
JFP 27, e10, 63 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000028

1

A comprehensible guide to a new unifier for
CIC including universe polymorphism and

overloading�

BETA ZIL IANI

FAMAF, Universidad Nacional de Córdoba, Argentina, and CONICET, Córdoba, Argentina

(e-mail: bziliani@famaf.unc.edu.ar)

MATTHIEU SOZEAU

Inria & PPS, France, and Université Paris Diderot, Paris, France

(e-mail: matthieu.sozeau@inria.fr)

Abstract

Unification is a core component of every proof assistant or programming language featuring

dependent types. In many cases, it must deal with higher order problems up to conversion.

Since unification in such conditions is undecidable, unification algorithms may include several

heuristics to solve common problems. However, when the stack of heuristics grows large,

the result and complexity of the algorithm can become unpredictable. Our contributions are

twofold: (1) We present a full description of a new unification algorithm for the Calculus

of Inductive Constructions (the base logic of Coq), building it up from a basic calculus to

the full Calculus of Inductive Constructions as it is implemented in Coq, including universe

polymorphism, canonical structures (the overloading mechanism baked into Coq’s unification),

and a small set of useful heuristics. (2) We implemented our algorithm, and tested it on several

libraries, providing evidence that the selected set of heuristics suffices for large developments.

1 Introduction

In the last decade, proof assistants have become more sophisticated and, as a

consequence, increasingly adopted by computer scientists and mathematicians. In

particular, they are being adopted to help dealing with very complex proofs,

proofs that are hard to grasp—and more importantly, to trust—for a human.

For example, in the area of algebra, the Feit–Thompson Theorem was recently

formalized (Gonthier et al., 2013b) in the proof assistant Coq (The Coq Development

Team, 2012). To provide a sense of the accomplishment of Gonthier and his team, the

original proof of this theorem was published in two volumes, totaling an astounding

250 pages. The team formalized it entirely in Coq, together with several books of

algebra required as background material.

In order to make proofs manageable, this project relies heavily on the ability

of Coq’s unification algorithm to infer implicit arguments and expand heavily

� This research was partially supported by EU 7FP grant agreement 295261 (MEALS).

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


2 B. Ziliani and M. Sozeau

overloaded functions. This goes to the point that it is not rare to find in the source

files a short definition that is expanded, by the unification algorithm, into several

lines of code in the Calculus of Inductive Constructions (CIC), the base logic of

Coq. This expansion is possible thanks to the use of the overloading mechanism in

Coq called canonical structures(CS) (Säıbi, 1999). This mechanism, similar in spirit

to Haskell’s type classes, is baked into the unification algorithm. By being part of

unification, this mechanism has a unique opportunity to drive unification to solve

particular unification problems in a similar fashion to Matita’s hints (Asperti et al.,

2009). It is so powerful, in fact, that it enables the development of dependently typed

logic meta-programs (Gonthier et al., 2013a).

Another important aspect of the algorithm is that it must deal with higher

order problems, which are inherently undecidable, up to a subtyping relation on

universes. For this reason, the current implementation of the unification algorithm

has grown with several heuristics, yielding acceptable solutions to common problems

in practice. Unfortunately, the algorithm is unpredictable and hard to reason about:

Given a unification problem, it is hard to predict the substitution the algorithm will

return, and the time complexity for the task. This unpredictability of the current

implemented algorithm has two main reasons: (i) it lacks a specification, and (ii) it

incorporates a number of heuristics that obfuscate the order in which unification

subproblems are considered.

While the algorithm being unpredictable is bad on its own, the problem gets

exacerbated when combined with CS, since their resolution may depend on the

solutions obtained in previous unification problems. To somehow accomodate for

this unfortunate situation, several works in the literature explain CS by exam-

ple (Garillot et al., 2009; Garillot, 2011; Mahboubi & Tassi, 2013; Gonthier et al.,

2013a), providing some intuition on how CS work, in some cases even detailing

certain necessary aspects of the unification process. However, they fall short of

explaining the complex process of unification as a whole.

This paper presents our remedy to the current situation. More precisely, our main

contributions are as follows:

1. An original, full-fledged description of a unification algorithm for CIC,

incorporating CS and universe polymorphism (Sozeau & Tabareau, 2014).

2. The first formal description, to the best of our knowledge, of an extremely

useful heuristic implemented in the unification algorithm of Coq, controlled

backtracking.

3. A corresponding pluggable implementation, incorporating only a restricted set

of heuristics, such as controlled backtracking. Most notably, we purposely

left out a technique known as constraint postponement, present in many

systems and in the current implementation in Coq, which may reorder

unification subproblems. This reordering prevents us from knowing exactly

when equations are being solved.

4. Evidence that such principled heuristics suffice to solve 99.9% of the unifica-

tion problems that arise in libraries such as the Mathematical Components

library (Gonthier et al., 2008) and CPDT (Chlipala, 2011).

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 3

It is interesting to note that during this work, we found two bugs in the logic of the

original unification algorithm of Coq. While this work focuses on the Coq proof

assistant, the problems and solutions presented may be of interest to other type

theory based assistants and programming languages, such as Agda (Norell, 2009),

Matita (Asperti et al., 2006), or Idris (Brady, 2013). Developers of such systems, or

new systems to come, may find the discussions in this work about incorporating or

removing certain heuristics inspiring.

This work is an extended version—and a total restructuring—of Ziliani & Sozeau

(2015). In this new version, we split different features of the algorithm in different

sections, building from the basic Calculus of Constructions (CC) up to the full

CIC implemented by Coq, making the presentation much more palatable. We

have also incorporated several real or realistic examples and fixed some bugs and

inconsistencies in notation.

In the rest of the paper, we start introducing with examples some features and

heuristics included in Coq’s unification algorithm (Section 2). Then, we present

the CC together with a simple minded unification algorithm for it (Section 3). We

extend the algorithm to include β-reduction and η-expansion (Section 4), local and

global definitions (Section 5), universes (Section 6), inductive types (Section 7), and

overloading (Section 8). We also incorporate controlled backtracking in Section 9

and several heuristics for meta-variable instantiation in Section 10. The last addition

to the algorithm is universe polymorphism (Section 11), and once every rule is

given we specify the priority of the rules (Section 12). We discuss why we did not

incorporate the technique known as Constraint Postponement in Section 13, and

we show it is not that important in real developments (Section 14). We discuss

what would be a correctness criterion for the algorithm in Section 15. We show in

detail an example inspired by Gonthier et al. (2011) in Section 16. Related work is

discussed in Section 17, and conclusion are drawn in Section 18.

2 COQ’s Unification at a glance

We start by showing little examples highlighting some of the particularities of Coq’s

unification algorithm.

Term unification: The unification algorithm of Coq must deal with unification of

terms and not only types. In fact, in the CIC, the base logic of Coq, there is no

syntactical distinction between types and terms.

First-order approximation: In many cases, a unification problem may have several

incomparable solutions. Consider for instance the following definition in a context

where y1 and y2 are defined:

Definition ex0 : y1 ∈ ([y1] ++ [y2]) := inL (in head )

We assume the definitions and lemmas for list membership listed in Figure 1, and

note (x :: s) for the consing of x to list s, [] for the empty list, and l ++ r for the

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


4 B. Ziliani and M. Sozeau

Fig. 1. List membership axioms and lemmas.

concatenation of lists l and r. We also denote [a1; . . . ; an] for a list with elements a1

to an.

This definition is a proof that the element y1 is in the list resulting from

concatenating the singleton lists [y1] and [y2]. The proof in itself provides evidence

that the element is in the head (in head) of the list on the left (inL). As customary

in Coq code, the type annotation shows what the definition is proving (note how

the type here is a predicates over lists, i.e., terms). The proof omits the information

that can be inferred, replacing each argument to inL and in head with holes ( ). The

elaboration mechanism of Coq, that is, the algorithm in charge of filling up these

holes, calls the unification algorithm with the following unification problem, where

the left-hand side corresponds to what the body of the definition proves, and the

right-hand side to what it is expected to prove1:

?z1 ∈ ((?z1 :: ?z2) ++ ?z3) ≈ y1 ∈ ([y1] ++ [y2])

where ?z1, ?z2 and ?z3 are fresh meta-variables. In turn, after assigning y1 to ?z1, the

unification algorithm has to solve the following problem:

(y1 :: ?z2) ++ ?z3 ≈ [y1] ++ [y2]

One possible solution to this equation is to assign [] to ?z2, and [y2] to ?z3, which

corresponds to equate each argument of the concatenation, similar to what we

did before with the ∈ predicate. However, since concatenation is a function, i.e., it

computes the concatenation of the two lists, there are other possible solutions that

makes both terms convertible (i.e., having the same normal form). One such solution,

for instance, is to assign [y2] to ?z2, and [] to ?z3.

Many works in the literature (e.g., Miller (1991), Peyton Jones et al. (2006), Reed

(2009), Abel & Pientka (2011)) are devoted to the creation of unification algorithms

returning a Most General Unifier (MGU), that is, a unique solution that serves as a

representative for all convertible solutions. Agda (Norell, 2009), for instance, which

incorporates such type of unification algorithm, fails to compile Example ex0 above,

since no such MGU exists. This forces the proof developer to manually fill-in the

holes.

Despite the equation having multiple solutions, however, not every solution is

equally “good”. For ex0, the first solution is the most natural one, meaning the

one expected by the proof developer. For this reason, instead of failing, Coq favors

syntactic equality by trying first-order unification. Formally, when faced with a

1 How elaboration works will not be discussed in this work. The interested reader is invited to
read (Asperti et al., 2012), which provides details on bi-directional elaboration in the Matita proof
assistant, also based on CIC.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 5

problem of the form:

t t1 . . . tn ≈ u u1 . . . un

the algorithm decomposes the problem into n+1 subproblems, first equating t ≈ u,

and then ti ≈ ui, for 0 < i � n.

Controlled backtracking: In Sacerdoti Coen (2004, chp. 10), a unification algorithm

for CIC is presented, performing only first-order unification. In Coq, instead, when

first-order approximation fails, in an effort to find a solution to the equation, the

algorithm reduces the terms carefully. For instance, consider the following variation

of the previous example, where the list on the left of the concatenation is let-bound:

Definition ex1 : y1 ∈ (let l := [y1] in (l ++ [y2]))

:= inL (in head )

The main equation to solve now is

(y1 :: ?z2) ++ ?z3 ≈ let l := [y1] in (l ++ [y2])

Since both terms do not share the same head (the concatenation operator on the left

and the let-binding on the right), the algorithm reduces the let-binding, obtaining

the same problem as in ex0. Note that it has to be careful: It should not reduce the

concatenation operator, otherwise the problem will become unsolvable. To see this,

let’s consider the result of reducing both sides:

y1 :: (?z2 ++ ?z3) ≈ [y1; y2]

While the head of both lists is the same, the tail [y2] cannot be matched with

the concatenation of two unknown lists. For this reason, the algorithm delays the

unfolding of constants, such as ++, and, in the case of having constants on both

sides of the equation, it takes special care of which one to unfold. This heuristic

enables fine control over the instance resolution mechanism of CS (Gonthier et al.,

2013a).

