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Abstract

Detection of defects and identification of symptoms in monitoring industrial systems is a widely studied problem
with applications in a wide range of domains. Most of the monitored information extracted from systems
corresponds to data series (or time series), where the evolution of values through one or multiple dimensions
directly illustrates its health state. Thus, an automatic anomaly detection method in data series becomes crucial. In
this article, we propose a novel method based on a convolutional neural network to detect precursors of anomalies
in multivariate data series. Our contribution is twofold: We first describe a new convolutional architecture
dedicated to multivariate data series classification; We then propose a novel method that returns dCAM, a
dimension-wise Class ActivationMap specifically designed for multivariate time series that can be used to identify
precursors when used for classifying normal and abnormal data series. Experiments with several synthetic datasets
demonstrate that dCAM is more accurate than previous classification approaches and a viable solution for
discriminant feature discovery and classification explanation in multivariate time series. We then experimentally
evaluate our approach on a real and challenging use case dedicated to identifying vibration precursors on pumps in
nuclear power plants.

Impact Statement

Detection of defects and identification of symptoms inmonitoring industrial systems is a widely studied problem
with applications in a large range of domains. In this article, we propose a novel method, dCAM, based on a
convolutional neural network, dCNN, to detect precursors of anomalies in multivariate data series. Experiments
with several synthetic datasets demonstrate that dCAM is more accurate than previous classification approaches
and a viable solution for discriminant feature discovery and classification explanation in multivariate time series.
We then experimentally evaluate our approach on a real and challenging use case dedicated to identifying
vibration precursors on pumps in nuclear power plants.
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1. Introduction

Massive collections of data series (or time series) are becoming a reality in virtually every scientific and
social domain, and there is an increasingly pressing need for relevant applications to develop techniques
that can efficiently analyze them (Palpanas, 2015; Bagnall et al., 2019; Wang and Palpanas, 2021;
Jakovljevic et al., 2022). Data series anomaly detection is a crucial problem with applications in a wide
range of fields (Palpanas, 2015; Boniol et al., 2022; Paparrizos et al., 2022a, 2022b), that all share the same
well-studied goal (Barnet and Lewis, 1994; Subramaniam et al., 2006; Yeh et al., 2016): detecting
anomalies as fast as possible to avoid any critical event. Such applications can be found in biology,
astronomy, and engineering areas. Some of these sectors are well-studied and theoretically well-explored.
The knowledge acquired by the expert can be used to build an algorithm that efficiently detects any kind of
behavior derived from a potential well-defined normality. However, such algorithms can be difficult to
concretize andmight have difficulty adapting to unknown or unclear changes over time. On the other side,
if the data available are representative enough to correctly illustrate the system’s health state, a data-driven
method could provide more flexibility. For instance, in the case of fraud detection, a knowledge-based
model looks for known frauds, while a data-driven model might be helpful in finding new patterns, which
is crucial since frauds can change frequently and dynamically. The same statement can be made in the
general case of anomaly or outlier detection.

1.1. Anomaly detection primer

First, one should note that no single, universal definition of outliers or anomalies exists. In general, an
anomaly is an observation that appears to deviate markedly from other members of the sample in which it
occurs. This fact may raise suspicions that the specific observationwas generated by a differentmechanism
than the remainder of the data. This mechanism may be an erroneous data measurement and collection
procedure or an inherent variability in the domain of the data under inspection. Nevertheless, such
observations are interesting in both cases, and the analyst would like to know about them. The latter
can be tackled by either looking at single values or a sequence of points. In the specific context of points, we
are interested in finding points that are far from the normal distribution of values that correspond to healthy
states. In the specific context of sequences, we are interested in identifying anomalous subsequences that
are, unlike an outlier, not a single abnormal value but rather an abnormal evolution of values. Thisworkwill
study the specific case of subsequence anomaly detection in data series.

As usually addressed in the literature (Breunig et al., 2000; Keogh et al., 2007; Liu et al., 2008; Liu
et al., 2009; Senin et al., 2015; Yeh et al., 2016), one can decide to adopt a fully unsupervised method.
These approaches benefit from working without needing any collection of known and tagged anomalies
and can automatically detect unknown abnormal behaviors. Several approaches have been proposed. For
example, general methods for multi-dimensional points outlier detection have been proposed (Breunig
et al., 2000; Liu et al., 2008; Ma et al., 2020). Nevertheless, algorithms such as Isolation forest (Liu et al.,
2008) seem to performwell for the specific case of subsequence anomaly detection (Boniol and Palpanas,
2020). Moreover, recently proposed approaches, such as NormA (Boniol et al., 2021) (that aims to build a
weighted set of centroids summarizing the different recurrent subsequences in the data series) and
Series2Graph (Boniol and Palpanas, 2020) (that aims to build a directed graph in which a trajectory
corresponds to a subsequence in the time series), model the normal behaviors of the data series and have
shown to outperform the previous state-of-the-art approaches.

1.2. Supervised detection of anomaly precursors

In the previous section, anomalies were considered unknown. However, one can assume that experts
know precisely which event they want to detect and have a data series collection corresponding to these
anomalies. In that case, we have a database of anomalies at our disposal. As a consequence, one can decide
to adopt supervised methods. A question that naturally arises is the following: is it possible to detect
subsequences that happened before the known anomaly that might lead to an explanation of the anomaly
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(and potentially predict it)? Such subsequences can be called precursors or symptoms of anomalies.
Usually used in medical domains, we can infer the medical definition and adapt it to the task of anomaly
detection in large data series. We will use the generic term precursors in the remainder of the article.
Detecting such subsequences might be significantly helpful for knowledge experts to prevent future
anomalies from occurring or understand why an anomaly occurred (or facilitate its understanding). In
several engineering applications, it is required to analyze measurements frommany sensors (across many
different locations) to detect potential failures. Being able to detect failures is not enough, and identifying
which sensors (and which timestamps) are related to the failure provides essential information on the
origin of the failure. For instance, in the monitoring of nuclear power plants, it is as important to detect the
vibration of a given pump as to identify precursors and unusual measurements of sensors within the plant
that could explain or prevent future vibrations. Thus, the task is to detect (in a supervised manner) known
anomalies and retrieve potential precursors. We now propose a formal definition of the problem
mentioned above.

Problem 1 (Precursors Identification Problem Definition). Given a monitored system M, a set of data

series TN
M that represents the healthy state ofM (healthy state labeledN ), a set of data series TA

M that
represents the state ofM before an anomalous state (anomalous state labeledA), we first have to find a

function f that takes as input TA
M and TN

M, and returns s∈ N ,Af g.We then have to find a function g that
takes as input TA

M and f , and returns S⊂TA
M (S being the set of subsequences in TA

M precursors of the

upcoming anomalies). Formally, f and g can be written as follows: f : TN
M,TA

M! N ,Af g and

g : TA
M, f ! S.

As Problem 1 is defined as a supervised task, one can decide to use time series classification
approaches. The latter can be performed using either (1) pre-extracted features or (2) raw values of the
time series.

For the first category (1), the main idea is to use the dataset of time series (or subsequences of time
series) to create a dataset whose samples are described by features common to all-time series. For the
specific case of time series, the feature extraction step can be performed using TSFresh Python library
(Christ et al., 2018) (Time Series Feature extraction based on scalable hypothesis tests). The latter is used
for automated time series feature extraction and selection based on the FRESH algorithm (Christ et al.,
2016). More specifically, it automatically selects relevant features for a specific task. This is achieved
using statistical tests, time series heuristics, and machine learning algorithms. Then, using the feature-
based dataset, standard machine learning classifiers can be employed to classify each time series.
Examples of traditional machine learning classifiers are Support Vector Classifier (SVC) (Boser et al.,
1992) (i.e., classifiers that map instances in space in order to maximize the width of the gap between the
classes), naive Bayes classifier (Zhang, 2004) (i.e., classifiers based onBayes’ theorem to predict the class
of a new instance based on prior probabilities and class-conditional probabilities),Multi-Layer Perceptron
(MLP) (Hinton, 1989) (i.e., fully connected neural networks), AdaBoost (Freund and Schapire, 1995)
(i.e., boosting ensemblemachine learning algorithms), or RandomForest Classifier (Ho, 1995) (ensemble
machine learning algorithm that combines multiple decision trees, where each tree is built using a random
subset of the features and a random sample of the data). On top of the aforementioned classifiers,
explainability frameworks, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) can
be used in order to identify which features have the most important effect on the classification prediction.
However, feature-based classification and explanation methods can be limited when applied to time
series. Whereas features are efficient for summarizing time series datasets (e.g., setting a constant number
of features for variable length time series), it might miss important information in the shape of consecutive
values, which may be crucial for anomaly detection and precursor identification. Moreover, the choice of
features heavily impacts the classification accuracy and is not desirable in tasks related to precursors
identification with unknown properties. Therefore, using methods that do not need any feature selection
step is preferable when working on agnostic scenarios.
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For methods based on raw values of the time series (ii), standard data series classification methods are
based on distances to the instances’ nearest neighbors, with k-NN classification (using the Euclidean or
Dynamic Time Warping (DTW) distances) being a popular baseline method (Dau et al., 2019). Neverthe-
less, recent works have shown that ensemble methods using more advanced classifiers achieve better
performance (Bagnall et al., 2015; Lines et al., 2016). Following recent breakthroughs in the computer
vision community, new studies successfully propose deep learning methods for data series classification
(Chen et al., 2013; Zheng et al., 2014; Cui et al., 2016; LeGuennec et al., 2016; Zhao et al., 2017;Wang et al.,
2018; Fawaz et al., 2019), such as Convolutional Neural Network (CNN) and Residual Neural Network
(ResNet) (Wang et al., 2017). For some CNN-based models, the Class ActivationMap (CAM) (Zhou et al.,
2016) can be used as an explanation for the classification result. CAM has been used for highlighting the
parts of an image that contribute the most to a given class prediction and has also been adapted to data series
(Wang et al., 2017; Fawaz et al., 2019). Thus, CAM can be used to identify subsequences that contribute the
most to the anomaly prediction and, consequently, to solve Problem 1. This article considers Convolutional
Neural Network joined with the Class Activation Map as a strong baseline.

