJ\ to J1 U 2"*, 

we deduce tha t the nuclei of L7in Z> are the nuclei of JJ\ in Di} together with the 
nuclei of U2 in D 2 . Bu t U\ and £72 are regular mod u and x* in Di and Z)2 

respectively, and have zero effective capacities in those digraphs, by the induc­
tive hypothesis. Any nucleus N of U in D must thus have the following proper­
ties: 

(i) N is connected. 
(ii) IfN = NXJthent(N) = t0(N) = OinD2andt(N) = t0(N) = l w D . 

(iii) If N is not Nx, then t(N) = t0(N) = 1 in D, unless u G V(N), in 
which case t(N) = t0(N) = 0. 

We conclude tha t U is regular mod u in Z>. Moreover, we have 

UL(U) = M(C/I) + M ( t / 2 ) + 1, 

c(C/) = c(Ui) + c(U2) + 1, 

and therefore 

k(U) = *(C/i) +&(17 2 ) = 0 

by the inductive hypothesis, where the functions of U, Ui, and U2 refer to the 
digraphs D, Du and D2 respectively. 

The theorem thus holds whenever \E(D)\ = 2a. I t follows in general by 
induction. 

2.6. Let u and v be distinct vertices of D. In order that there shall be an admissible 
path from it to v in D it is necessary and sufficient that some cut U between u and v 
shall be regular mod u and of zero effective capacity. (By 2.4 and 2.5.) 

3. F lows . Let D be a digraph, not necessarily antisymmetrical . For each 
vertex x of D we write I(x) for the set of all edges directed to x, and 0 ( x ) for 
the set of all edges directed from x. 

Let / be a function which associates with each edge A of D a non-negative 
integer/(^4 ). We write 

(12) i n (x , / ) = T,Atiix)f(A), 

(13) o u t ( x , / ) = E A € O C * ) / ( ^ ) , 

(14) d(x,f) = o u t ( x , / ) - i n ( x , / ) 

for each vertex x of D. 
Let 5 and T be disjoint subsets of V(D). We denote the sum of the numbers 

f{A) over all edges A joining 5 to T by ou t (5 , T,f). If T = V(D) - 5 , we 
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write the sum also as out(S,f) or in(T,f). By (12), (13), and (14) we have 

(15) Z^sd(x,f) = out(5, / ) - m(SJ). 

We call / a flow in D from u to v, of magnitude M (J) > 0, if the following 
conditions are satisfied: 

(16) d(u,f) = M if), 

(17) d(v,f) = -M(f), 

(18) d(x,f) = 0 «f x £ V(D) - \u,v}. 

These three conditions are not independent, as we may see by applying (15) 
with 5 = V(D). 

We now suppose that with each edge A of D there is associated a non-
negative integer c(A) called the capacity of A. A flow / in D is said to be 
admissible if 

(19) f(A)<c(A) 

for each edge A. 
In the remainder of this section we take D to be antisymmetrical. We suppose 

the capacities to satisfy (2). A flow/in D is self-conjugate if it satisfies 

(20) f(A*)=f(A) 

for each edge A. Such a flow is always from a vertex u to its conjugate vertex u*. 

3.1. Let f be a self-conjugate flow in D from u to u*. Let S be any s elf-conjugate 
subset of V(D). Then 

Zxes max (d (*,/), 0) + out (S,f) = 0 mod 2. 

Proof. Let the expression on the left of this congruence be denoted by g(S). 
If |5| = 0, we have g (S) = 0, and the theorem is trivially true. Assume that the 
theorem holds whenever |5| is less than some positive even integer 2q, and 
consider the case |5| = 2g. 

Write T == V(D) — S. Choose x £ S and write Si = S — {x, x*}. Since 
d(x,f) = — d(x*,f), by (20), we may adjust the notation so that d(x,f) > 0. 
Then 

g(S) - g{S{) - d(x,f) = out({*}, T,f) + out({x*}, T,f) 

- out(5 - {x}, {x},f) - out(5 - {x*}, {**},/) 
+ out({x*},{x},/)+out({x},{x*},/) 

souta*}, r,/) + out(r,{x},/) 
+ out(5 - {x}, {x},f) + out({x}, 5 - {*},/) mod 2, 

for if A is directed from y toy*, then so is A*. Hence 

g(S) - g(5i) = d(x, /) + out(x,f) + in(x,f) 
= 0 mod 2, 
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by (14). But g(Si) = 0 mod 2, by the inductive hypothesis. It follows that 
g (S) = 0 mod 2. Hence the theorem is true, by induction. 

