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Abstract 

Cancer heterogeneity presents a major obstacle to effective drug treatment, emphasizing the need 

for personalized approaches that can accurately predict drug responses. Advances in high-

throughput technologies have driven precision medicine initiatives toward integrating multi-omics 

data, enabling more comprehensive understanding of tumor biology. However, integration of 

diverse omics layers poses challenges for computational modeling, as many traditional machine 

learning and statistical methods are not designed to capture complex, high-dimensional, and multi-

modal data. 

This review examines the studies that integrate multi-omics datasets, aiming to enhance Drug 

Response Prediction (DRP). Specifically, it outlines the most used omics types and computational 

approaches- classical machine learning model as well as advanced deep learning and multi-modal 

integration frameworks for improving DRP, detailing key methodologies and evaluation metrics 

such as AUC, F1 Score, and MSE, which assess model performance. 

By summarizing the integrated omics data, computational methods, and challenges encountered, 

this review provides an in-depth overview of the existing landscape of precision medicine and 

future directions for advancing drug response prediction. 
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Impact Statement 

Drug sensitivity assessment is critical for optimizing personalized cancer treatment and advancing 

precision oncology. This review aims to provide a comprehensive and in-depth examination of 

computational methods used for multi-omics data integration to predict drug response in cancer 

patients, highlighting the challenges in integration of multi-omics. It further investigates how 

combining genomic, transcriptomic, epigenomic, proteomic, and metabolomic data can improve 

the understanding of tumor heterogeneity and enhance predictive accuracy. This integrated 

approach may significantly contribute to the development of more effective, tailored therapies in 

cancer treatment by advancing precision medicine. 

1. Introduction and Background 

Cancer is a highly complex and widespread disease, continuing to be a major global cause of 

mortality and a serious challenge to human health (Li et al. 2023). A key challenge in cancer 

treatment is cancer heterogeneity, the genetic and molecular variations among tumors, even within 

the same cancer type (Chen et al. 2024). This diversity complicates drug selection, as patients may 

respond differently to the same treatment (Chen et al. 2024). 

Assessing drug sensitivity is essential for evaluating how well a drug works in individual patients, 

guiding treatment decisions. Therefore, developing predictive models for drug sensitivity plays a 

crucial role in advancing personalized medicine. Cancer is predominantly driven by genetic 
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alterations, where variations in gene expression profiles and somatic mutations play a critical role 

in modulating therapeutic responses. Elucidating these molecular changes offers the potential to 

optimize treatment strategies and enhance efficacy at the individual patient level.(Wang et al. 

2023). 

Precision Oncology, a branch of Precision medicine, aims to deliver the most effective cancer 

treatment by tailoring the right therapy to the right patient, at the optimal dose and timing (Michele 

Araújo Pereira 2020; Schwartzberg et al. 2017). Various processes can disrupt genetic machinery 

at the DNA, RNA, or protein levels, resulting in changes to the expression of the protein encoded 

by the gene (Schwartzberg et al. 2017). To address this complexity, precision oncology uses high-

throughput “-omics” technologies to capture cellular, molecular, and tissue level variations 

enabling more accurate predictions (Zhao et al. 2023). Achieving the objectives of precision 

oncology requires more comprehensive profiling of tumors at multiple biological layers.  “Omics” 

encompasses a wide range of biological data types, including genomic information such as Copy 

number variations (CNV), Mutations and Single Nucleotide Polymorphisms (SNP’s); epigenomic 

data such as DNA methylation; transcriptomic data such as mRNA sequencing; proteomic data 

such as proteins; lipid-related data (lipidomics) and metabolic compounds (metabolomics) (Llinas-

Bertran et al. 2025). However, relying on a single layer of omics data is insufficient to establish 

precise connections between molecular changes and their phenotypic effects. Thus, the integration 

of multiple omics is essential to achieve a more complete understanding of cancer heterogeneity 

(Llinas-Bertran et al. 2025). 