1.3. Limitations of previous approaches

As regards existing methods that can solve Problem 1, CNN/CAM for data series suffers from one
important limitation. CAM is a weighted mapping technique that returns a univariate series (of the same
length as the input instances) with high values aligned with the subsequences of the input that contribute
the most to a given class identification. Thus, in the case of multivariate data series as input, no
information can be retrieved from CAM on which dimension is contributing. Therefore, precursors
within specific dimensions cannot be retrieved using existing methods.

1.4. Contributions

In this article, we will focus on solving Problem 1. First, we explore the possibility of using a supervised
time series classification algorithm to solve precursor discovery tasks. We then propose a novel method,
dCNN/dCAM, that overcomes the limitations of previous supervised algorithms. Moreover, dCNN/
dCAM permits the identification of specific patterns (without any prior knowledge) and alerts the expert
on the imminent occurrence of the anomaly. Finally, we demonstrate this latter claim in a real industrial
use case. The article is structured as follows:

• Section 2:We first describe the notations and the concepts related to time series and neural networks.
We then describe the usual Class Activation Map and explain its limitations regarding multivariate
data series in detail.

• Section 3: We describe a new convolutional architecture, dCNN, that enables the comparison of
dimensions by changing the structure of the network input and using two-dimensional convolutional
layers. We then introduce dCAM, a novel method that takes advantage of dCNN and returns a
multivariate CAM that identifies the important parts of the input series for each dimension.

• Section 4: We then experimentally evaluate the classification accuracy of dCNN/dCAM over
CNN/CAM on a synthetic benchmark and demonstrate the benefit of our proposed approach.

• Section 5: We experimentally evaluate our proposed approach over a real industrial use case.

2. Background and related work

[Data Series]Amultivariate, or D-dimensional data series T ∈ℝ D,nð Þ is a set ofD univariate data series of
length n. We note T ¼ T 0ð Þ,…,T D�1ð Þ� �

and for j∈ 0,D�1½ �, we note the univariate data series

T jð Þ ¼ T jð Þ
0 ,T jð Þ

1 ,…,T jð Þ
n�1

h i
. A subsequence T jð Þ

i,ℓ ∈ℝℓ of the dimension T jð Þ of the multivariate data series
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T is a subset of contiguous values from T jð Þ of length ℓ (usually ℓ≪ n) starting at position i; formally,

T jð Þ
i,ℓ¼ T jð Þ

i ,T jð Þ
iþ1,…,T jð Þ

iþℓ�1
h i

.

[Neural Network Notations] We are interested in classifying data series using a neural network
architecture model. We define the neural network input as X ∈ℝn for univariate data series (with xi the
ith value and Xi,ℓ the sequence of ℓ values following the ith value), and X∈ℝ D,nð Þ for multivariate data
series (with xj,i the ith value on the jth dimension andXj,i,ℓ the sequence of ℓ values following the ith value
on the jth dimension).

Dense Layer: The basic layer of neural networks is a fully connected layer (also called dense layer) in
which every input neuron is weighted and summed before passing through an activation function. For
univariate data series, given an input data series X ∈ℝn, given a vector of weights W ∈ℝn and a vector
B∈ℝn, we have:

h¼ f a
X

xi,wi,bi ∈ X,W,Bð Þ
wi � xiþbi

0
@

1
A: (1)

f a is called the activation function and is a nonlinear function. The commonly used activation function f a
is the rectified linear unit (ReLU) (Nair and Hinton, 2010) that prevents the saturation of the gradient
(other functions that have been proposed are Tanh and Leaky ReLU (Xu et al., 2015)). For the specific
case of multivariate data series, all dimensions are concatenated to give input X,W ∈ℝD�n. Finally, one
can decide to have several output neurons. In this case, each neuron is associated with a differentW andB,
and equation (1) is executed independently.

Convolutional Layer: This layer has played a significant role in image classification (Krizhevsky et al.,
2012; LeCun et al., 2015; Wang et al., 2017), and recently for data series classification (Fawaz et al.,

2019). Formally, for multivariate data series, given an input vectorX∈ℝ D,nð Þ, and givenmatrices weights

W,B∈ℝ D,ℓð Þ, the output h∈ℝn of a convolutional layer can be seen as a univariate data series. The tuple
W ,Bð Þ is also called a kernel, with D,ℓð Þ the size of the kernel. Formally, for h¼ h0,…,hn½ �, we have:

hi¼ f a
X

X jð Þ,W jð Þ,B jð Þ ∈ X,W,Bð Þ

X
xk,wk,bk ∈ X jð Þ

i�⌊ℓ2⌋,iþ⌊
ℓ
2⌋
,W jð Þ,B jð Þ

� �wk � xkþbk

0
BBBBB@

1
CCCCCA
: (2)

In practice, we have several kernels of size D,ℓð Þ. The result is a multivariate series with dimensions

equal to the number of kernels, nf . For a given inputX∈ℝ D,nð Þ, we define A∈ℝ nf ,nð Þ to be the output of a
convolutional layer conv nf ,ℓ

� �
. Am is thus a univariate series corresponding to the output of the mth

kernel.We denote withAm Tð Þ the univariate series corresponding to the output of themth kernel when T is
used as input.

Global Average Pooling Layer: Another type of layer frequently used is pooling. Pooling layers
compute average/max/min operations, aggregating values of previous layers into a smaller number of
values for the next layer. A specific type of pooling layer is Global Average Pooling (GAP). This operation
averages an entire output of a convolutional layer Am Tð Þ into one value, thus providing invariance to the
position of the discriminative features.

Learning Phase: The learning phase uses a loss function L that measures the accuracy of the model
and optimizes the various weights. For the sake of simplicity, we note Ω the set containing all weights
(e.g., matrices W and B defined in the previous sections). Given a set of instances X , we define the
average loss as: J Ωð Þ¼ 1

∣X ∣
P

X∈XL Xð Þ. Then for a given learning rate α, the average loss is back-

propagated to all weights in the different layers. Formally, back-propagation is defined as follows:
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∀ω∈Ω,ω ω�α ∂J
∂ω. In this article, we use the stochastic gradient descent using the ADAM optimizer

(Kingma and Ba, 2015) and cross-entropy loss function.

2.1. Convolutional-based neural network

We now describe the standard architectures used in the literature. The first is Convolutional Neural
Networks (CNNs) (Wang et al., 2017; Fawaz et al., 2019). CNN is a concatenation of convolutional layers
(joined with ReLU activation functions and batch normalization). The last convolutional layer is
connected to a Global Average Pooling layer and a dense layer. In theory, instances of multiple lengths
can be used with the same network. A second architecture is the Residual Neural Network (ResNet)
(Wang et al., 2017; Fawaz et al., 2019). This architecture is based on the classical CNN, to which we add
residual connections between successive blocks of convolutional layers to prevent the gradients from
exploding or vanishing. Other methods have been proposed in the literature (Cui et al., 2016; Serrà et al.,
2018; Fawaz et al., 2019; Ismail Fawaz et al., 2020), though CNN and ResNet have been shown to
perform the best for multivariate time series classification (Fawaz et al., 2019). InceptionTime (Ismail
Fawaz et al., 2020) has not been evaluated on multivariate data series but demonstrated state-of-the-art
performance on univariate data series.