Interactivity: Coq is an interactive theorem prover, meaning that the user writes her

proof interactively, step by step. This has the consequence that the user will likely

see the result of the algorithm, so it is not the same if terms are reduced or not—not

only for coverability, as seen in the previous example, but also for visibility.

It is interesting to note that the interaction between Coq users and the prover

differs greatly from that of Agda users, generating also different expectations for

what the algorithm produces. In Agda, the application of a lemma is often written

in full form, with all of its non-implicit arguments fleshed out, since it is seen more

like a function application in a regular programming language.

Instead, Coq users more often than not apply lemmas using the apply tactic—an

external program that inserts meta-variables for the arguments of the lemma, letting

unification guess the actual values. Therefore, an example like ex0 is more common

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


6 B. Ziliani and M. Sozeau

to see written as

Definition ex0 : y1 ∈ ([y1] ++ [y2]).

Proof

apply inL. apply in head.

Qed

If the unification algorithm were restricted to only output MGUs, proofs like the

one above—that is, most of the existing proofs!—would break, as, even if the current

algorithm does handle constraint postponment, those must be solved at each full

stop (.) using heuristics. Coq 8.6 has an option to let those constraints float without

applying heuristics, however, this mode of use can make tactic programming very

inconvenient, as failure to solve the constraints (no progress) might mean either

that the unifier was not capable enough and needed more information or that the

constraints are effectively unsolvable but cannot be seen to be yet. Together with

the backtracking behavior of tactics, this can result in very unpredictable tactic

programs. We are currently exploring solutions to this problem by giving the user

control over these constraints; however, it is unlikely to be the kind of mode a user

interacting with Coq would expect.

Canonical Structures: CS is a powerful overloading mechanism, baked into the

unification algorithm. We demonstrate this mechanism with a typical example

from overloading: the equality operator. Similar to how type classes are used in

Haskell (Wadler & Blott, 1989), we define a class or, in CS terminology, a structure2:

Structure eqType := EqType { sort : Type;

equal : sort → sort → bool }

eqType is a record type with two fields: a type sort, and a boolean binary operation

equal on sort. These fields can be accessed using projectors:

sort : eqType → Type

equal : ∀e:eqType. sort e → sort e → bool

To construct an element of the type, the constructor EqType is provided, which

takes the values for the two fields as arguments. For example, one possible eqType

instance for bool is

Definition eqType bool := EqType bool eq bool

where eq bool x y := (x && y) || (!x && !y). (We denote boolean conjunction,

disjunction and negation as &&, || and !.)

Similarly, it is possible to declare recursive instances. For example, consider the

instance for the pair type A×B, where A and B are themselves instances of eqType:

Definition eqType pair (A B : eqType) :=

EqType (sort A × sort B) (eq pair A B)

2 This example is a significant simplification of one taken from Gonthier et al. (2008; 2013a).

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 7

where

eq pair (A B : eqType) (u v : sort A × sort B) :=

(equal A (π1 u) (π1 v)) && (equal B (π2 u) (π2 v))

In order to use instances eq bool and eq pair for overloading, we need to

declare them as Canonical. After they have been declared canonical, whenever the

elaboration mechanism is asked to elaborate a term like equal (b1, b2) (c1, c2),

for booleans b1, b2, c1 and c2, it will generate a unification problem matching the

expected and inferred type of the second argument of equal, that is,

sort ?e ≈ bool × bool

for some meta-variable ?e elaborated from the hole ( ).

To solve the equation above, Coq’s unification will try instantiating ?e using the

canonical instance eqType pair, resulting in two new unification subproblems, for

fresh meta-variables ?A and ?B:

sort ?A ≈ bool sort ?B ≈ bool

Next, it will choose ?A := eqType bool and ?B := eqType bool, resulting in that

equal ?e (b1, b2) (c1, c2) reduces, as expected, to eq bool b1 c1 && eq bool b2 c2.

We can declare a number of canonical eqType instances for our types equipped

with decidable equality. Then, we can uniformly write equal t u, and let unification

compute the corresponding instance for the hole, according to the type of t and u.

Polymorphic universes and subtyping: Unification in CIC is not a simple equational

theory, in the sense that it must deal with the subtyping relation generated by the

cumulative universe hierarchy (Type(i) � Type(j) ⇐⇒ i � j). To our knowledge,

we present the first algorithm dealing with this relation properly during unification.

Previous work by Harper & Pollack (1991) considered only conversion on a universe

polymorphic version of CC with definitions and typical ambiguity (see Section 17

for a more detailed comparison). In Coq, previous algorithms relied on the kernel to

check the proper use of universes, resulting in particular in non-local error reporting

and the inability to backtrack on these errors, which becomes crucial in presence of

universe polymorphism and first-order approximation.

Immediate resolution: When considering that the unification algorithm is the central

component of proof-search—either directly using CS (c.f., Section 16), or indirectly

by calling a tactic that uses unification, such as apply—it becomes crucial for the

algorithm to produce a definite answer, be it positive or negative.

As a consequence, the order of unification subproblems matter. For instance,

consider the following example:

Definition pair example (z:nat) :

let x := in let y := in

(x, x + y) = (0, z)

:= eq refl.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


8 B. Ziliani and M. Sozeau

At high-level, it produces two equations:

?x ≈ 0 (1)

?x + ?y ≈ z (2)

After solving the first one, it can successfully solve the second one, since 0 + ?y

reduces to ?y, obtaining the equation ?y ≈ z. However, when we swap the pairs:

Definition pair example fail (z:nat) :

let x := in let y := in

(x + y, x) = (z, 0)

:= eq refl.

The equations are now ordered so that Equation (2) above is considered first.

Since it is not solvable as is—that is, without delaying it until the first equation is

considered—the algorithm fails.

In Agda, for instance, equations that cannot be solved are delayed, meaning that

the example above typechecks. In Coq, the existing algorithm delays equations only

if one of the two sides of the equation is a meta-variable (and therefore, it fails

to typecheck the example). Our algorithm is even stricter and forbids delaying of

equations entirely, favoring a somewhat more predictable algorithm (c.f., Section 13).

Instantiation of higher order variables: In a logic like CIC, it is quite common to

find equations of the form:

?f a . . . b ≈ t

where a, b, t are terms. In the general case, of course, these type of equations are

undecidable. However, in many cases, a good solution can still be found by applying

known techniques, like higher order pattern unification (HOPU, Miller (1991)),

or several other lesser-known, or original, techniques. Our algorithm implements

HOPU, pruning, dependencies erasure, among others.

3 Structural unification for CC

In this section, we start developing an intuitive, simple-minded, algorithm for the

CC, the basic theory behind the CIC. The presentation here is inspired by Pfenning

(1991) and Sacerdoti Coen (2004).

CC is a λ-calculus with dependent types defined as

s = Prop | Type sorts

t, u, T ,U = x | c | s | ?x | ∀x : T . U | λx : T . t | t u terms and types

Sorts, also called kinds, include the set of propositions Prop, and its kind Type. In

CC, terms and types live in the same syntactic class, although we will differentiate a

term from a type by writing the former in lowercase, as in t and u, and the latter in

uppercase, as in T and U. Terms and types are constructed with variables x ∈ V,

constants c ∈ C, sorts s, meta-variables ?x, dependent products ∀x : T . U, function

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 9

Fig. 2. Reduction rules in CC.

abstractions λx : T . t and applications. A meta-variable represents a hole, that is, a

missing piece of the term (or proof). For applications, we borrow the spine notation

from Cervesato & Pfenning (2003), and note t u to represent the application of a

list of terms u to term t. We call t the head of the term, which cannot be itself

an application. If we need to specify the number n of arguments, we extend the

notation as un.

In order to typecheck and reduce terms, several contexts are needed, each handling

different types of knowledge:

• Meta-context containing meta-variable declarations and definitions.

• Local context for bound variables.

• A global environment E, containing the types for constants.

Formally,

Σ = · | ?x : T ,Σ | ?x := t : T ,Σ meta-contexts

Γ = · | x : T ,Γ local contexts

E = · | c : T ,E global environment

Meta-variables are declared (or defined) in the set Σ. We emphasize the word

set because a meta-variable in Σ may contain other meta-variables, even newer

ones, in its type T or its definition t (when defined). The only restriction is that

the dependencies between meta-variables form an acyclic graph. This is in contrast

with the other two contexts Γ and E. We write ?x := t : T to indicate that ?x is

defined, that is, should be substituted by t. In this way, our meta-context also serves

the purpose of representing a substitution. For the moment we will not consider

meta-variables having free variables in its type T (or defining term t). It is common

to consider meta-variables with closed types, although we will later show why this

is not good for our purposes and change to a richer definition of meta-variables in

Section 10.

The local context is a list associating variables with types, where each type might

include free variables previously declared, and meta-variables.

The global environment is another list associating constants c with a type T . No

meta-variable nor variable is allowed to occur freely in T .

3.1 Reduction rules

Reduction of CC terms is performed through a set of rules listed in Figure 2. We

have the standard β reduction rule, where we note t{u/x} as the standard capture-

avoiding substitution of x by u in t. More interestingly, the δΣ reduction rule takes

a meta-variable ?x defined in Σ, and replaces it by its definition t. The relation

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


10 B. Ziliani and M. Sozeau

t
w
�r u states the one-step weak-head reduction of t into u using the relation stated

in r (r ∈ {β, δΣ} for the moment).

Conversion (‘ =) is defined as the congruent closure of these reduction rules, plus

η-conversion: u‘ = λx : T .u x if x /∈ FV(u).

3.2 Structurally unifying CC terms

We show an algorithm to structurally unify two CC terms. That is, similarly to

Sacerdoti Coen (2004, chp. 10), our algorithm will not reduce terms, so it will

preserve the original structure of terms. Therefore, an equation like (λx. ?y) c ≈ d,

where c and d are constants, will not have a solution, although a β-convertible

solution exists; one that assigns d to ?y. In following sections, we will enrich our

algorithm to allow such solutions.

Throughout this paper, we will represent the algorithm using the following

judgment:

Σ; Γ 	 t1 ≈ t2 � Σ′

It unifies terms t1 and t2, given meta-context Σ and a local context Γ, and an implicit

global environment E. For practical reasons, t1 and t2 are assumed to be well-typed

under the contexts provided, although they might have different types. This is in

contrasts to typed-directed algorithms to be found in the literature (e.g., Abel &

Pientka, 2011).

The algorithm returns a new meta-context Σ′, which is an extension of Σ, perhaps

with new meta-variables or definitions of existing meta-variables in Σ. If the

algorithm succeeds, terms t1 and t2 are convertible under the returned context

Σ′.

Figure 3 shows the rules of the algorithm. Rules Type-Same, Var-Same and Rigid-

Same apply when both terms are the same sort, variable or constant, respectively.

The reason to split them in three different rules is because we are going to change

some of them in the coming sections. For products (Prod-Same) and abstractions

(Lam-Same), we first unify the types of the arguments, and then the body of the

binder, with the local context extended with the bound variable.