This literature review summarizes the type of omics used, and available data integration (DI) 

methods utilized for improving drug response prediction (DRP) aiming to address the following 

questions: 

 What type of omics are used in selected studies for DRP?  

 What methods and categories are utilized to improve DRP? 

 What are some key challenges and future directions in improving DRP? 

 

2. Methodology 

This review aimed at a single objective: to evaluate computational methods used for multi-omics 

data integration in drug response prediction (DRP). The methodology was structured in two 

phases: (i) establishing a systematic search with a clearly defined initial query, and (ii) refining 

and expanding the search to capture additional relevant studies. The original PubMed query was: 

"multi-omics" OR "multiomics" OR "omics integration" AND "drug response" OR "drug 

sensitivity" OR "drug resistance" OR "drug efficacy" AND cancer OR neoplasm OR malignancy. 

This query was designed to identify studies published between 2021 and 2025 that combined at 

least two omics data types, or one omics type with other relevant modalities (e.g., clinical, imaging, 

chemical data), specifically in the context of predicting drug response in cancer. 

Studies were excluded if they: 

 Did not include at least two distinct omics data types, or one omics data type combined 

with other relevant data (e.g., clinical, imaging, or chemical data) 

 Did not apply an explicit computational or statistical method for integrating omics or other 

relevant data types. 
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The initial PubMed search returned 685 studies, of which 342 remained after applying the 

exclusion criteria. In the second phase, the focus was narrowed to studies describing or evaluating 

computational approaches for DRP. To ensure broader coverage of emerging methodologies, the 

search was refined using additional targeted queries: 

1. "multi-omics" AND "data integration" AND "cancer" AND "drug response" 

2. "multi-omics" AND "machine learning" AND "drug sensitivity" 

3. "multi-omics" AND "deep learning" AND "drug response" 

These supplementary searches identified 27 additional studies, of which 9 met the inclusion criteria 

by explicitly employing a computational method for DRP. 

The final selected studies meeting the inclusion criteria were assessed based on: 

 The study objective 

 The omics data types that are integrated (Genomics, Epigenomics, Transcriptomics, 

Proteomics, Metabolomics, Lipidomics). 

Figure 1 provides an overview of the methodological framework employed in this literature 

review. Additionally, several relevant articles ((Zitnik et al. 2019);(Chen and Zhang 2022); (Hasin 

et al. 2017); (Chakraborty et al. 2024)) were identified, though they did not align directly with the 

study’s primary objective.  
 

 
Fig 1 Framework illustrating the methodological approach of the review 

 

3. Results 

Drug response prediction (DRP) aims to predict how a drug affects the biological system, such as 

patient cells or model cell lines. Individual responses can differ significantly between individuals 

due to multiple factors, often due to genetic and molecular variations (Xiao et al. 2025). To gain 

more precise understanding of these effects, researchers analyze multi-omics datasets from both 

patient samples and cell lines. In this context, “drug response” refers to the range of biological or 

clinical outcomes observed following drug administration, which may include changes in cell 

viability, proliferation, or clinical efficacy, depending on the model system and study design. This 
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definition highlights that drug response is a multifaceted, quantitative phenotype, shaped by 

numerous genetic, molecular, and environmental factors, and can differ substantially when 

measured in cell lines versus patient samples (Zhang and Nebert 2017). A key aspect of advancing 

personalized medicine is the ability to predict drug effectiveness for a group of patients who share 

similar molecular profiles (Hernandez-Lemus and Ochoa 2024). This approach aims to tailor 

treatments more accurately to individual patient’s requirements, potentially enhancing outcomes 

and reducing adverse effects (Athieniti and Spyrou 2023).  