2.2. Class activation map

Once the model is trained, we need to find the discriminative features that led the model to decide which
class to attribute to each instance. Class Activation Map (Zhou et al., 2016) (CAM) has been proposed to
highlight the parts of an image that contributes the most to a given class identification. The latter has been
experimented on data series (Wang et al., 2017; Fawaz et al., 2019) (univariate and multivariate). This
method explains the classification of a certain deep learning model by emphasizing the subsequences that
contribute the most to a certain classification. Note that the CAMmethod can only be used if (1) a Global
Average Pooling layer has been used before the softmax classifier, and (2) the model accuracy is high
enough. Thus, only the standard architectures CNN andResNet proposed in the literature can benefit from
CAM.We now define the CAMmethod (Wang et al., 2017; Fawaz et al., 2019). For an input data series T ,
let A Tð Þ be the result of the last convolutional layer conv nf ,ℓ

� �
, which is a multivariate data series with nf

dimensions and of length n. Am Tð Þ is the univariate time series for the dimension m∈ 1,nf
� �

corres-

ponding to the mth kernel. Let wCj
m be the weight between the mth kernel and the output neuron of class

Cj ∈ C. Since a Global Average Pooling layer is used, the input to the neuron of class Cj can be expressed
by the following equation:

zCj Tð Þ¼
X
m
wCj
m

X
Am,i Tð Þ∈Am Tð Þ

Am,i Tð Þ: (3)

The second sum represents the averaged time series over the whole time dimension. Note that weight
wCj
m is independent of index i. Thus, zCj can also be written by the following equation:

zCj Tð Þ¼
X

Am,i Tð Þ∈Am Tð Þ

X
m
wCj
m Am,i Tð Þ: (4)

Finally, CAMCj Tð Þ¼ CAMCj ,0 Tð Þ,…,CAMCj , n�1 Tð Þ� �
that underlines the discriminative features of

class Cj is defined as follows:

∀i∈ 0,n�1½ �,CAMCj ,i Tð Þ¼
X
m
wCj
m Am,i Tð Þ: (5)

As a consequence, CAMCj Tð Þ is a weighted mapping technique that returns a univariate data series
where each element at index i indicates the significance of the index i (regardless of the dimensions) for
the classification as class Cj. Figure 1a depicts the process of computing CAM and finding the
discriminant subsequences in the initial series.
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2.3. CAM limitations for multivariate series

As mentioned earlier, a CAM that highlights the discriminative subsequences of class Cj, CAMCj Tð Þ, is a
weightedmapping technique that returns a univariate data series. The information provided by CAMCj Tð Þ is
sufficient for the case of univariate series classification, but not for multivariate series classification. Even
though the significant temporal indexmaybe correctly highlighted, no information can be retrieved onwhich
dimension is significant or not. Solving this serious limitation is a significant challenge in several domains.
For that purpose, one can propose rearranging the input structure of the network so that the CAM becomes a
multivariate data series. A new solution would be to decide to use a 2D convolutional neural network with
kernel size ℓ,1ð Þ, such that each kernel slides on each dimension separately. Thus, for an input data series T ,
Am Tð Þwould become amultivariate data series for the variablem∈ 1,nf

� �
, andA dð Þ

m Tð Þ∈Am Tð Þwould be a
univariate time series that would correspond to the dimension d of the initial data series. We call this solution
cCNN, and we use cCAM to refer to the corresponding Class Activation Map. Figure 1b illustrates cCNN
architecture and cCAM.Note that if aGAP layer is used, then architectures other thanCNNcan be used, such
as ResNet and InceptionTime. We denote these baselines as cResNet and cInceptionTime.

Nevertheless, new limitations arise from this solution. First, the dimensions are not compared together:
Each kernel of the input layer will take as input only one of the dimensions at a time. Thus, features
depending on more than one dimension will not be detected.

Figure 1. Illustration of Class Activation Map for (a) CNN architecture and (b) cCNN architecture with
three convolutional layers (nf 1, nf 2, and nf 3 different kernels respectively of size all equal to ℓ).
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Recent works study the specific case of multivariate data series classification explanation.
A benchmark study analyzing the saliency/explanation methods for multivariate time series con-
cluded that the explainable methods work better when the multivariate data series is handled as an
image (Ismail et al., 2020), such as in the CNN architecture. This confirms the need to propose a
method specifically designed for multivariate data series. Finally, some recently proposed
approaches (Assaf et al., 2019; Hsieh et al., 2021) address the problems of identifying the discrim-
inant features and discriminant temporal windows independently from one another. For instance,
MTEX-CNN (Assaf et al., 2019) is an architecture composed of two blocks. The first block is similar
to cCNN. The second block consists of merging the results of the first block into a 1D convolutional
layer, which enables comparing dimensions. A variant of CAM (Selvaraju et al., 2017) is applied
to the last convolutional layer of the 1st block in order to find discriminant features for each
dimension. The discriminant temporal windows are detected with the CAM applied to the last
convolutional layer of the second block. In practice, however, this architecture does not manage to
overcome the limitations of cCNN: discriminant features that depend on several dimensions are not
correctly identified by MTEX-CNN, which has similar accuracy to cCNN (we elaborate on this in
Section 4.2).

In our experimental evaluation, we compare our approach to the MTEX-CNN, cCNN, cResNet, and
cInceptionTime, and further demonstrate their limitations when addressing the problem at hand.

3. Proposed approach

In this section, we describe our proposed approach, dCAM (dimension-wise Class Activation Map).
Based on a new architecture that we call dCNN, (as well as variant architectures such as dResNet and
dInceptionTime), dCAMaims to provide a multivariate CAMpointing to the discriminant features within
each dimension. Contrary to the previously described baseline (cCNN, cResNet, and cInceptionTime),
one kernel on the first convolutional layer will take as input all the dimensions together with different
permutations. Thus, similarly to the standard CNN architecture, features depending on more than one
dimension will be detectable while still having a multivariate CAM. Nevertheless, the latter has to be
processed such that the significant subsequences are detected.

We first describe the proposed architecture dCNN that we need in order to provide a dimension-wise
Class Activation Map (dCAM) while still being able to extract multivariate features. We then
demonstrate that the transformation needed to change CNN to dCNN can also be applied to other,
more sophisticated architectures, such as ResNet and InceptionTime, which we denote as dResNet and
dInceptionTime. We demonstrate that using permutations of the input dimensions makes the classifi-
cation more robust when important features are localized into small subsequences within some specific
dimensions.

We then present in detail how we compute dCAM (based on a dCNN). Our solution benefits from the
permutations injected into the dCNN to identify the most discriminant subsequences used for the
classification decision.

3.1. Dimension-wise architecture

Asmentioned earlier, the classical CNN architecture mixes all dimensions in the first convolutional layer.
Thus, the CAM is a univariate data series and does not provide any information onwhich dimension is the
discriminant one for the classification. To address this issue, we can use a two-dimensional CNN
architecture by re-organizing the input (i.e., the cCNN solution we described earlier). In this architecture,
one kernel (of size 1,ℓ,1ð Þ) slides on each dimension independently. Thus, for a given data series
T 0ð Þ,…,T D�1ð Þ� �

of length n, the convolutional layers return an array of three dimensions nf ,D,n
� �

, each
rowm∈ 0,D½ � corresponding to the extracted features on dimensionm. Nevertheless, the kernels 1,ℓ,1ð Þ
get as input each dimension independently. Evidently, such an architecture cannot learn features that
depend on multiple dimensions.
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3.2. A first architecture: dCNN

In order to have the best of both cases, we propose the dCNN architecture, where we transform the
input into a cube, in which each row contains a given combination of all dimensions. One kernel
(of size D,ℓ,1ð Þ) slides on all dimensions D times. This allows the architecture to learn features on
multiple dimensions simultaneously. Moreover, the resulting CAM is a multivariate data series. In
this case, one row of the CAM corresponds to a given combination of the dimensions. However, we
still need to be able to retrieve information for each dimension separately, as well. To do that, we
ensure that each row contains a different permutation of the dimensions. As the weights of the kernels
are at fixed positions (for specific dimensions), a permutation of the dimensions will result in a

different CAM. Formally, for a given data series T , we note C Tð Þ∈ℝ D,D,nð Þ the input data structure of
dCNN, defined as follows:

C Tð Þ¼

T D�1ð Þ T 0ð Þ … T D�3ð Þ T D�2ð Þ

: : … : :

T 1ð Þ T 2ð Þ … T D�1ð Þ T 0ð Þ

T 0ð Þ T 1ð Þ … T D�2ð Þ T D�1ð Þ

0
BBB@

1
CCCA: (6)

Note that each row and column ofC Tð Þ contains all dimensions. Thus, a given dimension T ið Þ is never
at the same position in C Tð Þ rows. The latter is a crucial property for the computation of dCAM.
In practice, we guarantee the latter property by shifting the order of the dimensions by one position.