We consider the application of a function to multiple arguments in the rule

App-FO. The rule first compares functions t and u, and then proceeds to unify

point-wise each of the arguments. The remaining rules consider meta-variables in

the head position of a term. Rules Meta-δR and Meta-δL expand the definition of

the meta-variable on the r.h.s. and l.h.s., respectively—a one-step δΣ reduction. In

the following, we will write Meta-δ (without R or L) to mean both rules.

If the meta-variable has no definition, we have to define (instantiate) the meta-

variable. In Section 10, we will incorporate several useful heuristics to the algorithm

for this particular case, but for the moment we restrict the algorithm to a subclass

of equations known as HOPU (Miller, 1991). Equations in this class, in which the

meta-variable is applied to a spine of (distinct) variables, possess an MGU, that is, a

unique solution that represents all possible solutions. We have two cases: either both

sides of the equation have the same meta-variable at its head position (Meta-Same),

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 11

Fig. 3. Unification algorithm for CC.

or we have a meta-variable in the head position on one side, and a term on the

other (Meta-InstR and Meta-InstL). In the following paragraphs, we explain each.

Same meta-variable: The rule Meta-Same is used when we have the same meta-

variable ?x in the head position of both terms in an equation. To better understand

this rule, let us look at an example.

Example 1

Suppose meta-variable ?z with type ∀x1 : nat. ∀x2 : nat. T , and the following

equation:

?z y1 y2 ≈ ?z y1 y3

where y1, y2 and y3 are all distinct variables.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


12 B. Ziliani and M. Sozeau

Fig. 4. Intersection judgment.

From this equation, we cannot know yet what value ?z will be substituted with,

but at least we know it cannot be a function using its second argument, x2. If, for

instance, later on ?z is instantiated with a term like (λx1. λx2. x2), applying the

substitution and β-reducing both terms of the equation we obtain terms y2 and y3,

respectively, which are not convertible. So we need to restrict the set of possible

solutions to replace ?z such that they do not refer to x2. This is achieved by creating

a fresh meta-variable ?z′ as a function of x1 and instantiate ?z with it. The resulting

substitution is

Σ = {?z′ : (∀x1 : nat. T ), ?z := (λx1. λx2. ?z′ x1) : (∀x1 : nat. ∀x2 : nat. T )}

Rule Meta-Same allows for the construction of such solution. It equates the

application of a meta-variable ?x to two spines of variables y and z, on the l.h.s.

and on the r.h.s., respectively. First, we have that ?x has type U, and that U is

convertible to a product type ∀Γ0. T , where we implicitly assume that the size of

Γ0 is equal to the size of the spines (note that, since terms are assumed to be well

typed, U must be convertible to such product type). Then, we filter all variables

in Γ0 where y and z disagree, obtaining a new context Γ1. This is reflected in the

hypothesis

Γ0 	 y ∩ z � Γ1

The intersection judgment is shown in Figure 4. This judgment performs an

intersection of the spines, filtering out those positions from the context Γ1 where

the substitutions disagree, resulting in Γ2. Continuing with Example 1, Γ0 is x1 :

nat, x2 : nat, y is y1, y2, and z is y1, y3. Since y2 and y3 are different variables, the

resulting context is Γ1 = x1 : nat.

Fast-forwarding a bit, the last two hypotheses of the rule create a fresh meta-

variable ?y with a product type using the previously generated context (after being

sanitized, as we are going to see next), and substitutes ?x with ?y, applying the

spine of variables taken from the new context using the type-eraser function b·,
defined as

bx1 : T1, . . . , xn : Tn = x1, . . . , xn

This would be all for the equation of the same meta-variable if it were not for

the fact that the types of products might weakly depend on previous variables, and

those variables might be eliminated by the intersection judgment. Let us illustrate

with an example, where we assume the existence of constants for the theory of

natural numbers (0,�, etc), with standard arity.

Example 2

Let Σ = {?x : ∀z : nat. (λw. 0) z � 0} and Γ = y : nat, v : nat and equation

?x y ≈ ?x v

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 13

Fig. 5. Sanitization of contexts.

Note that the type of ?x is not β-normal, and that z is not really used in the

co-domain, which can be normalized to 0 � 0. But since in the equation z is being

replaced with distinct variables y and v, then the intersection judgment will remove

z from the type of ?x, obtaining the ill-typed type:

(λw. 0) z � 0

where z is not bound anywhere.

One option to solve this kind of issues is to normalize terms in each context, but

that can be rather expensive. Instead, we take a different approach and restrict the

set of solutions to not include such cases. That is, instead of making an effort to

find a solution (for instance, by β-reducing the type of ?x) we fail to find a solution.

Formally, we make sure every variable whose type depends on a removed variable is

also removed (hypothesis · 	 sanitize(Γ1) �Γ2), and then we check that the type has

all free variables in the new context (hypothesis FV(T ) ⊆ dom(Γ2)). The sanitization

judgment is defined in Figure 5.

Before moving to the next rule, we note that Meta-Same generates an MGU or fails.

This is because the intersection judgment only cuts variables where substitutions

differ strictly: Any solution using those variables must do it weakly (e.g., like z in

Example 2). Therefore, the normalized solution, without those variables, is still in

the set of MGUs.

Meta-variable instantiation: The Meta-Inst rules instantiate a meta-variable ?x with

a term t, if such instantiation can be performed. As required by HOPU, the meta-

variable is applied to a spine of variables y. As with the Meta-Same rule, we can

assume ?x has type (convertible to) ∀Γ0. T , where Γ0 has the same size as y. This

rule must find a term t′ to substitute ?x with such that

t = t′ y

t′ must be a closed term; a function abstracting every variable in Γ0 that, when

applied to y, returns t. We construct such term by “inverting” the substitution

mapping variables from Γ0 to variables in y. The inverse substitution is defined in

Figure 6. The only interesting case is when the term is a variable, in which there are

two possible scenarios:

1. If the variable yi is in the image of the substitution yn, and it appears only

once in the image, then it is substituted with the variable at the same location

in the domain xi.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


14 B. Ziliani and M. Sozeau

Fig. 6. Inverse substitution.

2. If the variable is not in the image, or it appears more than once, the substitution

gets undefined.

The type of t′, which now only depends on the context Γ0, is computed as T ′,

and unified with the type of ?x, obtaining a new meta-context Σ1. Finally, an occurs

check is performed to prevent illegal solutions, making sure ?x does not occur in t′.

The algorithm outputs Σ1 plus the instantiation of ?x with t′.

The last two hypotheses are shown in gray because they are not needed if the

type of the terms are unified prior to unifying the terms.

The rules listed in Figure 3 are overlapping. App-FO overlaps with all of the

Meta- rules, and these overlap with themselves. An actual algorithm will break the

overlap between App-FO and the rest of the rules by forbidding t and u’s heads

to be a meta-variable. Similarly, the overlap between Meta-Same and the other two

Meta-Inst rules is avoided by requiring that t’s head is not the same meta-variable

?y in the Meta-Inst rules.

But what about the overlap between Meta-InstR and Meta-InstL? When both

terms are different meta-variables applied to spines of variables, one can choose

which rule to use. But note that the inversion of the substitution will not always be

defined. The following example illustrates this case:

Example 3

Assume Σ = {?x : ∀v : nat. ∀w : nat. nat, ?y : ∀u : nat. nat}. In the following

equation, Meta-InstL finds the solution while Meta-InstR does not, assuming variable

z is defined in the local context with the right type.

?y z ≈ ?x z z

In the r.h.s., the duplication of z makes the inversion of the substitution undefined,

but on the l.h.s., it only occurs once so the substitution is perfectly well defined. A

unification algorithm should try both cases in order to ensure no solution is missed.

Before moving to the next section, we show the derivation tree from the example

in the introduction.

Example 4 (Unification in a problem about list membership)

Consider the Coq definition

Definition ex0 : y1 ∈ ([y1] ++ [y2]) := inL (in head )

Containing the main unification problem:

?z1 y1 y2 ∈ ((?z1 y1 y2 :: ?z2 y1 y2) ++ ?z3 y1 y2) ≈ y1 ∈ ([y1] ++ [y2])

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 15

Each meta-variable is defined as a function from the context, in this case containing

variables y1 and y2.

We have to be honest here and say upfront that Coq has a more sophisticated

representation for meta-variables, using what is called “Contextual Types”. For

the moment, we will stick to the current representation of meta-variables, until

Section 10 in which we introduce heuristics requiring contextual types.

Figure 7 shows the derivation tree from the example. It is interesting to note that

this is a slightly beautified version of the actual derivation tree our algorithm outputs

when put in debug mode. For this reason, there are a few differences in the notation

shown above and the one in the figures. Functions are written using standard Coq

notation: fun x => t instead of λx. t. If necessary, the type of x is added using the

traditional x : T notation. Also, the ∈-operator is noted In in the figure, and cons

and app are the names for the consing and appending list operations, respectively.

We will often switch from the mathematical notation we used so far to Coq’s own

and vice versa, assuming they are equivalent to the reader. In both notations, we

take the convention of collapsing several abstractions into one, and write λx1 x2. t

for λx1. λx2. t (similarly for ∀s).

The rule Reduce-Same is a little optimization that compares two meta-closed terms

(i.e., with no meta-variables) for convertibility:

Reduce-Same

FMV(t) = FMV(u) = ∅ t‘ = u

Σ; Γ 	 t ≈ u � Σ

In the figure, there is a meta-variable ?z0 that is not present in the equation shown

above. This meta-variable is defined as ?z1 y1 y2 :: ?z2 y1 y2. The derivation is

self-explanatory: At the top level, the App-FO rule is applied, comparing first the

head on both sides of the equation (In in both cases), and then compares the

arguments. For the first argument, we have ?z1 y1 y2 ≈ y1, which by the Meta-

Inst rule instantiates ?z1 with λx1 x2. x1, after checking that the type of both

sides of the equation coincides (nat and nat). For the second argument, we have

?z0 y1 y2 ++ ?z3 y1 y2 ≈ [y1] ++ [y2]. After comparing the heads, it is left

with equations ?z0 y1 y2 ≈ [y1] and ?z3 y1 y2 ≈ [y2]. The first one, after an

implicit Meta-δΣ step, is ?z1 y1 y2 :: ?z2 y1 y2 ≈ [y1]. In this case, ?z1 definition is

expanded, leading to the convertible equation (λx1 x2. x1) y1 ≈ y1. ?z2 is instantiated

with a function returning the empty list. Similarly, for the second equation, ?z3 is

instantiated with a function λx1 x2. [x2].

4 Unification modulo β-reduction and η-expansion

The first extension we do to the algorithm presented in Section 3 is to allow for

β-reductions and η-expansions. We will use the exact same calculus as in Section 3,

so we do not need to present it here.

The new rules are listed in Figure 8. The first two rules, Lam-βR and L, apply

one-step β-reduction to each side of the equation. Following, we have η-expansion

(Lam-η rules). These two rules unify a function λx : T . t with a term u. The first

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


16 B. Ziliani and M. Sozeau

Fig. 7. Derivation tree of the unification problem.