 

3.1 Predominant omics used for DRP 

This analysis was performed using R software, centers on determining the most utilized omic 

layers in selected studies. As shown in Figure 2a, transcriptomics emerged as the most frequently 

applied omic type, followed by genomics, epigenomics, and proteomics. Next, the bilateral 

pairings of the omic types found in the selected studies are examined. Figure 2b illustrates 

prominent combinations of multiple omics types utilized within individual studies.The network 

diagram illustrates the most frequently combined omic layers. Each node represents an individual 

omic type, with the size of the node corresponding to how often that omic layer was utilized across 

the selected studies. Line between nodes indicate that the two omic types were used together in at 

least one study, and the number on each line represents the frequency of that specific combination. 

 

 

 

3.2 Computational methods used for DRP 

Computational methods used for drug response prediction can be broadly categorized as under 

either classification or regression tasks, depending on the nature of the predicted outcome. 

Classification models assign samples to discrete categories such as ‘sensitive’ or ‘resistant’, based 

on thresholds applied to measured drug response values. Support Vector Machine (SVM) and 

Neighborhood Component Analysis (NCA) fall under this category. In contrast, regression models 
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predict continuous quantitative measures such as IC50 (the concentration of drug needed to inhibit 

cell viability by 50%), AUC (area under the dose-response curve), or cell viability percentages.  

Multi-Omics Integrated Collective Variational Autoencoders (MOICVAE), Latent Alignment and 

Attention Mechanism, DeepInsight-3D, Novel Drug Sensitivity Prediction (NDSP), Multimodal 

Contrastive Learning for Cancer Drug Responses (MMCLCDR), Multi-modal and Omics 

Machine Learning Integration (MOMLIN), and Multi-stage Multi-modal Drug Representations 

(ModDRDSP) employ regression as their primary framework, directly modeling the continuous 

landscape of pharmacological response (Partin et al. 2023).  

A key step in applying these computational methods is multi-omics data integration, which can be 

performed using early, late, or intermediate strategies. Early integration combines multiple omics 

datasets into a single table or graph format, which is then processed by a machine learning model. 

Late integration analyzes each omics layer independently and subsequently merges the individual 

predictions through an additional model. Intermediate integration allows the model to learn shared 

representations from multiple datasets simultaneously (Athieniti and Spyrou 2023). 

Figure 3 displays a Sankey diagram illustrating the distribution of omics types across the reviewed 

studies, with the dots of each flow corresponding to the number of omics employed per study. 
Figure 4 illustrates the overall workflow for predicting drug response outcome. The effectiveness 

of these methods is evaluated based on their ability to accurately predict drug responses, with 

evaluation metrics for assessment (Jiang et al. 2025). Table 1 presents a summary of the selected 

studies, detailing the types of omics data integrated, the computational frameworks and algorithms 

employed, the datasets utilized, and the evaluation metrics applied. To further assist researchers in 

selecting appropriate datasets, a comparative summary of commonly used benchmark datasets is 

provided below Table 1a. A well-performing model should not only provide high prediction 

accuracy but also reveal biologically interpretable insights, such as the molecular mechanisms 

driving drug resistance or sensitivity. 

3.2.1 Supervised Learning 

 

SVM classify patients based on the response to the treatment. In these, patients were classified into 

different groups and a SVM model was trained using data from 153 patients for the feature 

extraction from gene expression and Immunohistochemistry data and classified new patients into 

Response or Resistance groups. A hyperplane was created to separate patients into two categories: 

Responders (those who benefited from the treatment) and non-responders (resistant) (Che et al. 

2024). 

NCA is a deep learning-based DRP model using multi-omics data to analyze breast cancer (BRCA) 

cell lines. After filtering poorly performing drugs, a dataset of 42 cell lines and 100 drug molecules 

was used. The model utilizes NCA for feature selection and a neural network regressor with 

Levenberg-Marquardt backpropagation for training, optimized with Bayesian optimization and 5-

fold cross-validation. Additionally, K-means clustering was applied to categorize drugs in 