For instance, in equation (6), the dimension order of the first row is T 0ð Þ,T 1ð Þ,…,T D�2ð Þ,T D�1ð Þ� �
(i.e., the

first dimension of T is at the first position in the row and the last dimension of T is at the last position in the
row), and the dimension order of the second row is T 1ð Þ,T 2ð Þ,…,T D�1ð Þ,T 0ð Þ� �

(i.e., the first dimension of
T is now at the last position in the row, and the second dimension of T is now at the first position in the
row). Thus T 0ð Þ in the first row is aligned with T 1ð Þ in the second row. A different order of T dimensions
will thus generate a different matrix C Tð Þ.

Figure 2 depicts the dCNN architecture. The input C Tð Þ is forwarded into a classical two-dimensional
CNN. The rest of the architecture is independent of the input data structure. Similarly, the training
procedure can be freely chosen by the user. For the rest of the article, we will use the cross-entropy loss
function and the ADAM optimizer.

Observe that multiple permutations of the original multivariate series (provided only by the different
rows of C Tð Þ) will be processed by several convolutional filters, enabling the kernel to examine multiple
different combinations of dimensions and subsequences. Note that the kernels of the dCNNwill be sparse,
which has a significant impact on overfitting.

Figure 2. dCNN architecture and application of the CAM.
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3.3. Variant architectures: dResNet and dInceptionTime

As mentioned earlier, any architecture using a GAP layer after the last convolutional layer can benefit
from dCAM. Thus, different (andmore sophisticated) architectures can be usedwith our approach. To that
effect, we propose two new architectures dResNet and dInceptionTime, based on the state-of-the-art
architectures ResNet (Wang et al., 2017) and InceptionTime (Ismail Fawaz et al., 2020). The transform-
ations that lead to dResNet and dInceptionTime are very similar to that fromCNN to dCNN, usingC Tð Þ as
input to the transformed networks. The convolutional layers are transformed from 1D (as proposed in the
original architecture (Wang et al., 2017; Ismail Fawaz et al., 2020)) to 2D. Similarly to dCNN, the kernel
sizes are D,ℓ,1ð Þ and convolute over each row of C Tð Þ independently.

We demonstrate in the experimental section that these architectures do not affect the usage of our
proposed approach dCAM, and we evaluate the choice of architecture on both classification and
discriminant feature identification. In the following sections, we describe our methods assuming the
dCNN architecture. Nevertheless, it works exactly the same for the other two architectures.

3.4. Dimension-wise class activation map

At this point, we have our network trained to classify instances among classes C0,C1,…,Cp. We now
describe in detail how to compute dCAM that will identify discriminant features within dimensions. We
assume that the network has to be accurate enough in order to provide a meaningful dCAM. At first

glance, one can compute the regular Class ActivationMap CAMCj C Tð Þð Þ¼P
mw

Cj
m Am C Tð Þð Þ. However,

a high value on the ith row at position t on CAMCj C Tð Þð Þ does not mean that the subsequence at position t
on the ith dimension is important for the classification. It instead means that the combination of
dimensions at the ith row of C Tð Þ is important.

3.4.1. Random permutation computations
Given those different combinations of dimensions (i.e., one row of C Tð Þ) produce different outputs
(i.e., the same row in CAMCj C Tð Þð Þ), the positions of the dimensions within the C Tð Þ rows have an
impact on the Class Activation Map. Consequently, for a given combination of dimensions, we can
assume that at least one dimension at a given position is responsible for the high value in the Class
ActivationMap row. For the remainder of this article, we useΣT as the set of all possible permutations of T
dimensions, and SiT ∈ΣT for a single permutation of T . For example, for a given data series

T ¼ T 0ð Þ,T 1ð Þ,T 2ð Þ� 	
, one possible permutation is SiT ¼ T 1ð Þ,T 0ð Þ,T 2ð Þ� 	

.
Figure 3 depicts an example of Class Activation Maps for different permutations. In this figure, for

three given permutations of T (i.e., S0T , S
1
T , and S2T ), we notice that when T 2ð Þ is in position two of the

second row ofC SiT
� �

, the Class ActivationMap CAM C SiT
� �� �

is greater than when T 2ð Þ is not in position
two. We infer that the second dimension of T in position two is responsible for the high value. Thus, we
may examine different dimension combinations by keeping track of which dimension at which position is
activating the Class Activation Map the most. In the remainder of this section, we describe the steps
necessary to retrieve this information.

Definition 1. For a given data series T ¼ T 0ð Þ,T 1ð Þ,…,T D�1ð Þ� 	
of length n and its input data structure

C Tð Þ, we define function idx, such that idx T ið Þ,pj
� �

returns the row indices in C Tð Þ that contain the

dimension T ið Þ at position pj.

We can now define the following transformation M.

Definition 2. For a given data series T ¼ T 0ð Þ,T 1ð Þ,…,T D�1ð Þ� 	
of length n, a given class Cj and Class

Activation Map, we define M CAMCj C Tð Þð Þ� �
∈ℝ D,D,nð Þ (with CAMCj C Tð Þð Þ∈ℝ D,nð Þ and

CAMCj C Tð Þð Þi its ith row) as follows:
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M CAMCj C Tð Þð Þ� �¼
CAMCj C Tð Þð Þidx T 0ð Þ,0ð Þ … CAMCj C Tð Þð Þidx T 0ð Þ,D�1ð Þ
CAMCj C Tð Þð Þidx T 1ð Þ,0ð Þ … CAMCj C Tð Þð Þidx T 1ð Þ,D�1ð Þ

: … :

CAMCj C Tð Þð Þidx T D�1ð Þ,0ð Þ … CAMCj C Tð Þð Þidx T D�1ð Þ,D�1ð Þ

0
BBBB@

1
CCCCA: (7)

Figure 4 depicts theM transformation. As explained in Definition 2, theM transformation enriches
the Class Activation Map by adding the dimension position information. Note that if we change the

Figure 4. Transformation M for a given data series T .

Figure 3. Example of Class Activation Map results for different permutations.
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dimension order of T , theirM CAMCj C Tð Þð Þ� �
changes as well. Indeed, for a given dimension T ið Þ and

position pj, idx T ið Þ, pj,
� �

will not have the same value for two different dimension orders of T . Thus,

computing M CAMCj C Tð Þð Þ� �
for different dimension orders of T will provide distinct information

regarding the importance of a given position (subsequence) in a given dimension. We expect that
subsequences (of a specific dimension) that discriminate one class from another will also be associated
(most of the time) with a high value in the Class Activation Map.

3.4.2. Merging permutations

We compute M CAMCj C STð Þð Þ� �
for different ST ∈ΣT . Note that the total number of permutations for

high-dimensional data series ∣ΣT ∣ is enormous. In practice, we only computeM for a randomly selected
subset of ΣT . We thus merge k¼ ∣ΣT ∣ permutations SkT , by computing the averaged matrix �MCj Tð Þ of all
the M transformations of the permutations. Formally, �MCj Tð Þ is defined as follows:

�MCj Tð Þ¼
1

∣ΣT ∣

X
SkT ∈ΣT

M CAMCj C SkT
� �� �� �

Figure 5 illustrates the process of computing �MCj Tð Þ from the set of permutations of T , ΣT . �MCj Tð Þ
can be seen as a summarization of the importance of each dimension at each position in C Tð Þ, for all
the computed permutations. Figure 5b’ (at the top of the figure) depicts �MCj Tð Þd, which corresponds
to the dth row (i.e., the dotted box in Figure 5b) of �MCj Tð Þ. Each row of �MCj Tð Þd corresponds to
the average activation of dimension d (for each timestamp) when dimension d is in a given position
in C Tð Þ.

Note that all permutations of T are forwarded into the dCNN network without training it again. Thus,
even though the permutations of T generate radically different inputs to the network, the network can still
classify most of the instances correctly. For k permutations, we use ng to denote the number of
permutations the model has correctly classified.