Fig. 8. β-reduction and η-expansion.

premise ensures that u’s head is not an abstraction to avoid overlapping with the

Lam-Same rules, otherwise it is possible to build an infinite loop, together with rules

Lam-β. The following two hypotheses ensure that u has product type with T as

domain. First, the type of u is computed as U, and then we ensure U is a product

with domain T by calling the following function:

ensure product(Σ0; Γ;T ;U) = Σ2

where Σ1 = Σ0, ?v : ∀Γ. ∀y : T . Type for fresh ?v

and Σ1; Γ 	 U ≈ ∀y : T . ?v bΓ y � Σ2

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 17

This function returns the result of unifying U with a product type with domain

T and unknown range ?v. For this, the meta-context Σ0 is extended with ?v having

function type ∀Γ. ∀y : T . Type. That is, ?v has access to variables in the context Γ

plus the new variable y.

The Lam-β rules introduce a new overlap with the rule App-FO. The algorithm first

tries App-FO, and if it fails then it tries the Lam-β rules. There is also a new overlap

among the Lam-β and the Lam-η rules, when having a β-redex on one side and an

abstraction on the other. In this case, the wise thing to do is to assign a priority to

the rules. Our algorithm performs η-expansion last in the hope that β-reducing first

will reveal the abstraction that will match that of the other side. But, ultimately, the

set of solutions is the same if η-expansion is attempted first.

We show an example from the Mathematical Components library (Gonthier et al.,

2008) featuring β-reductions.

Example 5 (Unification problems featuring β-reductions)

The example comes from proving that subtracting n from m is odd iif XORing the

oddity of m and the oddity of n is true:

odd (m − n) = odd m ⊕ odd n (3)

for any to natural numbers m and n.

We are interested only in the first step of the proof, in which the second argument

of ⊕ is “moved” to the left:

odd (m − n) ⊕ odd n = odd m (4)

This step is performed by the (partial) application of lemma canRL

canRL (odd (m − n)) (odd m) (addbK ) (5)

where

canRL : ∀(f g : bool− > bool) (x y : bool). cancel f g− > f x = y

− > x = g y

addbK : ∀b : bool. cancel (λx : bool. x ⊕ b) (λx : bool. x ⊕ b)

With these ingredients, we show two unification problems that arise from Equation

(5). In this work, we will not explain in detail how the type inference algorithm of

Coq works, and only provide the basics required to understand the examples. When

Coq applies a term like Equation (5) to the goal (3), it proceeds as follows:

1. It computes the type of the head element. In this case, the head element is

canRL and its type is

∀(f g : bool− > bool) (x y : bool). cancel f g− > f x = y− > x = g y

2. For each argument,

• if it is a hole ( ), it generates a fresh meta-variable with the right type,

as a function of the local context. For instance, the first two arguments

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


18 B. Ziliani and M. Sozeau

generate meta-variables ?f and ?g with type

∀m n : bool. bool− > bool

(Equivalent to bool− > bool− > bool− > bool.);

• if it is a term, it unifies its type with the type corresponding to the

argument’s position. For instance, the type of odd (m − n) and odd m is

unified with the type of x and y, respectively (both of type bool).

3. Once every argument is processed, the type of the whole term is unified with

the goal.

The two interesting bits are the unification of the type of addbK with the first

unnamed argument and the unification of the whole term with the goal. The first

one is

cancel (λx : bool. x ⊕ (?b m n)) (λx : bool. x ⊕ (?b m n)) ≈ cancel (?f m n) (?g m n)

(6)

where ?b comes from the hole in (addbK ), and has type ∀m n : bool. bool. The

derivation tree resulting from solving this equation can be seen in Figure 9. In the

figure, non-dependent products T− > U are written ∀ : T . U. Subtraction is noted

subn, equality eq (parameterized over the type of the arguments), and the XOR

operator is addb (for boolean addition). As can be seen in Figure 9, this problem

is merely a structural matching between the two terms, in which ?f and ?g are

instantiated with the same term

fun m n x => addb x (?b m n).

Now for the second equation, remember that we have to unify x = g y with the goal,

where x, y and g are odd (m − n), odd m, and ?g m n, respectively. The unification

problem becomes

odd (m − n) = ?g m n (odd m) ≈ odd (m − n) = odd m ⊕ odd n

The derivation tree is shown in Figure 10. The left-hand sides of the equalities are

exactly the same (odd (m− n)). In the right-hand sides is where we see some action:

the meta-variable ?g is (implicitly) δΣ-reduced in the l.h.s. to expose the function

(λm n x. x ⊕ ?b m n) applied to m, n, and (odd m). At this point, the l.h.s. is

β-reduced three times, until the constant addb occurs on both sides of the equation.

Via App-FO, we arrive at the point in which ?b is instantiated as λm n. odd n.

5 Adding local and global definitions

In this section, we will add an important feature to our language: local and global

definitions. The terms of the language are extended with let − ins:

t, u, T ,U = . . . | let x := t : T in u terms and types

The definitions are “stored” in the local and global context:

Γ = . . . | x := t : T ,Γ local contexts

E = . . . | c := t : T ,E global environment

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 19

Fig. 9. Derivation of unifying the type addbK with the type of the argument in canRL.

Fig. 10. Derivation of a simple unification problem featuring β-reduction.

We add three reduction rules, one to substitute the local definition in the body of

the term (ζ-reduction), and two to expand local and global definitions:

let x := u : T in t �ζ t{u/x}
(x := t : T ) ∈ Γ

x �δΓ t

(c := t : T ) ∈ E

c �δE t

Figure 11 shows the new unification rules. They reduce terms according to the

aforementioned reduction rules, with the sole exception of the Let-Same rule: Instead

of ζ-reducing two let-ins, it tries to unify the definitions and then the bodies in a

context augmented with one of the definitions (it takes the one from the right). This

rule introduces several benefits: First, if the definition is used many times in the

body, it will only be unified once. Second, if the variable of the definition occurs in

the spine of a meta-variable, replacing it for the definition might make the equation

fall outside HOPU (c.f., Section 3.2). Third, it provides solutions structurally similar.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


20 B. Ziliani and M. Sozeau

Fig. 11. Unification rules for local and global definitions.

If the two let-ins fail to unify, the algorithm proceeds to reduce each side with

the Let-ζ rules. Rules Var-δΓ and Const-δE expand local and global definitions,

respectively. As we will see in Section 9, expanding definitions blindly is not a

good idea, so we will present a heuristic that will improve the performance and

coverability of the algorithm.

Additions to intersection and sanitization judgments: The intersection judgment

should consider definitions in the local context:

Intersec-Keep-Def

Γ 	 y ∩ z � Γ′

Γ, x := u : A 	 y, x′ ∩ z, x′ � Γ′, x := u : A

Intersec-Remove-Def

Γ 	 y ∩ z � Γ′ y′ �= z′

Γ, x := u : T 	 y, y′ ∩ z, z′ � Γ′

Similarly, we extend the sanitization judgment with the following rules:

Sanitize-Keep-Def

FV(T ) ⊆ x FV(u) ⊆ x y, x 	 sanitize(Γ) � Γ′

x 	 sanitize(y := u : T ,Γ) � y := u : T ,Γ′

Sanitize-Remove-Def

FV(T ) � x ∨ FV(u) � x x 	 sanitize(Γ) � Γ′

x 	 sanitize(y := u : T ,Γ) � Γ′

6 CCω: the Type hierarchy

The CC as presented so far only admits impredicative constructions, which is fine

if one does not mind identifying different objects of the same type (the natural

semantics of proof objects in this calculus). If we want to extend our calculus with

predicative constructions, then we need to consider the Type hierarchy if we do not

want to get caught by Girard’s Paradox. The sorts of our language are replaced with

s = Type(K
+
) sorts

K = 
 | K + 1


, κ, i, j ∈ � universe levels

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 21

Sorts now include algebraic universes, which represent least upper bounds of a

(non-empty) set of levels or successors of levels. They are used notably to sort

products, e.g., (∀A : Type(i),Type(j)) : Type(i+1, j+1), meaning that the type of

∀A : Type(i),Type(j) is a Type with a level expected to be the greatest among i + 1

and j + 1. The special sort Prop is encoded as Type(0−), where the negative sign

indicates its impredicative nature. For the purpose of unification, it is equivalent to

Type(0).

The unification algorithm must check that universes are treated properly, so we

need to extend it with a new context Φ to handle universe constraints.

Φ = 
| = C universe contexts

C = · | C ∧ 
 O 
′ where O ∈ {=,�, <} constraints

A universe context is basically a set of constraints C on universe levels 
. In

Section 11, we will extend universe contexts to support polymorphic levels. Each

constraint restricts a universe level to be equal, less than or equal, or less than

another level.

The unification judgment is extended to receive and return universe contexts:

Φ; Σ; Γ 	 t1 ≈R t2 � Φ′,Σ′

Where the relation

R = ≡ | �

indicates if were are trying to derive conversion of the two terms or cumulativity, the

subtyping relation on universes.

The new definition for the unification judgment forces us to rewrite the entirety

of the rules we presented in previous sections. However, in order to ease the

presentation, we will only focus on the main changes, and leave the rest of the rules

untouched. The algorithm in full is shown in Appendix A.

Type-Same

Φ′ = 
| = C ∧ u R κ Φ′| =


| = C; Σ; Γ 	 Type(u) ≈R Type(κ) � Φ′; Σ

App-FO

Φ0; Σ0; Γ 	 t ≈R u � Φ1; Σ1 n > 0 Φ1; Σ1; Γ 	 tn ≈‘= un � Φ2; Σ2

Φ0; Σ0; Γ 	 t tn ≈R u un � Φ2; Σ2

Lam-Same

Φ0; Σ0; Γ 	 T ≈‘= U � Φ1; Σ1 Φ1; Σ1; Γ, x : T 	 t ≈R u � Φ2; Σ2

Φ0; Σ0; Γ 	 λx : T . t ≈R λx : U. u � Φ2; Σ2

The rule Type-Same unifies two sorts, according to the relation R. By an invariant

on typing derivations, we know that the right-hand side universe can only be a

single level while the l.h.s. can be the least upper bound of a set of universe levels

or successors iff the relation is cumulativity, and any such � constraints can be

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


22 B. Ziliani and M. Sozeau

Fig. 12. A mutually inductive type: a tree.

translated to a set of atomic � or < constraints (see Sozeau & Tabareau (2014) for

details). The predicate Φ| = denotes satisfiability of the set of constraints in Φ.

For the rest of the rules, the universe context is just threaded along, as can be seen

in the new version of rules App-FO and Lam-Same. More interestingly, the relation R
is treated as follows: For App-FO, the head elements are unified respecting R, while

the arguments must respect strict conversion (‘ =). For Lam-Same, the type of the

arguments are unified using ‘ = while the body respects the given relation. The rest

of the rules are modified accordingly.

7 CIC: Extending CCω with inductive types

In this section, we arrive at the full calculus in which Coq is based on the CIC (The

Coq Development Team, 2012, chap. 4). In essence, it is CCω extended with inductive

types. It also includes co-inductive types, but their formulation is not important for

this work, so it will be omitted.