Olaparib and non-responders for the drugs such as Dabrafenib and Olaparib, and identifying 

outliers that negatively impacted model accuracy (Malik et al. 2021; Ruiz-Ramos et al. 2025).  
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Fig 4 Multi-omics data integration Workflow for Drug Response Prediction 
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Table 1 Computational methods used for multi-omics data integration, identified studies published in 2021-2025, including their method category, application 

objectives, datasets employed, evaluation metric and whether a specific cancer type was investigated. Abbreviations. GDSC: Genomics of Drug Sensitivity in 

Cancer DMSZ: Leibniz Institute CCLE: Cancer Cell Line Encyclopedia TCGA: The Cancer Genome Atlas GEO: Gene Expression Omnibus BC: Breast 

Cancer GC: Gastric Cancer AUC/AUROC: Area Under Curve/ Area under Receiver Operating Characteristic Curve AUPR: Area Under Precision Recall 

Curve MSE: Mean Square Error MAE: Mean Absolute Error RMSE: Root Mean Square Error CNV: Copy number Variation mRNA: Ribo Nucleic acid 

miRNA: Micro Ribo Nucleic Acid SNP: Single Nucleotide Polymorphism DNA: Deoxyribose Nucleic Acid CNA: Copy Number Aberration GCN:  Graph 

Convolutional Network CNN: Convolutional Neural Network DMCN: Deep message-crossing network SMILES Simplified molecular input line entry 

system CVAE: Conditional Variational Autoencoder KNN:  K-Nearest Neighbor 
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Table 1a Overview of Benchmark Datasets for Drug Response Prediction 

Dataset Description Strengths Limitations 

GDSC Drug Sensitivity across cancer cell lines Large-scale, including genomic profiles Limited patient relevance 

TCGA Multi-omics data from patient tumors Rich clinical context No drug response data 

CCLE Genomic profiles of cell lines Widely used, integrates with other datasets Limited data coverage 

DepMap Functional genomics+ drug sensitivity CRISPR/RNAi screens; target validation Cell-line based 
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3.2.2 Deep Learning 

MOICVAE is designed to predict drug sensitivity in cancer patients by integrating multi-omics 

data. The datasets are processed into similar matrices to establish relationships between samples 

and omics features. The framework incorporates a Multi-Modal Deep Autoencoder (MDA) to fuse 

omics data, generating a fusion vector that encapsulates essential multi-omics patterns. This fusion 

vector is then passed into a Conditional Variational Autoencoder (CVAE), which encodes and 

reconstructs data representations to classify samples as Sensitive (S) or Resistant (R) to a given 

drug. The trained MOICVAE model is applied to TCGA (The Cancer Genome Atlas) samples, 

where it utilizes mRNA+ CNV data and combines with K-Nearest Neighbors (KNN) to predict 

drug response. Samples are categorized into S or R groups, indicating their likelihood of 

responding to treatment. Further differential analysis is conducted to assess the biological 

significance of these predictions. Kaplan-Meier survival plots compare overall survival between S 

and R groups, while tumor inflammatory scores highlight differences in tumor immune responses. 

Additionally, immune checkpoint markers such as HAVCR2, LAG3, TIGIT, and PDCD1 are 

analyzed to explore variations in the immune microenvironment, providing insights into the role 

of immune factors in drug resistance and sensitivity (Wang et al. 2023).  

Latent Alignment and Attention Mechanism is another deep learning model which utilizes multiple 

biological data types to improve predictive accuracy. The framework begins with data 

preprocessing, where raw multi-omics data undergoes steps, such as overlapping, filtering, and 

imputation to manage missing values and ensure consistency across datasets. Following this, 

feature extraction is performed separately for each omics data type to capture key biological 

patterns effectively. The extracted features are then aligned in a latent space, preserving 

relationships between different data modalities while reducing dimensionality. To enhance 

predictive performance, an attention module is incorporated, allowing the model to focus on the 

most informative features that contribute to drug response. Finally, a predictive model, likely 

utilizing a deep neural network, processes the refined feature representations to estimate drug 

viability across different concentrations. The model outputs a dose-response curve, identifying 

whether a cancer sample is sensitive or resistant to a particular drug (Chen et al. 2024). 