Figure 5. dCAM computation framework.
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3.4.3. dCAM extraction

We can now use the previously computed �MCj to extract explanatory information onwhich subsequences
are considered important by the network. First, we note that each row of C Tð Þ corresponds to the input
format of the standard CNN architecture. Thus, we expect that the result of a row of �MCj (1 of the

10 lines in Figure 5b) is similar to the standard CAM. Hence, we can assume that μ �MCj Tð Þ
� �¼P

d∈ 0,D�1½ �
P

p∈ 0,D�1½ � �M
d,p
Cj Tð Þ= 2�Dð Þ is equivalent to standard Class Activation Map CAMCj Tð Þ (this

approximation is depicted in Figure 5d). Moreover, we can extract temporal information per dimension in
addition to the global temporal information.We know that for a given position p and a given dimension d,
�M
d,p
Cj Tð Þ represents the averaged activation for a given set of permutations. If the activation �M

d,p
Cj Tð Þ for a

given dimension is constant (regardless of its value or the position p), then the position of dimension d is
not important, and no subsequence in that dimension d is discriminant. On the other hand, a high or low
value at a specific position pmeans that the subsequence at this specific position is discriminant. While it
is intuitive to interpret a high value, interpreting a low value is counterintuitive. Usually, a subsequence at
position p with a low value should be regarded as nondiscriminant. Nevertheless, if the activation is low
for p and high for other positions, then the subsequence at position p is the consequence of the low value
and is thus discriminant. We experimentally observe this situation, where a nondiscriminant dimension
has a constant activation per position (e.g., see dotted red rectangle in Figure 5b: this pattern corresponds
to a nondiscriminant subsequence of the dataset). On the contrary, for discriminant dimensions, we
observe a strong variance for the activation per position: either high values or low values (e.g., see solid
red rectangles in Figure 5b: these patterns correspond to the (injected) discriminant subsequences
highlighted in red in Figure 5e). We thus can extract the significant subsequences per dimension by
computing the variance of all positions of a given dimension. We can filter out the irrelevant temporal
windows using the averaged μ �MCj Tð Þ

� �
for all dimensions, and use the variance to identify the important

dimensions in the relevant temporal windows. Formally, we define dCAMCj Tð Þ as follows.
Definition 3. For a given data series T and a given class Ci, dCAMCj Tð Þ is defined as:

dCAMCj Tð Þ¼

σ2 �M
0
Cj

Tð Þt0

 �

�μ �MCj Tð Þt0

 �

… σ2 �M
0
Cj

Tð Þtn

 �

�μ �MCj Tð Þtn

 �

: … :

σ2 �M
D�2
Cj Tð Þt0


 �
�μ �MCj Tð Þt0


 �
… σ2 �M

D�2
Cj Tð Þtn


 �
�μ �MCj Tð Þtn


 �

σ2 �M
D�1
Cj Tð Þt0


 �
�μ �MCj Tð Þt0


 �
… σ2 �M

D�1
Cj Tð Þtn


 �
�μ �MCj Tð Þtn


 �

0
BBBBBB@

1
CCCCCCA

(8)

3.5. Time complexity analysis

3.5.1. Training step
CNN/ResNet/InceptionTime require O ℓ∗jT j∗Dð Þ computations per kernel, while dCNN/dResNet/dIn-
ceptionTime require O ℓ∗jT j∗D2

� �
computations per kernel. Thus, the training time per epoch is higher

for dCNN than CNN. However, given that the size of the input of dCNN is larger (containing D
permutations of a single series) than CNN, the number of epochs to reach convergence is lower for
dCNNwhen compared toCNN. Intuitively, dCNN trains onmore data during a single epoch. This leads to
similar overall training times.

3.5.2. dCAM step

The CAM computation complexity is O jTj ∗D ∗ nf
� �

, where nf is the number of filters in the last

convolutional layer. Let Nf ¼ nf 1 ,…nf n
� �

be the number of filters of the n convolutional layers. Then, a
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forward pass has time complexity O ℓ∗jT j∗D2∗
P

nf i ∈Nf
nf i


 �
. In dCAM, we evaluate k different permu-

tations. Thus, the overall dCAMcomplexity isO k ∗ ℓ ∗ jTj ∗ D2∗
P

nf i ∈Nf
nf i


 �
. Observe that since the k

permutations can be computed in parallel, the most important parameter for the execution time is D.

3.6. Further observations

3.6.1. Permutations success as a proxy
As previously explained, we assume that dCAM is meaningful if and only if the deep neural network
classification is accurate. We also assume that classification accuracy impacts the number of correctly
classified permutations. As in real use cases, labels may not be available, and both classification and
discriminant feature identification accuracy may not be computed. Therefore, the number of correctly
classified permutations (called ng) could be used as a proxy to assess the quality of the explanation.
More precisely, a low value of ng indicates that the model is not efficient in classifying a time series
regardless of the permutation. On the contrary, a high value of ng indicates that, whatever the
permutations of the time series dimensions, the model is able to classify correctly the time series.
Therefore, as dCAM uses different permutations to find back which dimensions correspond to
discriminant features, a low value of ng indicates that the discriminant features identified by dCAM
might not be meaningful.

3.6.2. From local to global explanations
We have so far assumed that dCAM is applied to a single multivariate data series and provides
corresponding explanations. In the case where we need to analyze a set of series though, we can use
dCAM on each one independently and then aggregate the dCAM results in order to identify global
discriminant features. (The problem of local and global explanations has been discussed in other studies as
well (Jacob et al., 2021)). Section 5 provides an example of how to get a global explanation of a specific
use case. In future work, we will study other possibilities to merge dCAMs of instances of the same class.

3.6.3. Limitations: the dimension order problem
Even though thismethod is able to detect important subsequences within amultivariate data series, the use
of dimension permutations can be problematic for specific time series. Such architecture is based on the
use of dimension permutations as a fundamental principle. Thus, if the discriminant factor between two
classes remains on the positions of the dimensions (e.g., having the same multivariate data series but with
dimensions at different positions between two instances of two classes), one cannot use our proposed
approach. Such a scenario is plausible formultivariate time seriesmeasured from a graph of sensors where
the position of each sensor with regards to the other matters. In such cases, the differences between two
events (i.e., two classes) might be explained by the geographical position of a specific pattern, resulting in
discriminant features based on the order of the dimensions.

3.6.4. Limitations: large number of dimensions
Our proposed approach uses a new data structure C Tð Þ. However, C Tð Þ has a memory complexity of
O D2
� �

. Suchmemory complexity can be problematic for specific time series withmany dimensions. Such
large time series would imply reducing the batch size during the training phase such that an entire batch
fits the memory of a CPU or GPU. As many data points in C Tð Þ are redundant, an interesting research
direction is to optimize the memory complexity to O Dð Þ.

3.6.5. Limitations: CAM-related constraints
As mentioned in Section 2.2, the Class Activation Map can only be used if (1) a Global Average
Pooling layer has been used before the softmax classifier and (2) the model accuracy is high enough.
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Consequently, only the standard architectures CNN and ResNet proposed in the literature, combined
with a global average pooling layer, can benefit from CAM. Therefore, other layers or combinations
of the convolutional layers outputs (such as flattening operations) limit the application and the usage
of CAM. As dCAM is based on CAM, the above constraints also hold for dCAM.

4. Classification experimental evaluation

We now present the results of the experimental evaluation with several real datasets from different
domains. Our code and datasets are available online (dCAM, 2022).

4.1. Experimental setup

We implemented our algorithms in Python 3.5 using PyTorch (Paszke et al., 2019). The evaluation was
conducted on a server with Intel Core i7-8750H CPU 2.20GHz * 12, with 31.3GB RAM, and Quadro
P1000/PCle/SSE2 GPU with 4.2GB RAM.

4.1.1. Datasets
We conduct our experimental evaluation using real datasets injected with known discriminant patterns.
We use the StarLightCurves (classes 2 and 3 only) and ShapesAll (classes 1 and 2 only) datasets from
the UCR archive (Dau et al., 2019), in which we inject subsequences that will generate discriminant
features.We build two types of datasets to study the ability of the algorithms to identify the discriminant
patterns guiding the classification decision, (1) when these patterns occur in a subset of the dimensions
at different timestamps, and (2) when these patterns occur in a subset of the dimensions at the same
timestamp.

(1) For Type 1 datasets, we build each dimension of Class 1 by concatenating random instances from
one class of one of our twoUCR seed datasets.We build Class 2 by injecting in the series of the other
class of our two UCR datasets a pattern in 2 random dimensions at a random position in the series.

(2) For Type 2 datasets, we build each dimension of Class 1 by concatenating random instances from
one of the classes of our two UCR datasets and injecting patterns from the other class in x random
dimensions and at different positions. We build Class 2 by injecting patterns at the same positions
of 2 random dimensions.

Examples of Type 1 and Type 2 5-dimensional datasets based on StarLightCurves are depicted in
Figure 6a,b, respectively. In our experiments, we generate 1000 time series for the Type 1 synthetic dataset
and 1000 time series for the Type 2 synthetic dataset.

Figure 6. Synthetic datasets: (a) Type 1, in which the discriminant subsequence is two injected patterns
from class 2 StarLightCurves dataset in random dimensions at random positions, (b) Type 2, in which the

discriminant factor is the fact that the two injected patterns are injected at the same position.
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4.1.2. Evaluation measures
We first evaluate the classification accuracy, C-acc. This measure corresponds to the ratio of correctly
classified instances among all instances in the test dataset. We then evaluate the discriminant features
accuracy, Dr-acc, for Class 1 (see Figure 6). We define Dr-acc as the PR-AUC for CAM/cCAM/dCAM
obtained from the models and the ground-truth. The ground-truth is a series that has 1 at the positions of
discriminant features (see Figure 6a.2): ground-truth contains 1 at the positions of the injected patterns,
marked with the red rectangles, and 0 otherwise). We motivate the choice of PR-AUC (instead of ROC-
AUC) because we are more interested in measuring the accuracy of identifying the injected patterns
(representing at max 0.02 percent of the dataset) than measuring the accuracy of not detecting the
noninjected patterns. In this very unbalanced case, PR-AUC is more appropriate than ROC AUC (Davis
and Goadrich, 2006). Note that even though we annotate each point of the injected subsequences as
discriminant, only some subparts of these sequences may be discriminant, thus leading to Dr-acc less than
1. Finally, for CNN/ResNet/InceptionTime we compute the Dr-acc scores by assuming that their
(univariate) CAM values are the same for all dimensions. We mark their Dr-acc scores with a star in
Table 1.