Putting 5 = V(D),we obtain 

COROLLARY. M if) is even. 

3.2. Let U be a cut between u and u*, and let f be an admissible self'-conjugate floiv 
in D from utou*. Then 

M(f) < k(U). 

Moreover, if N is any odd nucleus of U, then 

(21) out(F(iV), V,f) - out (7 , V(N)J) < J(V(N), V). 

Proof. Let N be any odd nucleus of U. Assume that N does not satisfy (21). 
Since/is admissible, the following propositions must hold: 

(i)f(A) = c(A) if A joins V(N) to V. 
(n)f(A) = OifA joins V to V(N). 

Hence f(A) = c(A) whenever A joins U - V(N) to V(N), by 2.2. Since N is 
self-conjugate, it does not have u as a vertex. So by 3.1 and (15) 

J(V(N), V) = out(V(N), V,f) ^ 0 mod 2. 

But this is contrary to the choice of N. We deduce that (21) is valid for each 
odd nucleus N of U. 

Let Q be the class of all odd nuclei of U, and let W be the set of all vertices of 
Z7not belonging to odd nuclei. Then 

M(f) = out(U,f) - i n ( £ / , / ) by (15) 

< out(W, VJ) + VN,Q {out(F(7V), V,f) - out(F, V(N),f)} 

< J(W, V) + 2N,QJ(V(N), V) - p(U), 

by (21) and the admissibility of/. Thus 

Mif) <c(U) - UL(U) = k(U). 

3.3. Letf be an admissible self-conjugate flow in D from u to u*, having the greatest 
possible magnitude M (J). Then there is a cut U between u and u* which is regular 
and whose effective capacity is equal to M (J). 

Proof. We derive an antisymmetrical digraph D' from D in the following way. 
For each edge A, directed from x to y say, we adjoin a new edge Ai directed 
from y to x. We arrange that if A and B are distinct edges of D, then A i and Bi 
are distinct. The reverse-mapping of D' agrees with that of D for the vertices 
and for the edges of D. It is extended to the new edges by the rule 

(22) (Ai)* = (A*)x. 
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To each edge X of D' we assign a capacity d (X) denned as follows: 

(23) cf{A) = c(A) -f(A)} 

(24) d{Ax) =f(A), 

for each A £ E(D). 
Suppose there is a path P from u to w* in D' which is admissible with respect 

to the new capacities. Then P* is another such path, and any common edge X 
of P and P* satisfies c'(X) > 2, by 1.2. Let p0(A) and p±(A) denote the number 
of paths in the set {P, P*\ traversing A and A i respectively. Write also 

(25) p(A) =pM) -PI(A). 

Define a function g on E(D) as follows: 

(26) g(A) =f(A) + p(A). 

We note that 0 < g(A) < c(A) for each edge A, by the admissibility of P and 
P*. Moreover, g {A*) = g (A). Consider an edge B directed from x to y in D. 
In the digraph D the replacement of f(B) by g(B) increases d(x,f) by p(B) 
and diminishes d(y,f) by p(B). By summation we find that 

(27) d(*,g) = d(xj) = 0 

if x is not u or w*, and 

(28) d(u,g) = d(u,f) + 2 . 

We deduce that g is an admissible self-conjugate flow from u to u* in D, of 
magnitude M(f) + 2. But this is contrary to hypothesis. 

It now follows by 2.6 that there is a cut U between u and u* in Dr which is 
regular mod u, and which has effective capacity zero. This cut is regular since 
it does not contain u*. 

Evidently the cores of U in D and D' are defined by the same vertex-set. 
Moreover, two distinct vertices of this set are the ends of an edge of non-zero 
capacity in D' if and only if they are the ends of such an edge in D. Hence 
there is a 1-1 correspondence N —> N' between the set of nuclei of U in D and 
the set of nuclei of U in D' which has the property V(N) = V(Nr). We note 
also that the nuclei of UinD are connected like those in D\ 

Applying 2.1 to the cut U in D', we deduce the following properties of U 
considered as a cut in D: 

(i) If A joins Uto V = V(D) - Uandf(A) < c(A), then f (A) = c(A) - 1 
and the negative end of A belongs to a nucleus of U. 