DeepInsight-3D is an advanced deep learning model designed to enhance the analysis of multi-

omics data, particularly for predicting anticancer drug responses. It transforms multi-layered omics 

data into 3D image formats, enabling convolutional neural networks (CNNs) to effectively process 

and extract features. Unlike its predecessor, which handled single-layer data, DeepInsight-3D can 

accommodate multiple omics layers, improving the complexity and depth of models. The method 

includes two image construction strategies, either prioritizing the most informative layer or 

combining all layers equally. CNNs are then applied to identify patterns and classify the data, with 

an element decoder used to provide biologically relevant insights. This model excels in handling 

small sample sizes and offers interpretability through class-activation maps, which pinpoint crucial 

genes or pathways, making it a powerful tool for understanding drug responses in cancer treatment 

(Sharma et al. 2023). 

3.2.3 Feature Selection  

NDSP is one model that integrates multi-omics data to enhance DRP by utilizing deep learning 

and similarity network fusion approaches. The method begins by extracting drug targets using an 

improved sparse principal component analysis (SPCA) for different omics data types, such as RNA 

sequencing, CNA, and methylation. These extracted features are then used to construct sample 
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similarity networks, which are subsequently merged to create a comprehensive representation of 

the data. The merged similarity networks are input into a deep neural network for training, reducing 

dimensionality and mitigating overfitting issues improving interpretability and accuracy in 

predicting drug sensitivity (Liu and Mei 2023).  

3.2.4 Multi modal Integration approach 

Multimodal data integration refers to the process of combining diverse data types from different 

sources to generate a comprehensive understanding of a subject (Hernandez-Lemus and Ochoa 

2024). In this initially data is collected from different sources such as multi-omics data, medical 

imaging (histopathology, morphological, radiology), Drug chemical structure and electronic health 

records (EHRs). Then data preprocessing is done before the integration. Advanced computational 

models such as Machine Learning (ML), Artificial Intelligence (AI) integrate these diverse 

datasets. This integration allows for advanced data analysis to achieve key objectives ultimately 

aiding in personalized medicine and improved healthcare outcomes.(Llinas-Bertran et al. 2025) 

MMCL-CDR is designed to enhance DRP by integrating multiple data modalities, including multi-

omics, morphological images and chemical structure of the drug. In this model, for multi-omics, 

an Encoder (a neural network) that transforms high dimensional input into lower dimensional 

features is used. For morphological images of cells, a CNN is specifically used to extract features 

from morphology images. The extracted multi-omics and morphology images are passed through 

a projector for further transformation. An aggregation step combines both omics and image 

representations. For Molecular drug data, a Graph Convolutional Network (GCN) processes these 

molecular graphs to learn meaningful drug representations then Max Pooling is applied to 

summarize the extracted features. All the omics representation and Image representation are 

refined using Contrastive Learning, ensuring biologically relevant alignment. A fully connected 

neural network predicts whether a cancer cell line is resistant or sensitive to a particular drug based 

on the learned features (Li et al. 2023). 

MOMLIN is a multi-modal framework integrating clinical features, multi-omics, and pathway 

activity to predict drug response and identify biomarker networks in cancer patients. It follows a 

three-stage process: First, Weighted Multi-Class Sparse Canonical Correlation Analysis 

(WMSCCA) selects sparse latent components that capture key predictive features. Next, a logistic 

regression model is trained using these components, by incorporating multi-omics data. Finally, 

biomarker networks are constructed through heatmap visualization and correlation analysis, 

revealing critical molecular signatures driving treatment response (Rashid and Selvarajoo 2024). 