We show an example of a mutually inductive datatype in Figure 12. It is inspired

by The Coq Development Team (2012, chap. 4). It consist of a tree, which is a node

containing an element and finitely many branch es. Each branch consists of a leaf

or the consing of a tree to a branch. Leafs are allowed to have objects of different

type (B) than objects in trees (A). As an example of a mutually recursive fixpoint,

we show in the same figure how to compute the size of the tree.

The terms (and types) of the language are extended with the following definitions:

t, u, T ,U = . . . | i | k | matchT t with k1 x1 ⇒ t1 | . . . | knxn ⇒ tnend terms and types

| fixj {f1/n1 : T1 := t1; . . . ; fm/nm : Tm := tm}

Terms include inductive type constructors i ∈ I and constructors k ∈ K. In

order to destruct an element of an inductive type, CIC provides regular pattern

matching and mutually recursive fixpoints. Their notation is slightly different from,

but easily related to, the actual notation from Coq. match is annotated with the

return predicate T , meaning that the type of the whole match expression may depend

on the element being pattern matched (as . . . in . . . in standard Coq notation). In the

fix expression, f/n : T := t means that f is a function of type T , with at least n

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 23

Fig. 13. Representation of the tree type in CIC.

arguments, and the nth variable is the decreasing one in the body t (struct in Coq

notation). The subscript j of fix selects the jth function as the main entry point of

the mutually recursive fixpoints.

The global environment E is extended to allow inductive types:

E = . . . | I, E global environment

I = ∀Γ. { i : ∀y : Th. s := {k1 : U1; . . . ; kn : Un} } inductive types

A set of mutually recursive inductive types I is prepended with a list of parameters

Γ. Every inductive type i defined in the set has sort s, with parameters y : Th. It

has a possibly empty list of constructors k1, . . . , kn. For every j, each type Uj of

constructor kj has shape ∀z : U ′. i t1 . . . th. The representation of the example in

Figure 12 in our internal language is presented in Figure 13.

Inductive definitions are restricted to avoid circularity, meaning that every type

constructor i can only appear in a strictly positive position in the type of every

constructor. For the purpose of this work, understanding this restriction is not

crucial, and we refer the interested reader to (The Coq Development Team, 2012,

chap. 4). Additionally, fixpoints on inductive types must pass the guard condition

(ibid., Section 4.5.5) to be accepted by the kernel, a syntactic criterion ensuring

termination. We will come back to this point in Section 15.

Reduction of fixpoints and matches is performed with the ι-reduction:

matchT kj t with k x ⇒ u end �ι uj{t/xj}
F = f/n : T := t an = kj t

fixj {F} a �ι tj{fixm {F}/fm} a

When the scrutinee of the match is constructor kj applied to terms t, the cor-

responding branch uj is returned, replacing every variable in the pattern with

t. For fixpoints, the body tj of the jth function defined in F is returned, sub-

stituting each occurrence of recursive calls fm with the fixpoint definition for

that m.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


24 B. Ziliani and M. Sozeau

Fig. 14. Unifying terms sharing the same head constructor.

As for unification (Fig. 14), we extend the rule Rigid-Same to also consider

inductive types and constructors. Additionally, we have new rules Case-Same and

Fix-Same which unify matches and fixpoints, respectively, by unifying pointwise

every component of the term constructors. Finally, we have two rules to perform

ι-reductions, one on each side of the equation (Case-ι).

8 Canonical structures resolution

We mentioned in the introduction the overloading mechanism known as CS. The

example, which we revisit here, was the typical overloading of the (decidable) equality

operator.

Example 6 (Overloading of equality operator)

We define the eqType structure, similar to the Eq typeclass in Haskell:

Structure eqType := EqType { sort : Type;

equal : sort → sort → bool }

A Structure in Coq, also known as a record type in systems like Agda, is just

syntactic sugar for an inductive type with only one constructor, and with projections

generated for each argument of the constructor. If we print the generated projector

equal, for instance, we obtain

equal = λe : eqType. match e with | EqType eq ⇒ eq end

We instantiate the structure with equality for booleans and pairs, and made them

canonical :

Definition eqType bool := EqType bool eq bool

Canonical eqType bool

Definition eqType pair (A B : eqType) :=

EqType (sort A × sort B) (eq pair A B)

Canonical eqType pair

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 25

The expected behavior of declaring a definition as canonical is to let the unification

algorithm know that, when the sort of an unknown instance is being matched with a

constant, it should instantiate the unknown with the canonical instance declared with

that same constant. For instance, the declarations above defines instances eq bool

and eq pair as the canonical instances for bool and the × operator, respectively.

With these definitions, the unification algorithm is able to find the missing bit in the

expression equal (b1, b2) (c1, c2), where each variable is of type bool.

Technically, when an instance i of a structure is declared Canonical, Coq will add,

for each projector, a record in the CS database (Δdb). Each record is a triple (p, h, i),

and registers a key consisting of the projector p and the head constructor h of the

value for that projector in the instance, and a value, the instance i itself. Then, at

high level, when the algorithm has to solve an equation of the form h t ≈ p ?x,

it searches for the key (p, h) in the database, finding that ?x should be instantiated

with i. Besides constants, Coq allows three other types of keys: sorts, non-dependent

products, and variables (which turn into default instances matching anything).

The process is formally described in Figure 15. We always start from an equation

of the form:

t′′ ≈ pj p i t

where pj is a projector of a structure, p are the parameters of the structure, i is the

instance (usually a meta-variable), and t are the arguments of the projected value,

in the case when it has product type. In order to solve this equation, the algorithm

proceeds as follows:

1. First, a constant cι is selected from Δdb, keying on the projector pj and the head

element h of t′′. Its body is a function taking arguments x : T and returning

the term k p′ v, with k the constructor of the structure, p′ the parameters of

the structure and v the values for each of the fields of the structure.

2. Then, the expected and inferred universe instances and parameters of the

instance are unified, after replacing every argument x with a corresponding

fresh meta-variable ?y.

3. According to the class of h, the algorithm considers different rules:

a. CS-Const if h is a constant c.

b. CS-Prod if h is a non-dependent product t → t′.

c. CS-Sort if h is a sort s.

If these do not apply, then it tries CS-Default.

4. Next, the term t′′ is unified with the corresponding projected term in the value

of the instance for the jth field. If t′′ is a constant c applied to arguments u,

and the value vj of the jth field of ι is c applied to u′, then arguments u and u′

are unified. If t′′ is a product with premise t and conclusion t′, they are unified

with the corresponding terms (u and u′) in vj .

5. The instance of the structure i is unified with the instance found in the database,

ι, applied to the meta-variables ?y. Typically, i is a meta-variable, and this step

results in instantiating the meta-variable with the constructed instance.

6. Finally, for CS-Const only, if the jth field of the structure has product type,

and is applied to t′ arguments, then these arguments are unified with the

arguments t of the projector.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


26 B. Ziliani and M. Sozeau

Fig. 15. Canonical structures resolution.

We only show the rules in one direction, with the projector on the right-hand side,

but the algorithm also includes the rules in the opposite direction.

Figure 16 shows the derivation tree for the example posed at the beginning

of the section. For readability, we left out the spine of variables applied to each

meta-variable. They play no role in this derivation.

9 Controlled backtracking

In Sections 5 and 7, we incorporated several reduction strategies (δΓ, δΣ, ι), without

any consideration of the performance penalty that this process may incur. However,

if at every unfolding of a constant, fixpoint evaluation, or case analysis, we consider

again the whole set of rules, backtracking at every mismatch, it is quite easy to

trash the performance of the algorithm. Therefore, a heuristic to reduce terms

after a δΓ, δΣ, ι step is needed, taking into account that we might miss solutions

if we reduce them too much, as already pointed out when introducing controlled

backtracking in Section 1.

In this section, we introduce changes to the rules Case-ι and Cons-δ. The high-

level idea will be to stop reducing when the algorithm finds a constant (or defined

variable). More precisely, for Case-ι, we want to be able to reduce the scrutinee of a

case, or the argument of a fixpoint, using all reduction rules, including δE and δΓ,

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 27

Fig. 16. Example of CS resolution for equality.

Fig. 17. The θ-reduction strategy.

and then (if applicable), continue reducing the corresponding branch of the match

or the body of the fix, but avoiding δE and δΓ.

We illustrate this desired behavior with a simple example using CS. Consider the

environment E = d := 0; c := d, where there is also a structure with projector proj.

Suppose further that there is a canonical instance i registered for proj and d. Then,

the algorithm should succeed finding a solution for the following equation:

match c with 0 ⇒ d | ⇒ 1 end ≈ proj ?f (7)

where ?f is an unknown instance of the structure. More precisely, we expect the

left-hand side to be reduced as

d ≈ proj ?f

therefore enabling the use of the canonical instance i to solve ?f.

This is done in the new Case-ι rules shown in Figure 18 by weak-head normalizing

the l.h.s. using the standard βζδΣι reduction rules plus a new reduction rule, θ,

which weak-head normalizes scrutinees (Figure 17). Note that we really need this

new reduction rule: We cannot consider weak-head reducing the term using δE,

as it will destroy the constant d in the example above, nor restrict reduction of

the scrutinee to not include δE, as it will be too restrictive (disallowing δE in the

reduction on the l.h.s. makes Equation (7) not unifiable).

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


28 B. Ziliani and M. Sozeau

Fig. 18. New unification rules for reduction.

In Equation (7), we have a match on the l.h.s., and a constant on the r.h.s. (the

projector). By giving priority to the ι reduction strategy over the δE one we can be

sure that the projector will not get unfolded beforehand, and therefore the canonical

instance resolution mechanism will work as expected. Different is the situation when

we have constants on both sides of the equation. For instance, consider the following

equation:

c ≈ proj ?f (8)

in the same context as before. Since there is no instance defined for c, we expect the

algorithm to unfold it, uncovering the constant d. Then, it should solve the equation,

as before, by instantiating ?f with i. If the projector is unfolded first instead, then

the algorithm will not find the solution. The reason is that the projector unfolds to

a case on the unknown ?f:

c ≈ match ?f with Constr a1 . . . an ⇒ aj end

(Assuming the projector proj corresponds to the j-th field in the structure, and

Constr is the constructor of the structure.) Now the canonical instance resolution

will fail to see that the right-hand side is (was) a projector, so after unfolding c and

d on the left, the algorithm will give up and fail.

In this case, we cannot just simply rely on the ordering of rules, since that

would make the algorithm sensitive to the position of the terms. In order to solve

Equation (8) above, for instance, we need to prioritize reduction on the l.h.s. over

the r.h.s., but this prioritization will have a negative impact on equations having the

projector on the left instead of the right. The solution is to unfold a constant on

the r.h.s. only if the term does not “get stuck”, that is, does not evaluate to certain

values, like an irreducible match. More precisely, we define the concept of “being

stuck” as

is stuck t = ∃t′ t′′. t�0..1
δE,δΓ t′ ∧ t′ ↓w

βζιθ t
′′ and the head

of t′′ is a variable, case, fix, or abstraction

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 29

That is, after performing an (optional) δE or δΓ step and βζιθ-weak-head reducing

the definition, the head element of the result is tested to be a match, fix, variable

or a λ-abstraction. Note that the reduction will effectively stop at the first head

constant, without unfolding it further. This is important, for instance, when having

a definition that reduces to a projector of a structure. If the projector is not exposed,

and is instead reduced, then some canonical solution may be lost.