(ii) If A joins V to U and f(A) > 0, then f {A) = 1 and the positive end of A 
belongs to a nucleus of U. 

(iii) If N is a nucleus of U, there is exactly one edge A such that either 
f{A) < c(A) and A joins V(N) to Vorf(A)>0 and A joins V to V(N). The 
edge A* has one end in U — V(N). 
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In deriving these rules we use the regularity of U in D'. We refer to the edge A 
of Rule (iii) as the singular edge of U associated with N. We write e(N) = 1 if A 
joins F to V(N),cinde(N) = - 1 if it joins V(N) to V. 

Let N be a nucleus of [/with associated singular edge A. By (ii) there is no 
edge B of D, distinct from A, which is directed from V to V(N) and satisfies 
f(B) > 0. Hence the conjugates of the edges of D joining V(N) to V and 
having non-zero capacity are all directed from vertices of U — V(N) to vertices 
of V(N). (If A is such an edge we use Rule (iii).) Thus t0(N) = t(N), that is, 
N is simple, by 2.2. We also have 

(29) out(V(N),f) = J(V(N), V) + e(N), 

for if an edge joins V(N) to U — V(N) and has non-zero capacity, then its 
conjugate edge is directed from V to V(N), by 2.2. It follows that 

(30) out(V(N), VJ) - out (7 , V(N)J) = J(V(N), V) - 1. 

N is an odd nucleus of Z7, by (29) and 3.1. 
We have shown that each nucleus of U in D is connected, simple, and odd. 

Thus U is a regular cut between u and u* in D. 
Let Q be the class of all nuclei of U in D, and let W be the set of all vertices 

of U not belonging to nuclei. Then, by (15), 

M(f) = out(W, V, f) - out(7 , IF,/) 

+ £*€* iout(V(N), VJ) - out(7 , F(iV),/)} 

= J ( I7 , 7) + E ^ Q ^ ( n ^ V ) , V) - »(U), 

by Rules (i) and (ii), together with (30), 

= c(U) - ii(U) = k(U). 

Thus the cut C/has the required properties. 

Given a vertex M of D we write M(u) for the maximum magnitude of an 
admissible self-conjugate flow from u to u*, C(u) for the minimum capacity 
of a cut between u and u*y and K(u) for the minimum effective capacity of such 
a cut. An admissible self-conjugate flow from u to u* of magnitude M(u) is a 
maximal flow from w to «*. A cut between u and w* of capacity C(u), or effective 
capacity K(u), is a minimal, or effectively minimal, cut respectively between 
w and w*. By 3.2 and 3.3 we have 

(31) M(u) = X ( M ) . 

This result is analogous to the Max Flow M in Cut theorem (3) for flows in 
general digraphs. 

We conclude this section by discussing some generalizations. In one of these 
c(A) and/(^4) take non-negative real values but are not necessarily integers. 
It can be shown that then M(u) = C(u), and we proceed to sketch a proof of 
this theorem. When the capacities happen to be even integers it follows from 
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(31), for then no cut can have odd nuclei and so K(u) = C(u). To extend the 
theorem to the general case of rational capacities we multiply the capacities 
by a suitable integer h to make them even integers, and we consider a corre­
sponding maximal flow / . Clearly hM(u) = M(f) = hC(u). In particular, 
whenever the capacities are integers, there is a maximal flow / (of magnitude 
Ciu)) such tha t /04) is an integral multiple of 1/2 for each edge A. The theorem 
can be extended to the general real case by using a sequence of rational 
approximations. 

In another generalization we assign a non-negative integral capacity c(x) 
to each edge and vertex x of D. A flow is then called admissible only if in ad­
dition to the requirement 

f(A) < c(A) 

for each edge A it satisfies also 

max {in (#,/) , out (#,/)} < c(x) 

for each vertex x. When capacities are assigned only to edges, it is convenient 
to say that the vertex-capacities are infinite. We can make the generalization 
depend on the standard case of infinite vertex-capacities by using the following 
device. 