ModDRDSP is another tool that integrates multi-omics data, drug molecular structure to predict 

drug sensitivity response in cancer cell lines utilizing drug sensitivity, multi-omics and drug 

molecular structure data. Preprocessing involves KernelPCA for dimensionality reduction and 

ConvMolFeaturizer for molecular feature extraction. The framework employs deep learning 

models: deep hierarchical bi-directional GRU network (DSBiGRU) processes Simplified 

molecular input line entry system (SMILES) representations, a deep message-crossing network 

(DMCN) learns molecular graph embeddings, and CellCNN extracts multi-omics features (Han et 

al. 2023). These features are fused into multi-dimensional representation and analyzed using 

machine learning models to predict drug sensitivity (Song et al. 2025). 
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4. Discussion 

4.1 Omics utilization in DRP 

This review revealed distinct trends in omics usage and computational methodologies for drug 

response prediction (DRP), with a predominant reliance on genomics, epigenomics, and 

transcriptomics, while proteomics remains underrepresented despite its potential for providing 

functional and dynamic insights into tumor biology. This imbalance likely reflects differences in 

data availability and technological maturity; however, the sparing use of proteomic and 

metabolomic data limits the ability to capture post-translational modifications and metabolic shifts 

essential for accurate drug response modeling. Addressing this gap represents a key opportunity 

for future research. 

4.2 Computational methodologies       

In parallel with data considerations, computational strategies for DRP continue to evolve. By 

categorizing existing approaches into supervised learning, deep learning, feature selection with 

dimensionality reduction, and multimodal integration, this review highlights both their 

complementary strengths and shared limitations. 

Traditional supervised learning methods such as Support Vector Machines (SVM) and 

Neighborhood Component Analysis (NCA) have been widely applied. Yet, their effectiveness is 

constrained by the high dimensionality and small sample sizes typical of omics datasets, which 

predispose models to overfitting and poor generalizability. Moreover, their linear assumptions 

often fall short of capturing the complex nonlinear interactions that characterize cancer 

heterogeneity. (Liu and Mei 2023). 

Deep learning frameworks like MOICVAE, latent alignment with attention mechanisms, and 

DeepInsight-3D address some of these challenges by enabling automatic feature extraction and 

nonlinear data fusion. These models have shown promise in capturing multi-modal biological 

interactions, but their success depends heavily on access to large, high-quality datasets. 

Furthermore, their limited interpretability—the “black-box” problem—remains a barrier to clinical 

adoption, as clinicians require mechanistic insights alongside predictive accuracy. (Liu and Mei 

2023). 

Feature selection and dimensionality reduction approaches such as sparse principal component 

analysis (SPCA) used in models like NDSP help mitigate issues of high dimensionality and noise. 

However, these approaches risk eliminating subtle but biologically meaningful signals, 

underscoring the ongoing challenge of balancing feature sparsity with biological relevance. 

Missing or incomplete data across omics layers further complicates integration, necessitating 

robust imputation and harmonization strategies to minimize bias and information loss.  

Multimodal integration frameworks, such as MMCL-CDR, MOMLIN, and ModDRDSP, represent 

an important step toward holistic modeling by combining diverse data types, including clinical 

variables, imaging features, chemical drug structures, and multi-omics layers. While these 

approaches enhance the potential for comprehensive prediction, they face persistent hurdles in 

aligning heterogeneous data with different scales, distributions, and levels of reliability. Their 

complex architecture also demands extensive parameter tuning and large sample sizes to ensure 

stability. Moreover, model interpretability and prospective clinical validation remain 

underdeveloped, slowing their translational impact.  
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4.3 Key Challenges to Clinical Translation 

Taken together, the models, integration techniques, and methodological innovations reviewed here 

illustrate the transformative potential of informatics-driven approaches for optimizing therapeutic 

outcomes and advancing precision medicine (Shekhawat et al. 2025). At the same time, several 

fundamental challenges continue to limit clinical translation.  

4.3.1 Data Heterogeneity 

Despite considerable progress in multi-omics-based drug response prediction (DRP), several 

critical challenges hinder the full translation of computational models into clinical practice. 