The rule Cons-δNotStuckR unfolds the right-hand side constant only if it will not

get stuck. If it is stuck, then the rule Cons-δStuckL triggers and unfolds the left-hand

side, which is precisely what happened in the example above. The rules Cons-δ are

triggered as a last resort. This controlled unfolding of constants, together with CS

resolution, is what allows the encoding of sophisticated meta-programming idioms

in Gonthier et al. (2013a). In Section 16, we show in detail an example of this type

of meta-programming.

10 Heuristics for Meta-variable instantiation

We mentioned in Section 3 that meta-variables can only be instantiated with closed

terms, which forces the creation of meta-variables having product type abstracting

every variable from the local context. This treatment of meta-variables is easy to

understand and implement, but very inefficient and leading to unnecessarily large

terms. For instance, remember Example 4. The equation to solve there was

?z1 y1 y2 ∈ ((?z1 y1 y2 :: ?z2 y1 y2) ++ ?z3 y1 y2) ≈ y1 ∈ ([y1] ++ [y2])

And the solution generated by the algorithm was

?z1 := λx1 x2. x1

?z2 := λx1 x2. []

?z3 := λx1 x2. [x2]

Substituting these meta-variables in the term on the left of the original equation,

we obtain the fairly unreadable term (remember, the user might stumble across this

term!):

(λx1 x2. x1) y1 y2 ∈ (((λx1 x2. x1) y1 y2 :: (λx1 x2. []) y1 y2) ++ (λx1 x2. [x2]) y1 y2)

Instead, we would like our term to look like the original one:

y1 ∈ ((y1 :: []) ++ ([y2])

Not only because it is cleaner to read; also because it avoids unnecessary β-reduction,

like two of the three reductions in Figure 10.

One option is to force β-reduction when δΣ-expanding a meta-variable. But that

does not solve the performance problem, and might reduce a function where it

should not. After all, which abstractions should be considered part of the “local

context” of the meta-variable, and be reduced to obtain a more “natural-looking”

term? Coq solves this issue by encoding meta-variables with contextual types.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


30 B. Ziliani and M. Sozeau

The definition of the meta-context changes to

Σ = · | ?x : T [Ψ],Σ | ?x := t : T [Ψ],Σ

Ψ = Γ

where type T and term t must have all of their free variables bound within the local

context Ψ. In this work, we borrow the notation T [Ψ] from Contextual Modal Type

Theory (Nanevski et al., 2008).

The definition of terms also has to change to accommodate for the new definition.

Since meta-variables are no longer defined as abstractions of the local context, we

have to somehow specify what is the relation between the local context and the

meta-variable context. This is done with what is called a suspended substitution,

which is nothing more than a list of terms.

t, u, T ,U = . . . | ?x[σ] terms and types

σ = t

The expansion of the definition of a meta-variable in a term changes to

?x[σ]�δΣ t{σ/bΨ} if ?x := t : T [Ψ] ∈ Σ

That is, every variable in the domain of Ψ is replaced with the terms from σ.

In the simple examples shown so far, the local context of meta-variables played no

role but, as we are going to see in the next example, they prevent illegal instantiations

of meta-variables. For instance, such illegal instantiations could potentially happen

if the same meta-variable occurs at different locations in a term, with different

variables in the scope of each occurrence. We illustrate this point with an example

taken from Ziliani et al. (2015). Suppose the function f is defined locally as follows:

f := λw : nat. ( : nat)

The accessory typing annotation provides the expected type for the meta-variable.

Assuming no other variables occur in scope, after elaboration f becomes

f := λw : nat. ?v[w] (9)

for some fresh meta-variable ?v. Since any instantiation of ?v may only refer to w,

its type becomes nat[w : nat]. This contextual type specifies precisely that ?v may

only be instantiated with a term of type nat containing at most a single free variable

w of type nat. In the elaborated term (9), [w] stands for the suspended substitution

specifying how to transform such instantiation into one that is well-typed under the

current context. In this case, this substitution is the identity, because the current

context and the context under which ?v was created are identical (in fact, the latter

is a copy of the former).

Now suppose that we define functions g and h referring to f:

g := λx y : nat. f x h := λz : nat. f z

and proceed to unify g with a function projecting the first argument:

g ≈ λx y : nat. x

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 31

After unfolding the definition of g (Cons-δL), it compares the two lambda abstrac-

tions (Lam-Same twice), pushing x and y in the local context. The new equation to

solve becomes

f x ≈ x

After unfolding f and β-reducing the left-hand side (Cons-δL and Lam-βL), we are

left with the following equation:

?v[x] ≈ x

At this point is where the contextual type of ?v comes into play. If meta-variables

were created with a normal type, that is, not having contextual type (and suspended

substitution), and were allowed to be defined with an open term, it would seem

that the only solution for ?v is x. However, that solution would break the definition

of h since x is not in scope there. Given the contextual information, however,

Coq will correctly realize that ?v should be instantiated with w, not x. Under that

instantiation, g will normalize to λx y : nat. x, and h will normalize to λz : nat. z.

The suspended substitution and the contextual type are the tools that the

unification algorithm uses to know how to instantiate the meta-variable. The decision

to solve ?v[x] ≈ x by instantiating ?v : nat[w : nat] with w is due to the problem

falling in the pattern unification subset (c.f., Section 3). When Coq faces a problem

of the form

?u[y1, . . . , yn] ≈ e

where the y1, . . . , yn are all distinct variables, then the most general solution to the

problem is to invert the substitution and apply it on the right-hand side of the

equation, in other words instantiating ?u with e{x1/y1, . . . , xn/yn}, where x1, . . . , xn
are the variables in the local context of ?u (and assuming the free variables of e are

in {y1, . . . , yn}).
In the example above, at the point where Coq tries to unify ?u[x] ≈ x, the

solution (through inversion) is to instantiate ?u with x{w/x}, that is, w.

Meta-variables and goals: Meta-variables with contextual types are actually used in

Coq to represent not only unification variables but also goals in interactive proof

mode. One can hence expect meta-variables to have a long lifespan, be seen from the

user-level interface (they can be named in Coq for example), be dependent on each

other, and persist across tactic invocations. Historically, Coq had another unifier

using untyped, context-free meta-variables for the specific purpose of tactics (e.g.,

apply does not use the same algorithm as type inference). These light meta-variables

were expected to have a short lifespan and be used in a restricted context with few

dependencies and a common scope, but meta-variables with contextual types were

already needed to handle more complex scenarios. Our work aims at making those

untyped meta-variables disappear by having a common algorithm for tactics and

type inference/elaboration using contextual meta-variables.

In the following subsections, we introduce different modifications and additions

to the algorithm in order to deal with contextual types, at the same time enhancing

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


32 B. Ziliani and M. Sozeau

Fig. 19. Unification of the same meta-variable.

Fig. 20. Example from mathematical components using Meta-Same-Same rule in

conjunction of the new definition of Intersec-Keep.

the algorithm to solve a broader set of equations. For brevity, we will only provide

rules where the meta-variable is on the r.h.s. (rules ending with R).

10.1 Improving META-SAME

In Section 3, the rule Meta-Same intersected the arguments of the (same) meta-

variable, using the intersection judgment from Abel & Pientka (2011). In this

section, we consider a different rule. When the algorithm is faced with the following

equation:

?x[σ] t ≈ ?x[σ′] u

only the suspended substitutions are intersected. In order to compensate for not

intersecting the arguments, we allow for solvable differences (that is, arguments that

are convertible or unifiable). Additionally, we broaden the intersection judgment

to consider general terms and not only variables, as it is a problem that arises

frequently.

The new definitions are given in Figure 19. We include a little optimization:

If both substitutions have the same terms, no intersection (and therefore no new

meta-variable) is generated (rule Meta-Same-Same).

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 33

Fig. 21. Example from the mathematical components library using Meta-Same rule in

conjunction with the Intersec-Remove-Aggressive rule.

It is valid to ask how important is to consider general terms in the intersection

judgment. Figure 20 shows an example taken from the matrix library of the

Mathematical Components. In this example, the meta-variable ?X has in its

suspended substitution terms like m′.+1 (the successor of m′), which are not

just variables. In this particular example, the two substitutions are equal, so the

intersection judgment returns the same context and the rule Meta-Same-Same applies.

The intersection rules shown in Figure 19 preserve solutions. However, they cannot

handle a case that arise often in practice. Our algorithm allows for a more aggressive

version in which terms (and not only variables) are removed if they are not equal:

Intersec-Remove-Aggressive

Γ 	 σ ∩ σ′ � Γ′ t �= t′

Γ, x : T 	 σ, t ∩ σ′, t′ � Γ′

For instance, Figure 21 shows another example taken from the Mathematical

Components library, in which one of the terms in the substitution is m on the left,

and its successor on the right. The rule Intersec-Remove-Aggressive removes this

element from the substitution, perhaps losing solutions. As it turns out, in practice

it rarely misses a solution, and when it does, it is possible to help the algorithm find

the solution (c.f., Section 10.4).

10.2 Improving the META-INST rules

We make several enhancements to the instantiation rule, trying to maintain the

“spirit” of the rule: only find a solution when there is not (much) place for

ambiguities.

Meta-InstR

?x : T [Ψ] ∈ Σ0

t′, z′ = remove tail(t; z) t′ ↓w
β t′′ Σ0 	 prune(?x; y, z′; t′′) � Σ1 Σ1; Γ 	 z′ : U

t′′′ = (λw : U. Σ1(t
′′)){y, z′/Ψ̂, w}−1 Σ1; Ψ 	 t′′′ : T ′ Σ1; Ψ 	 T ′ ≈� T � Σ2

Σ0; Γ 	 t ≈R ?x[y] z � Σ2 ∪ {?x := t′′′}

Remember from Section 3 that the Meta-Inst rules instantiate a meta-variable

applying a variation of HOPU. They unify a meta-variable ?x with some term

t, obtaining an MGU. (A caveat: in this section, we will get almost a MGU.)

As required by HOPU, the meta-variable is applied to a suspended substitution

mapping variables to variables, y, and a spine of arguments z, of variables only.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


34 B. Ziliani and M. Sozeau

Assuming ?x has (contextual) type T [Ψ], this rule must find a term t′′′ to instantiate

?x such that

t ≈ ?x[y] z

that is, after performing the suspended substitution y and applying arguments z

(formally, t′′′{y/Ψ̂} z), results in a term convertible to t.