4.1.3. Architectures and training
We compare our model, dCNN/dResNet/dInceptionTime, to the classical ResNet model (Wang et al.,
2017; Ismail Fawaz et al., 2018; Fawaz et al., 2019; Ismail Fawaz et al., 2020), and the cResNet baseline
we introduced in Section 2. We only consider ResNet and cResNet architectures as we empirically
observed that the latter are more accurate than CNN/cCNN and InceptionTime/cInceptionTime archi-
tectures.We are using the same architecture setup for all models.We then use CAM for ResNet, cCAM for
cResNet, and dCAM for dCNN, dResNet, and dInceptionTime to identify discriminant features. For
dCNN, we are using 5 convolutional layers with 64,128,256,256,256ð Þ filters, respectively. We are using
a kernel size of 3 and a padding of 2. For ResNet, cResNet and dResNet we use three blocks with three
convolutional layers of 64 filters (for the first two blocks) and 128 layers (for the last block). We are using
kernel sizes equal to 8, 5, and 3 for each block for the three layers of the block. For dInceptionTime, we use
the same architecture as originally defined (Ismail Fawaz et al., 2020).

We also include MTEX-CNN (Assaf et al., 2019)(MTEX) as a baseline, representative of other kinds
of architectures that can provide a multivariate CAM. The explanation is computed separately for
discriminant features and timestamps using grad-CAM (Selvaraju et al., 2017) (MTEX-grad). The latter
is a variant of the usual CAM.

We split our dataset into training and validation sets with 80 and 20 percents of the total dataset,
respectively (equally balanced between the two classes). The training dataset is used to train the model,
and the validation dataset is used as a validation dataset during the training phase.We generate a fully new
test dataset of 1000 time series (generated in the same manner as the initial 1000 time series used for the
train and validation set) and evaluate C-acc and Dr-acc. We train all models with a learning rate
α¼ 0:00001, a maximum batch size of 16 instances (less if GPU memory cannot fit 16 instances), and
a maximal number of epochs equal to 1000 (we use early stopping and stop before 1000 epochs if the
model starts overfitting the test dataset). For dCAM, we use k¼ 100 (number of random permutations), a
value that we empirically verified (due to lack of space, a detailed analysis of the effect of k is in the full
version of the article).

4.2. Accuracy evaluation

We now evaluate the classification accuracy (C-acc) and the discriminant feature identification accuracy
(Dr-acc) on synthetically built datasets. Table 1 depicts both C-acc and Dr-acc on Type 1 and 2 datasets
when varying the number of dimensions from 10 to 100.

Overall, we observe that all methods have better performance (both C-acc and Dr-acc) on Type
1 datasets than on Type 2 datasets. This was expected since discriminant features located in single
dimensions are easier to find than discriminant features that depend on several dimensions.
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Table 1. C -acc and Dr-acc averaged accuracy for 10 runs for MTEX-CNN, ResNet, cResNet, dCNN, dResNet and dInceptionTime over synthetic
datasets

Datasets C-acc (averaged on 10 runs)

Dataset Type Dim. MTEX ResNet cResNet dCNN dResNet dIncept.

StarLightCurves Type 1 10 0.99 ( ± 0.00) 0.95 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00)
20 0.99 ( ± 0.01) 0.71 ( ± 0.03) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 0.98 ( ± 0.01)
40 0.98 ( ± 0.05) 0.60 ( ± 0.03) 1.00 ( ± 0.00) 0.99 ( ± 0.00) 1.00 ( ± 0.00) 0.93 ( ± 0.01)
60 0.61 ( ± 0.06) 0.57 ( ± 0.01) 1.00 ( ± 0.00) 0.98 ( ± 0.00) 0.99 ( ± 0.00) 0.91 ( ± 0.01)
100 0.55 ( ± 0.04) 0.64 ( ± 0.02) 1.00 ( ± 0.00) 0.96 ( ± 0.01) 0.97 ( ± 0.00) 0.79 ( ± 0.02)

Type 2 10 0.58 ( ± 0.04) 0.71 ( ± 0.03) 0.53 ( ± 0.02) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 0.93 ( ± 0.01)
20 0.55 ( ± 0.03) 0.61 ( ± 0.02) 0.55 ( ± 0.01) 0.98 ( ± 0.00) 1.00 ( ± 0.00) 0.70 ( ± 0.03)
40 0.56 ( ± 0.03) 0.58 ( ± 0.02) 0.51 ( ± 0.01) 0.88 ( ± 0.05) 0.58 ( ± 0.02) 0.56 ( ± 0.01)
60 0.53 ( ± 0.02) 0.55 ( ± 0.04) 0.53 ( ± 0.01) 0.64 ( ± 0.08) 0.59 ( ± 0.01) 0.55 ( ± 0.02)
100 0.52 ( ± 0.01) 0.59 ( ± 0.03) 0.50 ( ± 0.01) 0.59 ( ± 0.01) 0.56 ( ± 0.01) 0.60 ( ± 0.01)

ShapesAll Type 1 10 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00)
20 1.00 ( ± 0.00) 0.86 ( ± 0.02) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 0.99 ( ± 0.00)
40 0.85 ( ± 0.00) 0.65 ( ± 0.01) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00)
60 0.83 ( ± 0.16) 0.65 ( ± 0.01) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 0.96 ( ± 0.00)
100 0.70 ( ± 0.02) 0.57 ( ± 0.04) 1.00 ( ± 0.00) 0.98 ( ± 0.00) 1.00 ( ± 0.00) 0.85 ( ± 0.01)

Type 2 10 0.60 ( ± 0.01) 0.82 ( ± 0.03) 0.54 ( ± 0.01) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 0.93 ( ± 0.01)
20 0.54 ( ± 0.02) 0.57 ( ± 0.02) 0.52 ( ± 0.02) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 0.89 ( ± 0.03)
40 0.59 ( ± 0.05) 0.60 ( ± 0.03) 0.52 ( ± 0.00) 0.90 ( ± 0.03) 0.72 ( ± 0.08) 0.73 ( ± 0.10)
60 0.57 ( ± 0.03) 0.59 ( ± 0.01) 0.51 ( ± 0.00) 0.65 ( ± 0.04) 0.61 ( ± 0.01) 0.72 ( ± 0.05)
100 0.52 ( ± 0.03) 0.59 ( ± 0.02) 0.50 ( ± 0.01) 0.55 ( ± 0.01) 0.58 ( ± 0.01) 0.55 ( ± 0.02)

Rank 3.95 3.9 3 1.65 1.6 2.85
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Datasets Dr-acc (averaged on 50 instances)

Dataset Type Dim. MTEX ResNet cResNet dCNN dResNet dIncept.

MTEX-grad CAM cCAM dCAM
StarLightCurves Type 1 10 0.40 ( ± 0.09) 0.07 ( ± 0.02)* 0.92 ( ± 0.09) 0.46 ( ± 0.08) 0.38 ( ± 0.12) 0.21 ( ± 0.24)

20 0.38 ( ± 0.00) 0.02 ( ± 0.01)* 0.92 ( ± 0.05) 0.38 ( ± 0.03) 0.45 ( ± 0.10) 0.36 ( ± 0.19)
40 0.24 ( ± 0.03) 0.008 ( ± 0.00)* 0.94 ( ± 0.03) 0.28 ( ± 0.05) 0.42 ( ± 0.08) 0.39 ( ± 0.14)
60 0.05 ( ± 0.09) 0.004 ( ± 0.00)* 0.92 ( ± 0.07) 0.23 ( ± 0.05) 0.24 ( ± 0.07) 0.13 ( ± 0.06)
100 0.01 ( ± 0.08) 0.003 ( ± 0.00)* 0.92 ( ± 0.04) 0.20 ( ± 0.06) 0.26 ( ± 0.10) 0.10 ( ± 0.03)