We replace each vertex x of D by two vertices, Xi incident with the members of 
I(x) and x2 incident with the members of 0(x), and we introduce a new edge 
Ax directed from x± to x2. We denote the resulting digraph by D". It is anti-
symmetrical, having a reverse-mapping induced in an obvious way by that of 
D. We assign capacities in D" to the edges only. An edge of D retains the same 
capacity in D" as in D, while an edge Az receives the capacity c(x). 

It is easy to verify that there is a 1-1 correspondence/—» f" between the 
class of admissible self-conjugate flows / from u to u* in D and the class of 
admissible self-conjugate flows f" from u\ to (wi)*, that is (u*)2, in D", with 
the property that f"(A) = f{A) for each edge A of D. Hence M(u) defined for 
D is equal to M{u\) defined for D". 

4. Analogues of Menger's theorem. Let D be an antisymmetrical digraph 
with capacities, satisfying (2), assigned to the edges. As in §2 we write M 
for the self-conjugate set of all edges A such that c{A) > 2, and we define 
admissibility of paths in terms of M. 

An admissible path-set from u to u* in D is a set S of admissible paths from u 
to u* which satisfies the following conditions: 

(i) If P is in 5, then P* is in S. 
(ii) The number of paths of S traversing an edge A does not exceed c(A). 

We note that the number of paths in any admissible path-set is even. 
For each vertex u we define L(u) as the maximum number of members of 

an admissible path-set from u to u*. 
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An admissible path-set 5 from u to u* conforms to an admissible self-conjugate 
flow/ from u to w* if the number of members of S traversing an edge A does not 
exceed f (A), 

4.1. Let S be an admissible path-set from u to u*. Then we can construct an 
admissible self-conjugate flow f from u to u* such that S conforms tof. 

Proof. We define f(A) as the number of members of 5 traversing A. T h e 
function / clearly satisfies the definition of a flow from u to u*. I t is self-
conjugate by condition (i) and admissible by condition (ii). By the definition 
of/, 5 conforms t o / . 

COROLLARY. We can choose f so that \S\ = M(f). 

4.2. Let f be an admissible self-conjugate flow in D from u to u*. Then there exists 
an admissible path-set S from u to u* which conforms tof and satisfies \S\ = M(f). 

Proof. We proceed by induction over M(f). If M(/) = 0, the theorem is 
trivially true, 5 being null. Assume it true whenever M(f) is less than some 
positive even integer 2g, and consider the case M(f) = 2q. 

Let M' denote the set of all edges A such tha t / ( ^4 ) > 2. Suppose there is a 
simple pa th P from u to u* such t ha t P is skew mod M' and / (^4) > 1 for each 
A G E{P). Then T = {P, P*\ is an admissible path-set conforming t o / . There 
is an admissible self-con jugate flow g from u to u* such t h a t g (A) is the number 
of members of T traversing A, by the proof of 4.1. Clearly there is an admissible 
self-con jugate flow/i from u to u* such that fi(A) = f(A) — g (A) for each 
edge A, and M{fx) = M(f) — 2 = 2q — 2. By the inductive hypothesis there 
is an admissible path-set Si from u to u* which conforms to / i and satisfies 
|Si| = M(fi). Bu t then the set Si U {P, P*} is an admissible path-set from 
u to w* having the required properties. 

In the remaining case there is no path P from u to u* with the specified 
properties. We apply 2.6, taking the numbers f(A) as the capacities of the 
corresponding edges. With this choice of capacities there is no admissible pa th 
from u to u*. Hence there is a regular cut U between u and u* of effective 
capaci ty zero. 

Since M(f) = 2q > 0, there is an edge B joining U to V = V(D) — £/such 
t h a t f(B) > 0. By 2.1 we must have f(B) = 1. Moreover, there is an odd 
nucleus N of U such t ha t B is the only edge, satisfying/(Z?) > 0, t ha t joins 
V(N) to V. Since M(/) > 0, we can choose B and N such tha t there is no 

edge Ay sa t isfying/( .4) > 0, t ha t joins V to V(N), by (15). Then there is no 
edge A, sa t i s fy ing / ( / I ) > 0, t ha t joins V(N) to U — V(N), as we may see 
b y applying 2.2 to A*. We can thus choose B and N so t ha t out(V(N),f) = 1. 
Bu t this is contrary to 3.1. 