Foremost among these is data heterogeneity, arising from the integration of diverse omics layers 

generated by different platforms, protocols, and laboratories. Variability in sample processing, 

measurement techniques, and batch effects introduce noise and bias that complicate model training 

and reduce reproducibility. The complexity increases when combining multi-omics data with 

auxiliary modalities such as clinical, imaging, or drug molecular information, necessitating 

rigorous normalization and harmonization strategies that remain an ongoing challenge (Jiang et al. 

2025). 

4.3.2 Model interpretability 

Another prominent limitation is the lack of model interpretability, particularly for advanced deep 

learning and multimodal integration frameworks. Although powerful in capturing complex 

nonlinearities and interactions, they often fail to provide transparent biological explanations for 

their predictions. This opacity poses a barrier to clinical adoption, as clinicians require not only 

accurate predictions but also mechanistic insights to make informed therapeutic decisions and to 

trust model recommendations. Developing explainable AI approaches and embedding biological 

prior knowledge are therefore critical future directions to enhance model transparency and 

trustworthiness (Ennab and McHeick 2024). 

4.3.3 Generalizability across cohorts 

Many established models exhibit poor generalizability across independent cohorts and diverse 

patient populations. Overfitting to small, homogeneous datasets undermines their robustness in 

real-world applications, where genetic backgrounds and environmental exposures vary widely. 

This limitation is exacerbated by the lack of standardized response metrics in preclinical studies 

and heterogeneity in experimental conditions, such as assay types, drug concentrations, and cell 

line handling, which complicates comparisons across studies (Adam et al. 2020). Addressing this 

limitation requires larger, multi-institutional datasets, rigorous cross-cohort validation and 

privacy-preserving strategies such as federated learning.  

5. Future directions 

The integration of multi-omics data continues to offer immense potential, with deep learning 

methods expected to play a central role in uncovering complex nonlinear patterns (Shekhawat et 

al. 2025). A growing area of interest lies in single-cell multi-omics, which provides opportunities 

to dissect cellular heterogeneity and better understand molecular mechanisms in disease. Equally 

important are advances in visualization strategies, which can improve the accessibility and 

interpretation of results for a broader scientific audience. Establishing standardized repositories 
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and collaborative platforms will be key to ensuring data availability, reproducibility, and more 

effective cross-study comparisons (Zhang 2024).  

Another promising direction is the emphasis on model explainability. Tools such as SHAP 

values and attention mechanisms can help researchers interpret predictions, increasing trust and 

clinical relevance. Alongside this, harmonizing data across institutions and platforms remains a 

critical challenge for ensuring consistency and generalizability of findings. Emerging approaches 

like tabular-to-image conversion (e.g., DeepInsight) open new possibilities for applying CNN-

based models in omics research, combining interpretability with predictive power (Sharma et al. 

2019). Together, these advancements will help translate multi-omics research into more 

actionable insights for personalized medicine. 

6. Conclusion  

The integration of multi-omics data has significantly advanced drug response prediction, offering 

deeper insights into tumor heterogeneity and enabling more precise therapeutic strategies. Current 

approaches demonstrate the value of genomics, epigenomics, and transcriptomics in predictive 

modeling, but the limited use of proteomics and metabolomics restricts the ability to capture 

functional dynamics essential for understanding drug sensitivity and resistance. While 

computational methods from supervised learning to advanced deep learning and multimodal 

integration have shown considerable promise, they remain challenged by data heterogeneity, 

interpretability, and limited generalizability across cohorts. 

Addressing these challenges will be critical for translating computational advances into clinical 

practice. Future research should prioritize the development of explainable and generalizable 

models, the harmonization of multi-institutional datasets, and the integration of underutilized 

omics layers. Combining methodological innovation with standardized pipelines, robust 

visualization tools, and collaborative data-sharing infrastructures will accelerate the clinical 

applicability of multi-omics-driven drug response prediction. These efforts will strengthen the 

foundations of precision oncology, enabling the delivery of more effective, personalized cancer 

treatments 
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