Type 2 10 0.15 ( ± 0.09) 0.0256 ( ± 0.02)* 0.025 ( ± 0.01) 0.26 ( ± 0.07) 0.43 ( ± 0.09) 0.10 ( ± 0.07)
20 0.04 ( ± 0.04) 0.016 ( ± 0.01)* 0.01 ( ± 0.05) 0.28 ( ± 0.06) 0.43 ( ± 0.09) 0.05 ( ± 0.02)
40 0.07 ( ± 0.08) 0.0068 ( ± 0.00)* 0.006 ( ± 0.01) 0.20 ( ± 0.07) 0.05 ( ± 0.05) 0.03 ( ± 0.01)
60 0.008 ( ± 0.06) 0.0058 ( ± 0.00)* 0.005 ( ± 0.00) 0.01 ( ± 0.00) 0.003 ( ± 0.00) 0.009 ( ± 0.01)
100 0.01 ( ± 0.10) 0.0024 ( ± 0.00)* 0.002 ( ± 0.02) 0.003 ( ± 0.00) 0.004 ( ± 0.01) 0.02 ( ± 0.02)

ShapesAll Type 1 10 0.60 ( ± 0.30) 0.09 ( ± 0.01)* 0.79 ( ± 0.12) 0.66 ( ± 0.05) 0.70 ( ± 0.10) 0.55 ( ± 0.17)
20 0.31 ( ± 0.01) 0.03 ( ± 0.01)* 0.74 ( ± 0.10) 0.56 ( ± 0.06) 0.66 ( ± 0.08) 0.51 ( ± 0.20)
40 0.20 ( ± 0.23) 0.008 ( ± 0.01)* 0.88 ( ± 0.12) 0.45 ( ± 0.06) 0.74 ( ± 0.02) 0.76 ( ± 0.19)
60 0.50 ( ± 0.02) 0.005 ( ± 0.00)* 0.65 ( ± 0.08) 0.44 ( ± 0.05) 0.72 ( ± 0.04) 0.79 ( ± 0.20)
100 0.002 ( ± 0.02) 0.003 ( ± 0.00)* 0.83 ( ± 0.06) 0.31 ( ± 0.09) 0.49 ( ± 0.02) 0.48 ( ± 0.23)

Type 2 10 0.02 ( ± 0.03) 0.0467 ( ± 0.03)* 0.04 ( ± 0.15) 0.63 ( ± 0.10) 0.50 ( ± 0.12) 0.32 ( ± 0.21)
20 0.04 ( ± 0.02) 0.0132 ( ± 0.02)* 0.013 ( ± 0.15) 0.50 ( ± 0.09) 0.73 ( ± 0.08) 0.40 ( ± 0.21)
40 0.02 ( ± 0.00) 0.005 ( ± 0.00)* 0.005 ( ± 0.00) 0.40 ( ± 0.13) 0.20 ( ± 0.14) 0.36 ( ± 0.20)
60 0.06 ( ± 0.02) 0.0037 ( ± 0.00)* 0.003 ( ± 0.00) 0.22 ( ± 0.13) 0.34 ( ± 0.12) 0.46 ( ± 0.17)
100 0.04 ( ± 0.02) 0.0027 ( ± 0.00)* 0.002 ( ± 0.00) 0.005 ( ± 0.11) 0.02 ( ± 0.05) 0.05 ( ± 0.00)

Rank 3.85 4.45 3 2.6 2.15 2.75
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We then notice that for low dimensional (D¼ 10) datasets, ResNet, dResNet, dCNN and dIncep-
tionTime are performing nearly perfect C� acc. Moreover, ResNet and MTEX-CNN are performing
well for low-dimensional data series but start to fail for a more significant number of dimensions.While
the drop is already significant for the Type 1 dataset built from the StarLightCurve dataset, it is even
stronger for Type 2 datasets, for which ResNet fails to classify instances with a number of dimensions
D≥ 20. On the contrary, dCNN, dResNet, and dInceptionTime, which use the random permutations in
the input, are not sensitive to the number of dimensions and have an almost perfect C-acc for most of
Type 1 datasets. We observe a C-acc drop for dCNN, dResNet, and dInceptionTime as dimensions
increase for Type 2 datasets. However, this drop is significantly less pronounced than that of ResNet.
Overall, dCNN, dResNet, and dInceptionTime, which have on average the three highest ranks, are the
most accurate methods.

Regarding cResNet, although it achieves a nearly perfect C‐acc for Type 1 datasets, we observe that it
fails to classify correctly instances of Type 2 datasets. As explained in Section 2, the input data structure is
not rich enough to allow comparisons among dimensions, which is the main way to find discriminant
features between the two classes of Type 2 datasets. We also observe that MTEX-CNN fails to classify
instances of Type 2 datasets. Thus, this architecture is not correctly detecting the discriminant features
across different dimensions. Overall, Figure 7a shows that dCNN, dResNet, and dInceptionTime are
equivalent to cResNet for Type 1 (Figure 7a.1), outperforming all the baselines for Type 2 (Figure 7a.2),
and in general are better than the baselines (ResNet and cResNet) for both types (Figure 7a.3) with

F Type1,Type2ð Þ¼ 2�C‐acc Type1ð Þ�C‐acc Type2ð Þ
C‐acc Type1ð ÞþC‐acc Type2ð Þ ).

We now compare the different methods using the Dr-acc measure. We observe that the baseline
cCAM (computed with cCNN) is outperforming CAM (computed with ResNet) and dCAM (with all
of dCNN, dResNet, and dInceptionTime) for Type 1 datasets. This is explained by the fact that
these classes can be discriminated by treating dimensions independently. Thus, cCAM (with no
comparisons between dimensions) is naturally the best solution. Nevertheless, as Type 2 datasets
require comparisons among dimensions to discriminate the classes, cCAM fails on them, with a Dr-
acc very similar to the one of a random classifier. This confirms that such a baseline cannot be
considered as a general solution for multivariate data series classification. We also observe that Dr-
acc of the explanation method of MTEX-CNN (MTEX-grad) is lower than dCAM for Type 1 and
close to Dr-acc of cCAM for Type 2, meaning that it cannot identify discriminant features of Type
2 datasets.

We then compare CAM and dCAM (used with dCNN, dResNet, and dInceptionTime). We note that
dCAM significantly outperforms CAM.As depicted in Figure 7b, we also observe that Dr-acc reduces for

Figure 7. Evaluation of the influence of the number of dimensions on our approaches and the baselines
C-acc and Dr-acc.
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all models as the number of dimensions increases. Nevertheless, Dr-acc of dCAM remains relatively high
for both Type 1 (Figure 7b.1)) and Type 2 (Figure 7b.2) datasets (for a number of dimensions under 60).

This result demonstrates the superiority of dCAM over state-of-the-art methods. The superiority of
dCAM is also confirmed by looking at the average ranks in Table 1, which indicates that dCAMcomputed
from dResNet has the highest rank of 2:15.

5. Use case: precursors of anomalous vibration detection in nuclear power plants

We now illustrate the applicability and interest of our method in a real-world application. This use case is
about discovering possible precursors of unwanted vibration happening in turbine-driven feed-water
pump systems inside French nuclear power plants. These pumps (two different pumps noted, TPA1 and
TPA2) aim to increase the water pressure (from 1 to 80 bar) before passing the water through the steam
generator (with a pressure of 80 bar). However, these vibrations are problematic when the pump’s position
varies by a few microns, and a boolean sensor is activated when it happens. Thus, knowledge experts are
interested in finding if there exist possible precursors of these unwanted vibrations in other sensors
surrounding the pump and discovering unusual patterns that could explain why the pump is vibrating or at
least alert the imminent occurrence of vibrations.

5.1. Dataset and use case description

At this point, we need to create our datasets of abnormal data series (i.e., vibrations) and anomaly-free
data series. Following the suggestion of expert knowledge, we selected 120 sensors inside 12 subsys-
tems of the nuclear power plants. Figure 8a summarizes the subsystems analyzed and the number of
sensors collected. We collected every unwanted vibration that happened in every French 1300 MW
nuclear plant. In total, we have 444 vibrations. We then create our multivariate data series by selecting
every sensor’s measurement between 75 minutes before the vibrations and 5 minutes after. We set the
acquisition rate to 1 point every 6 seconds. Each multivariate data series contains 96,000 points. Next,
we note the set of data series containing a vibration TA

M. We then select 444 intervals of 80 minutes for
which no vibration has been recorded at least one day before and after. Finally, we note the set of data
series without any vibration TN

M. We also selected the nonvibration periods to be under the same
operating conditions as the vibration periods. Namely, when the nuclear facility ramps up or down
between 15% and 67% of maximum power. This area, where the second feed-water pump is coupled, is
conducive to vibrations. This is a critical step that must be conducted thoroughly. Otherwise, the
precursors that would be highlighted would be the already-known difference in operational conditions
and solicitations. In this specific case, we used the sensors related to the power regime: its distribution is
the same across both classes.We also took the same distribution of years for both classes tominimize the
influence of degradation due to aging. What we want to highlight are unexpected solicitations that
would lead to vibrations later. This will trigger immediate and cost-effective corrective actions.We thus
have in total 888 multivariate data series (for which 444 of them correspond to unwanted vibrations) of
D¼ 120 dimensions. In total, the dataset contains 85,248,000 points. Formally, we define the dataset as
TM¼ TN

M

S
TA
M, with TN

M,TA
M ∈ℝ 444,120,800ð Þ.