T h e preceding argument shows t ha t the theorem is true when M if) = 2q. I t 
follows in general by induction. 
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Given a vertex u of D we deduce from 4.1, its corollary, and 4.2, together with 
(31) that 

(32) L(u) = M(u) = K(u). 

When c(A) = 1 for each edge A, then L(u) is the maximum number of simple 
skew paths from u to u* such that no two traverse a common edge, subject 
to the restriction that if we choose a path P we must also choose P*. 

In a related problem we consider the maximum number Liiu) of simple 
skew paths from u to u*, always counting P* with P , such that no two pass 
through a common vertex other than u and u*. For simplicity we suppose that 
no edge is directed from u to u*. We assign unit capacity to each vertex of D 
and arbitrarily large positive capacities to the edges. Then L^iu) is equal to 
L(ui), the latter number being defined for the digraph D" of §3. 

The problem of finding L\(ii) is related to the result known as Menger's 
theorem for ordinary digraphs. 

5. A matching problem. Let D be an antisymmetrical digraph in which 
the edges have capacities satisfying (2). 

Let X be a subset of V(D) not meeting X*. An admissible path-set from X to 
X* in D is a set 5 of admissible paths that satisfies the following conditions: 

(i) Each P £ S has its origin in X and its terminus in X*. 
(ii) If P is in S, then P* is in S. 

(iii) The number of paths of S traversing an edge A does not exceed the capacity 
of A. 

With each vertex x of X or X* we associate a non-negative integer g(x)f 

imposing the restriction 

(33) g(x) = g(**). 

A path-set S from X to X* is acceptable if it is admissible and the number of 
paths of 5 originating or terminating at a vertex x o f l U X* never exceeds 
g(x). We write L(X) for the maximum number of members in an acceptable 
path-set from X to X*. 

We can express L(X) as the magnitude of a maximal flow by the following 
device. We adjoin two new vertices u and u*, regarded as conjugate. For each 
x (z X we adjoin a new edge Ax directed from u to x and a conjugate edge 
(Ax)* directed from x* to u*. The digraph D\ thus constructed from D is 
antisymmetrical, with a reverse-mapping agreeing with that of D for the 
vertices and edges of D, and given by the specified relation of conjugacy for 
the new vertices and edges. In D\ we assign the capacity g(x) to Ax and (Ax*). 
The other edges of D\ are assigned the same capacities as in D. 

5.1. L (X) for D is equal to K (u) for Di. 
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Proof. Given an admissible path-set S from u to u* in D\ we can delete the 
first and last edges and the first and last vertices of each member of S, and so 
obtain an acceptable path-set S' from X to X* in D such tha t |S ' | = |S| . 
Considering this operation and its converse, we find tha t L(X) for D is equal 
to L(u) for Di. The theorem follows, by (32). 

There is a special case t ha t seems to deserve further s tudy. We define a 
bipartition of D as an ordered pair {X} X*} of conjugate complementary subsets 
of V(D) such tha t each edge of D has one end in X and one in X*. The biparti t ion 
is restricted if it has the following property: if x £ X there are jus t two edges, 
necessarily conjugate, directed from x* to x, and there is no edge directed from 
x* to any vertex of X — {x}. We denote the two edges directed from x* to x by 
B(x) and B(x)*, and we write their common capacity as h(x). 

A bipart i t ion {X, X*} of D is directed if each edge has its negative end in X 
and its positive end in X*. For our present purposes a directed biparti t ion is 
equivalent to a restricted one in which h(x) = 0 for each x £ X. This implies 
t ha t b(x) = g(x). Thus for a directed biparti t ion L(X) is the maximum number 
of edges such tha t the number incident with a vertex y does not exceed g(y). 
Theorem 5.1 thus gives rise to an antisymmetrical matching theorem. 

6. A p r o b l e m of Gal lai . Let G be a graph. We define a path in G as a 
sequence of the form (1) in the same way as for a digraph, except tha t an edge 
A i is required to have a f_i and at as its two ends instead of to be directed from 
at-i to at. 