Having contexts Σ0 and Γ, the new term t′′′ is crafted from t following these steps:

1. To avoid unnecessarily η-expanded solutions, the term t and arguments z are

decomposed using the function remove tail(·; ·):

remove tail(t x; z, x) = remove tail(t; z) if x �∈ FV(t) ∧ x �∈ z

remove tail(t; z) = (t, z) in any other case

This function, applied to t and z, returns a new term t′ and a list of variables

z′, where there exists z′′ such that t = t′ z′′ and z = z′, z′′, and z′′ is the longest

such list. For instance, in the following example,

?f[] x y ≈ addn x y

where addn is the addition operation on natural numbers, we want to remove

“the tail” on both sides of the equation, leading to the natural solution

?f[] := addn. In this example, z′ is the empty list, z′′ is [x, y], and t′ is addn.

The check that x �∈ FV(t) and x �∈ z in the first case above ensures that no

solutions are erroneously discarded. Consider the following equation:

?f[] x ≈ addn0 x x

If we remove the argument of the meta-variable, we will end up with the

unsolvable equation ?f[] ≈ addn0 x .

2. The term obtained in the previous step is weak head β normalized, noted

t′ ↓w
β t′′. This is performed in order to remove false dependencies, like variable

x in (λy. 0) x.

3. The meta-variables in t′′ are pruned. This process is quite involved, and detailed

examples can be found in Abel & Pientka (2011). The formal description will

be discussed below.

At high level, the pruning judgment ensures that the term t′′ has no “offending

variables”, that is, free variables outside of those occurring in the substitution

y, z′. It does so by removing elements from the suspended substitutions

occurring in t′′, containing variables outside of y, z′. For instance, in the

example ?f[] x ≈ addn0 ?u[x, y], the variable y has to be removed from the

substitution on the r.h.s. since it does not occur in the l.h.s.. Similarly, if the

meta-variable being instantiated occurs inside a suspended substitution, it has

to be removed from the substitution to avoid a circularity in the instantiation.

The output of this judgment is a new meta-context Σ1.

4. The final term t′′′ is constructed as

(λw : U. Σ1(t
′′)){y, z′/Ψ̂, w}−1

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 35

First, note that t′′′ has to be a function taking n arguments w, where n = |z′|.
The list of types of w comes from the types of variables z′ (noted Σ1; Γ 	 z′ : U).

The body of this function is the term obtained from the second step, t′′, after

its defined meta-variables are normalized with respect to the meta-context

obtained in the previous step, noted Σ1(t
′′), in order to replace the meta-

variables with the pruned ones. This step effectively removes false dependencies

on variables not occurring in y, z′. The final term is obtained applying the

inverse substitution (defined in Section 3), in which each variable in y, z′ are

replaced with variables in the local context of the meta-variable bΨ and the

(freshly introduced) variables w.

5. Finally, the type of t′′′, which now only depends on the context Ψ, is computed

as T ′, and unified with the type of ?x, obtaining a new meta-context Σ2.

In the special case where t′′′ is itself a meta-variable of type an arity (an n-ary

dependent product whose codomain is a sort), we do not directly force the type

of the instance T ′ to be smaller than T , which would unnecessarily restrict the

universe graph. Instead, we downcast T and T ′ to a smaller type according

to the cumulativity relation before converting them. The idea is that, if we are

unifying meta-variables ?x and ?y, with ?x : Type(i)[Γ] and ?y : Type(j)[Γ′],

the body of ?x and ?y just has to be of type Type(k) for some k � i, j.

The algorithm outputs Σ2 plus the instantiation of ?x with t′′′.

Pruning: Figure 22 shows the actual process of pruning. The pruning judgment is

noted

Σ 	 prune(?x; y; t) � Σ′

It takes a meta-context Σ, a meta-variable ?x, a list of variables y, the term to

be pruned t and returns a new meta-context Σ′, which is an extension of Σ where

all the meta-variables with offending variables in their suspended substitution are

instantiated with pruned ones.

For brevity, we only show rules for the CC, i.e., without considering pattern

matching and fixpoints. The missing rules are easy to extrapolate from the given

ones. The only interesting case is when the term t is a meta-variable ?z applied to

the suspended substitution σ. We have two possibilities: either every variable from

every term in σ is included in y, in which case we do not need to prune (Prune-

Meta-NoPrune), or there exists some terms which have to be removed (pruned) from

σ (Prune-Meta).

These two rules use an auxiliary judgment to prune the local context of the

meta-variable Ψ0. This judgment has the form:

Ψ 	 prune ctx(?x; y; σ) � Ψ′

Basically, it filters out every variable in Ψ where σ has an offending term, that is, a

term with a free variable not in y, or having ?x in the set of free meta-variables. Ψ′

is the result of this process.

Coming back to the rules in Figure 22, in Prune-Meta-NoPrune, we have the

condition that the pruning of context Ψ0 resulted in the same context (no need for

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


36 B. Ziliani and M. Sozeau

Fig. 22. Pruning of meta-variables.

a change). More interestingly, when the pruning of Ψ0 results in a new context Ψ1,

Prune-Meta does the actual pruning of ?z. Similarly to the rule Meta-Same, it first

sanitizes the new context Ψ1, obtaining a new context Ψ2, then it ensures that the

type T is valid in Ψ2, by pruning variables outside Ψ2, and finally instantiates the

meta-variable ?z with a fresh meta-variable ?u, having contextual type T [Ψ2].

It is important to note that, due to conversion, the process of pruning may lose

solutions. For instance, consider the following equation:

π1(0, ?x[n]) ≈ ?y[]

The pruning algorithm will remove n from ?x, although another solution exists by

reducing the l.h.s., assigning 0 to ?y.

10.3 First-order approximation

The rules Meta-Inst only applies if the spine of arguments of the meta-variable only

have variables. This can be quite restrictive. Consider for instance the following

equation that tries to unify an unknown function, applied to an unknown argument,

with the term 1 (expanded to S 0):

S 0 ≈ ?f[] ?y[]

As usual, such equations have multiple solutions, but there is one that is “more
natural”: assign S to ?f and 0 to ?y. However, since the argument to the meta-

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 37

variable is not a variable, it does not comply with HOPU, and therefore is not
considered by the Meta-Inst rules. In a scenario like this, the Meta-FO rules perform
a first-order approximation:

Meta-FOR

?x : T [Ψ] ∈ Σ0 0 < n Σ0; Γ 	 u u′
m ≈R ?x[σ] � Σ1 Σ1; Γ 	 u′′

n ≈≡ tn � Σ2

Σ0; Γ 	 u u′
mu

′′
n ≈R ?x[σ] tn � Σ2

It unifies the meta-variable (?f in the equation above) with the term on the l.h.s.

without the last n arguments (S), which are in turn unified pointwise with the n

arguments in the spine of the meta-variable (0 and ?y[], respectively). Note that

the rule App-FO does not subsume this rule, as App-FO requires both terms being

equated to have the same number of arguments.

10.4 Meta-variable dependencies erasure

If Meta-Inst and Meta-FO do not apply, the algorithm makes a somewhat brutal

attempt. The rule Meta-DelDepsR shown below chops off every element in the

substitution that is not a variable, or that is a duplicated variable. Therefore,

problems not complying with HOPU can be reconsidered. Like Meta-FO, this rule

fixes an arbitrary solution where many solutions may exist, which might not be the

one expected by the user. But, as we are going to see in Section 14, the solution

selected works more often than not.

Meta-DelDepsR

?x : T [Ψ] ∈ Σ0 l = [i | σi is variable and �j > i. σi = (σ, u)j]

· 	 sanitize(Ψ| l) � Ψ′ Σ0 	 prune(?x; Ψ̂′;T ) � Σ1

Σ1 ∪ {?y : Σ1(T )[Ψ′], ?x := ?y[bΨ′]}; Γ 	 t ≈ ?y[σ| l] u � Σ2

Σ0; Γ 	 t ≈ ?x[σ] u � Σ2

Formally, this rule first takes each position i in σ such that σi is a variable with no

duplicated occurrence in σ, u. The resulting list l containing those positions is used to

filter out the local context of the meta-variable, Ψ, noting it as Ψ| l . After sanitizing

this context, we obtain context Ψ′. We prune offending variables in T not in Ψ′, and

create a fresh meta-variable ?y in this restricted local context. ?x is instantiated with

this meta-variable. The new meta-context obtained after this instantiation is used to

recursively call the unification algorithm to solve the problem t ≈ ?y[σ| l] u, where

σ| l is the restriction of σ to positions in l.

Following we analyze, for the Mathematical Components library (version 1.4),

different cases where this rule is effectively used (totaling +300 lines of the library),

and study alternatives to avoid it if one wishes for a more “principled” algorithm.

Non-dependent if−then−elses: Most notably, two thirds of the cases in which rules

Meta-DelDeps are required are Ssreflect’s if−then−elses. In Ssreflect—the main

component of the Mathematical Components library—the type of the branches

of an if are assumed to depend on the conditional. For instance, the example

if b then 0 else 1 fails to compile if the Ssreflect library is imported and the rule

is switched off. With Ssreflect, a fresh meta-variable ?T is created for the type of

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


38 B. Ziliani and M. Sozeau

the branches, with contextual type Type[b : true]. When unifying it with the actual

type of each branch, b is substituted by the corresponding boolean constructor. This

results in the following equations:

?T [true] ≈ nat ?T [false] ≈ nat

Since they are not of the form required by HOPU, our algorithm (without the

Meta-DelDeps rules) fails.

False dependency in the in modifier: A less common issue comes from the in modifier

in Ssreflect’s rewrite tactic. This modifier allows the selection of a portion of the

goal to perform the rewrite. For instance, if the goal is 1 + x = x + 1 and we want

to apply commutativity of addition on the term on the right, we can perform the

following rewrite:

rewrite [in X in = X]addnC

With the rule, our algorithm instantiates X with the r.h.s. of the equation, and

rewrite applies commutativity only to that portion of the goal. Without it, however,

rewrite fails. In this case, the hole ( ) is replaced by a meta-variable ?y, which is

assumed to depend on X. But X is also replaced by a meta-variable, ?z, therefore

the unification problem becomes

?y[x, ?z[x]] = ?z[x] ≈ 1 + x = x + 1

that, in turn, poses the equation ?y[x, ?z[x]] ≈ 1 + x, which does not have an

MGU.

Non-dependent products: If the rule is switched off, about 30 lines required a simple

typing annotation to remove dependencies in products. Consider the following Coq

term:

∀P x. (P (S x) = True)

When Coq elaborates this term, it first assigns P and x two unknown types, ?T and

?U respectively, the latter depending on P . Then, it elaborates the term on the left

of the equal sign, obtaining further information about the type ?T of P : It has to

be a (possibly dependent) function ∀y : nat. ?T ′[y]. The type of the term on the left

is the type of P applied to S x, that is, ?T ′[S x]. After elaborating the term on the

right and finding out it is a Prop, it unifies the types of the two terms, obtaining the

equation

?T ′[S x] ≈ Prop

Since, again, this equation does not comply with HOPU, it needs Meta-DelDeps to

succeed.