5.2. Experimental analysis

Overall, the task is to detect the vibration correctly and discover subsequences in one or several sensors
that happened before the vibration and could potentially explain it. We tackle this task as defined in
Problem 1 with dCNN/dCAM. Thus, we perform the following experiments. We first train dCNN to
classify TA

M and TN
M. Formally, dCNN is defined as a function f : TN

M,TA
M! N ,Af g. We then use

dCAM as a function g : TA
M, f ! S that returns the set S of subsequences that explain the classification as

the vibration class (as the red subsequences and rectangle depicted in Figure 8b,c). In practice, dCAM
returns amultivariate data series score for each instance in TA

M (as depicted in Figure 8b,c). In Section 4.2,
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we have shown that dResNet is slightly more accurate than dCNN and dInceptionTime. However, for
simplicity, we used the most usual architecture dCNN as our baseline for this use case.

5.2.1. Accuracy evaluation
We train the dCNN (we are using 5 convolutional layers with 64,128,256,256,256ð Þ filters respectively;
we are using a kernel size of 3 and a padding of 2) model on 70% of each class (TN

M and TA
M) and we use

the 30% left as a validation set.We set the batch size to 8 instances.We adopt an Early-stopping strategy to
avoid overfitting. More precisely, we stop the training phase when the loss on the validation set is not
reducing for the last 100 epochs. In total, we limit the training phase to 1000 epochs. It is important to note
that themodel and training parameters have been set empirically and based on the technical characteristics
of our servers. More optimization with regards to the parameter selection could improve further the
accuracy. However, the parameters listed above correspond to an adequate first baseline.

Overall, over 10 random splits between training and validation sets, dCNN achieved at best 0.91
accuracy on the training set and 0.89 accuracy on the validation set. As the dCNN accuracy is high, we can
now use dCAM to identify the discriminant subsequences (i.e., possible vibration precursors).

Figure 8. Simplified scheme of the secondary circuit of 1300MW nuclear power plant. We collect in total
120 sensors from 8 subsystems (solid black boxes) surrounding the feed-water pumps (TPA). Blue arrows:

water flow. Red arrows: steam flows.
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5.2.2. Quantitative evaluation
We then evaluate the relevance of the subsequences identified by our proposed approach dCAM. We
first start by measuring the consistency of the detection (or activation) as regards the (1) temporality
(i.e., are the subsequences detected close in time to the vibration?), (2) structural information
(i.e., are the sensors closely related to the vibrating system?). As the experts are interested in
discriminant features across the entire dataset, we perform the analysis listed above on the entire
TA
M (i.e., for time series included in the training and the validation set). As dCAM uses random

permutations of the time series dimensions (resulting in inputs not used in the training set), the risks
related to overfitting are limited and allow us to merge the training and validation set for this
discriminant feature evaluation.

[Structural consistency]We thenmeasure the average activation score per sensor for every timestamp.
Figure 9 depicts the activation score box plot for each sensor using dCAM.We observe that the activation
scores returned by dCAM vary significantly between different sensors. We can easily distinguish nine
sensors out of 120 sensors. These sensors correspond to temperature measurements inside the feed-water
pumps (sealing temperatures noted AGR605MT, AGR615MT for TPA1, and AGR606MT, AGR616MT
for TPA2) and the outlet pump flow and pressures (noted APP011MD, APP061MP for TPA1, and
APP012MD, APP062MP for TPA2). As highlighted in Figure 8a, AGR and APP are subsystems directly
connected to the vibrating pump.Moreover, pressure and flow can directly influence the pump efficiency,
with low-efficiency areas conducive to vibration events. Thus, the sensors highlighted by our proposed
approach dCAM are very consistent with the knowledge from experts and the functional structure of the
plant.

[Temporal consistency]We first measure the evolution of the average activation score (for all sensors)
in time obtained by dCAM (Figure 10a). Figure 10 depicts the quantile values for each timestamp. The
solid red line is the median, while every dotted gray line corresponds to the 20%-quantiles. We first
observe that the average activation score is higher when the vibration occurs (red vertical line in
Figure 10). As it is unlikely to find precursors one hour before the vibration, we can thus confirm that
dCAM results are consistent regarding temporality. We then observe the average anomaly score for some
specific sensors (highlighted in red in Figure 9) that are the most activated across all vibration instances.
We observe that, on average, all these sensors see their activation increases approximately 10 minutes
before the vibrations. We thus explore in the following section the activated subsequences for these nine
sensors.

5.2.3. Qualitative evaluation
We now analyze in detail the results returned by dCAM and discuss the information that the knowledge
experts can gain from it. We mainly focus our analysis on the nine most activated sensors (i.e., sensors
depicted in Figure 10(2)(b)). We cluster (computed with the usual k-mean using Euclidean distance) the
15 minutes long subsequences with the highest activation score for a vibration instance. The centroids of
these clusters thus represent the different shape categories within each sensor detected by dCAM.

Figure 9. Aggregated activation score for dCAM per sensor for every timestamp. In red: are the names of
the sensors that are overall highly activated and possibly contain one or several precursors.
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Therefore we can limit our analysis to this reduced (but relevant) set of centroids. Figure 11(2) depicts the
15 minutes long subsequences clusters in the nine sensors mentioned above. For each cluster, the time
distribution histogram is displayed below. We first notice that the majority of the subsequences (for all
clusters) happened while the vibration is detected (such as, for instance, the cluster depicted in Figure 11
(2)(b.2)). As understood by the experts, these subsequences correspond to a specific action (such as an
increase or decrease of the water flow through the feed-water pump to either increase or decrease the
power generated by the plant) that could lead to vibrations but that are not avoidable. Thus dCAM first
permits the expert to confirm and visualize which subsequences are directly correlated to the vibration.
Then, several subsequences detected by dCAM are anterior to the vibration (such as Figure 11(2)(a.2),
(a.3),(b.1),(c.1),(c.2),(e.1),(g.3)). These subsequences could correspond to precursors of the vibration and
would require to be carefully inspected by the experts. For instance, knowledge experts conclude that
clusters such as in Figure 11(2)(e.1.1) correspond to unusual variations of the sealing temperature of the
pump and lead them to investigate specific examples in detail. Overall, our proposed approach dCAM
permits the experts to build a dictionary of patterns that can be related to a targeted anomaly. Thus the
investigation by the expert could be significantly reduced.

Finally, the patterns depicted in Figure 11(2) can be connected based on their cooccurrence in time.
As a result, Figure 11(1) displays a graph in which nodes and edges are defined as follows: nodes
correspond to activated subsequences clusters (with part of them illustrated in Figure 11(2)), edges
weights (proportional to the line width) correspond to the number of times a subsequence of one
cluster happened at the same time as a subsequence in another cluster. Thus, in Figure 11(1), we
observe two distinct communities of sensors. The right community corresponds mainly to sensors
from the ARE and VVP subsystems. On the other hand, the most significant community (i.e., on the

Figure 10. Aggregated dCAM activation score for all sensors (a) and some specific sensors (b). Red
shades correspond to quantile intervals (0.05–0.95,0.10–0.90,0.15–0.85, etc. for (a) and only 0.3–0.7,

0.4–0.6 for (b)). The solid red line is the median value for each timestamp.
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left side of Figure 11(1)) are subsequences from the AGR and APP subsystems. These subsequences
are mainly those illustrated in Figure 11(2). For instance, we learn from this graph that the patterns in
Figure 11(2)(a.1.1), (d.1.1), (i.2.1), and (b.2.1) cooccurred very often before or during a vibration.
Thus, such a graph can highlight more complex relationships between potential precursors.

Figure 11. (1) Cooccurrence graph connecting the activated subsequences clusters based on their
cooccurrence in time. Subsequences clusters (*.*.1) (and their time distribution compared to the vibration
timestamps (*.*.2)) detected as precursors of vibration by dCAM for the nine most activated sensors.
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6. Conclusions and future work

Even though data series classification using deep learning has attracted a lot of attention, existing techniques
for explaining classification decisions fail in the case of multivariate data series. In this work, we describe a
novel approach, dCAM, based on convolutional neural networks, which enables us to detect the discrim-
inant subsequences within individual dimensions of a multivariate data series. The experimental evaluation
with synthetic and real datasets demonstrates the benefits and superiority of our approach in discriminant
feature discovery and classification explanation in multivariate time series. Our real use case applied to the
nuclear power plants domain verifies the applicability and the interest of our solution. In future work, we
plan to study in detail the effect that using permutations in the input has on the overall approach.
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