A path P in G is circular if it is non-degenerate and re-entrant and no vertex-
term, other than the last, is a repetition of a preceding one. A track in G is a 
non-degenerate path which is simple or circular. 

With each vertex v of G let there be associated two non-negative integers 
g(v) and h(v). An admissible track-set in G is a set S of tracks in G satisfying the 
following conditions: 

(i) No two members of S traverse a common edge. 
(ii) The number of tracks of S originating or terminating at a vertex v, circular 

tracks being counted twice, does not exceed giv). 
(iii) The number of tracks of S passing through a vertex v, other than as origin 

or terminus, does not exceed h (v). 

Let L(G) denote the maximum number of members for an admissible track-
set 5 in G. We discuss the problem of characterizing L(G) in terms of the struc­
ture of G. Th is problem was posed and solved by T . Gallai (5). Here we 
express the problem in terms of the theory of antisymmetrical digraphs. 

We derive an antisymmetrical digraph D from G as follows. We replace each 
vertex v of G by two conjugate vertices v and v* of D. An edge A of G with ends 
x and y is replaced by two conjugate edges, A and A*, one directed from x to y* 
and the other from y to x*. Finally, for each vertex v of G we adjoin two con-
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jugate edges B(v) and (B(v))*, each directed from v* to v. We assume no 
unnecessary coincidences between the edges and vertices so defined. T h u s 
E(G) and (E(G))* are disjoint subsets of E(D), and neither of them meets 
{B(v),(B(v))*}. 

For each v £ V(G) we write g(y*) = g(v). We assign the capacity h(v) to 
B(v) and (B(v))*. For each A £ E(G) we assign unit capacities to A and A* 
inD. 

We note t ha t D has a restricted bipart i t ion {X, X * } , where X = V(G). 
Consider a pa th 

P = (a0> -4i, a b ^42, a2, . . . , <V_b An, an) 

in G. Then there is a pa th 

P ' = (a0, Ci, (ai)*, C(ai) , a if C2, (a2)*, C(a2) , a2, . . . , an-h Cn, (aw)*) 

from a0 to (aw)* in Z), where d is whichever of the edges A t and (^41)* of Z) is 
directed from at-\ to (a^)*, and C{at) is chosen arbitrari ly from the pair 
{B (a , ) , ( 5 (a , ) )*} . We call P ' a derived path of P . 

6.1. 7/ P is a /rac& iw G from u to v, then any derived path P' of P is a simple 
skew path in Dfrom utov*. 

Proof. If P' is not simple, it has a vertex-repetit ion at = aj or at = (a^)*, 
where i 9* j . Hence P has the vertex-repetit ion a% = aj. We may therefore 
suppose t h a t i = 0 and j = n. F rom P we have a0 = an, and from P' we have 
<̂o = (^»)*. Hence (an)* = an, contrary to the definition of D. 

If P' is not skew, it traverses two conjugate edges A and A*. Evident ly 
neither of these is of the form B(v). Hence P traverses A twice, contrary to the 
definition of a track. 

6.2. If Q is a simple skew path in D from u to v*, then there is a unique track P 
in G from utov such that Q is a derived path of P. 

Proof. W e can obtain such a P by replacement of each subsequence of Q 
of the form ((a*)*, C{ai)1 at) by the corresponding single term au and of the 
last term (an)* of Q by an. By the definition of a derived pa th Q determines P 
uniquely. 

Given a t rack P in G we can associate with it a derived pa th P' in D and the 
conjugate pa th (P r )* of P'. Conversely, given two conjugate simple skew pa ths 
Q and Q* in D we can associate them with a single t rack P in G such t h a t Q 
is a derived pa th of P . This association enables us to construct an acceptable 
path-set S from X to X * in D from an admissible track-set T in G, and con­
versely, in such a way t h a t | 5 | = 2\T\. Accordingly we have 

6.3. 2L(G) = L(X), where L(X) is computed for D. 

There is an extensive l i terature dealing with problems connected with Gallai 's 
theorem. I t is concerned mainly with the special case in which h(x) = 0 
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for each vertex x, and with the related problem of finding a spanning subgraph 
H of G, that is one such that V(H) = V(G), with a specified valency at each 
vertex. The works listed as references, apart from (3), are samples of this 
literature. 
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