Explicit duplicated dependencies: There are 15 occurrences where the proof developer

wrote explicitly a dependency that duplicates an existing one. Consider for instance

the following rewrite statement:

rewrite [ + w]addnC

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 39

Here, the proof developer intends to rewrite using commutativity on a fragment of

the goal matching the pattern + w. Let’s assume that in the goal there is one

occurrence of addition having w occurring in the right, say t + (w + u), for some

terms t and u. Since the holes ( ) are elaborated as a meta-variable depending on

the entire local context, in this case it will include w. Therefore, the pattern will

be elaborated as ?y[w] + (?z[w] w) (assuming no other variables appear in the

local context). When unifying the pattern with the desired occurrence we obtain the

problem:

?z[w] w ≈ w + u

This equation does not have an MGU, since either w on the l.h.s. can be used as a

representative for the w on the r.h.s.. The rules Meta-DelDeps remove the inner w.

Looking closely into these issues, it seems as if the dependencies were incorrectly

introduced in the first place. It would be interesting to study if such dependencies

can be avoided with little changes to elaboration and the tactics, in order to avoid

relying on Meta-DelDeps to do the “dirty job”.

10.5 Eliminating dependencies via reduction

Sometimes the term being assigned to the meta-variable has variables not occurring

in the substitution, but that can be eliminated via reduction. For instance, take the

following equation:

π1(0, x) ≈ ?g[]

It has a solution, after reducing the term on the l.h.s., obtaining the easily solvable

equation 0 ≈ ?g[]. This is precisely what rules Meta-Reduce do, as a last attempt

to make progress.

Meta-ReduceR

?u : T [Ψ] ∈ Σ0 t
w
�

0..1

δ t′ t′ ↓w
βζιθ t

′′ Σ0; Γ 	 t′′ ≈ ?u[σ] tn � Σ1

Σ0; Γ 	 t ≈ ?u[σ] tn � Σ1

11 Universe polymorphism

In the previous sections, we explained a new unification algorithm that can be used

for Coq version 8.4. But we aim at more; we want to tackle the recently released 8.5

version, and for that we need to take into account one if its major improvements:

universe polymorphism. We use the example in Chapter 29 of Coq’s Reference

Manual3 to understand the limitations of the monomorphic universes presented in

Section 6, and the idea behind universe polymorphism. The polymorphic identity

function, in its traditional, non-universe polymorphic form, is defined as

Definition id := λT (x : T ). x

3 Available online at http://coq.inria.fr/distrib/V8.5rc1/refman/Reference-Manual032.html

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


40 B. Ziliani and M. Sozeau

Implicitly, T has type Type(i) for some universally quantified level i. If we apply

this definition to a kind, say Prop:

Definition idProp := id Prop

Coq creates a new level j for the implicit Type, with the following universe

constraints:

Prop < j ∧ j < i

That is, the level of the implicit Type must be greater than Prop (since we have

Prop : Type(j)), but since it is being the argument of id, it has to be lower than i,

the level coming from id.

But what if we try to apply id to itself? The following definition, although perfectly

valid from a theoretical point of view, is ill-typed:

Definition idid := id id

The reason should be self-evident now: We are asking the implicit type to be greater

than the type of id, which should be at the same time smaller than the type of

id! If we call the implicit type level j ′, Coq is faced with the following, unsolvable,

constraints:

i < j ′ ∧ j ′ < i

The problem comes from using the same level i in the two occurrences of id in the

definition.

In Coq, universe polymorphism allows us to instantiate each occurrence of a

polymorphic universe level with a universally quantified one (implicitly, i.e., without

user interaction). So, for instance, the universe polymorphic identity is declared as

Polymorphic Definition pid := λT (x : T ). x

(Note that the only difference with id is the declaration Polymorphic.) Now Coq

allows the application of pid to itself:

Definition pidpid := pid pid

Behind the scenes, the universe level in the definition of pid is what we call a

flexible universe 
, and is instantiated with different levels in each occurrence of pid.

The unsugared form of pidpid is

pidpid = pid[
] pid[κ]

with the universe context containing the following restriction:

κ < 


That is, without knowing what 
 and κ will be, we know the former has to be larger

than the latter.

Coq also allows inductive types to be universe polymorphic. We have to perform

two changes in the language: extend constants, type constructors and constructors

with a substitution for universe levels (like [
] above), and to extend the universe

context to distinguish flexible levels from rigid ones. Each universe polymorphic

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 41

Fig. 23. Unification of universe polymorphic terms.

constant and inductive type in the global environment is universally quantified with

its universe context.

t, u, T ,U = . . . | c[
] | i[
] | k[
] term and types

Φ = 
| = C universe context

E = · | c : ∀Φ. T , E | c := t : ∀Φ. T , E | I, E | Φ, E global environment

I = ∀Φ,Γ. { i : ∀y : Th. s := {k1 : U1; . . . ; kn : Un} } inductive types

As before, a universe context consists of a list of levels 
 and a set of constraints

C on levels. But now levels in 
 are annotated as flexible (
f) or rigid (
r). This

information is used when unifying two instances of the same constant to avoid

forcing universe constraints that would not appear if the bodies of the instantiations

were unified instead, respecting transparency of the constants. Flexible variables

are generated when taking a fresh instance of a polymorphic constant, inductive

or constructor during elaboration, like 
 and κ in pidpid above, while rigid ones

correspond to user-specified levels or Type annotations.

The δE expansion rule must take into account universe levels, replacing those

levels defined in the environment with the ones applied to the constant:

(c := t : ∀
| = C. T ) ∈ E

c[κ] �δE t{κ/
}

Reduction of pattern-matching and fixpoint constructs is easily extended:

matchT kj[κ] t with k x ⇒ u end �ι uj{t/xj}

F = x/n : T := t an = kj[κ] t

fixj {F} a �ι tj{fixm {F}/xm} a

As binding of universes happens only at the global level (constants or inductives),

local reduction rules do not need to substitute universes.

We extend the algorithm to consider universe polymorphic terms. Figure 23

shows the new and updated rules. Rule Type-Same is equal to the one in Section 6,

but considering the new form of universe contexts. Rigid-Same equates the same

inductive type or constructor, enforcing that their universe instances are equal (note

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


42 B. Ziliani and M. Sozeau

that the application of the rule will fail if these new constraints are inconsistent).

The Flexible-Same rule unifies two instances of the same constant using a stronger

condition on universe instances: They must unify according to the current constraints

and by equating rigid universe variables with flexible variables only (Φ |= i = j checks

if the constraint is already derivable). Otherwise we will backtrack on this rule to

unfold the constant and unify the bodies (Section 5), which will generaly result in

weaker, more general constraints to be enforced.

Following is a simple example showing how backtracking ensures weaker con-

straints when universes cannot be matched:

Example 7 (Unfolding ensures weaker constraints)

Definition weaker : id T := (nat : id Set).

where T : Type(i) for i > 0, and Set is in Coq the name for (predicative) Type(0).

This definition requires the solution to the following equation:

id Type(
) Set ≈� id Type(κ) T

where 
 and κ are universe levels introduced at elaboration for the two in the

definition.

The rule App-FO (c.f., Section 6) compares the heads using cumulativity, and the

arguments using conversion:

id ≈� id (1)

Type(
) ≈≡ Type(κ) (2)

Set ≈≡ T (3)

The first one is solved immediately. The second one forces 
 to be equal to κ. But
in the third one the algorithm fails, because it cannot ensure that Set and T are

equal. Backtracking and unfolding both sides of the equation we obtain the weaker

equation:

Set ≈� T

which is now solvable.

To conclude this section, note that this example was about the monomorphic id

function. What would be different if instead we use the polymorphic pid function?

In essence, the algorithm does the same unfoldings as with id to solve the problem,

although it does so without comparing the arguments. When comparing the head

constants, which are now applied to different flexible variables j and j ′, rule Flexible-

Same cannot enforce the equality of j and j ′ because that requires Set and T being

equal. Therefore, it immediately backtracks and unfolds, as before.

Compared to other solutions implementing universe polymorphism, notably Agda

and Lean’s systems which are based on algebraic universes and a relatively simple

(but necessarily incomplete for type inference) unification, the use of cumulativity

introduces an important difficulty in the implementation: the requirement of a

constraint solving (and checking) algorithm dealing with � constraints efficiently in

the kernel. Since Coq 8.6, this algorithm is based on a state-of-the-art incremental

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 43

algorithm by Bender et al. (2015), implemented by J.-H. Jourdan. This algorithm

uses union-find for equality constraints and clusters �-related universes to allow

both backward and forward search when inserting constraints, obtaining a very low

asymptotic complexity for the most expensive operations on the universe graph.

Still, a universe constraint minimization algorithm is needed to simplify inferred

constraints in a manner similar to greedy subtyping algorithms to avoid a blow-up

in the number of constraints. It sits outside the kernel.

12 Rule priorities and backtracking

The rules shown across the different sections does not precisely nail the priority

of the rules, nor when the algorithm backtracks. Below we show the precise order

of application of the rules, where the rules in the same line are tried in the given

order without backtracking (the first one matching the conclusion and whose side-

conditions are satisfied is used). Rules in different lines or in the same line separated

by | are tried with backtracking (if one fails to apply, the next one is attempted).

Note that if at any point the environment and the two terms to be unified are

ground (they do not contain meta-variables), unification is skipped entirely and a

call to Coq’s efficient conversion algorithm is made instead (Reduce-Same).

Except where noted, the algorithm tries always to perform a step in the right-hand

side prior to the left-hand side. The reason is merely practical: The r.h.s. is often the

term from the goal, while the l.h.s. is the one provided by the user. The algorithm

tries to keep the term given by the user as close as possible to what she wrote.

For the ordering of the rules involving meta-variables, we refer the reader to

Section 10.

1. If a term has a defined meta-variable in its head position, its definition is

exposed:

a. Meta-δR, Meta-δL

2. If the heads of both terms are the same (undefined) meta-variable:

a. Meta-Same-Same, Meta-Same

3. If the heads of both terms are different (undefined) meta-variables:

a. If the suspended substitution of the meta-variable on the left is larger than

the one on the right:

Meta-InstL | Meta-InstR | Meta-FOL | Meta-FOR |
Meta-DelDepsL | Meta-DelDepsR

a. Otherwise:

Meta-InstR | Meta-InstL | Meta-FOR | Meta-FOL |
Meta-DelDepsR | Meta-DelDepsL

4. If one term has an undefined meta-variable, and the other term does not have

a meta-variable in its head position:

Meta-InstR | Meta-FOR | Meta-DelDepsR | Meta-ReduceR |
Lam-ηR | Meta-InstL | Meta-FOL | Meta-ReduceL |
Meta-DelDepsL | Lam-ηL

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


44 B. Ziliani and M. Sozeau

5. Else:

a. If the two terms are not the same constant, it searches for a canonical

instance:

i. (CS-ConstR,CS-ProdR,CS-SortR) | CS-DefaultR

ii. (CS-ConstL,CS-ProdL,CS-SortL) | CS-DefaultL

b. App-FO

c. The remaining rules in the following order, backtracking only if the

hypotheses that are not recursive calls to the algorithm fail to apply:

Lam-βR | Let-ζR | Case-ιR | Lam-βL | Let-ζL | Case-ιL |
Cons-δNotStuckR | Cons-δStuckL | Cons-δR | Cons-δL |
Lam-ηR | Lam-ηL

Constants are unfolded after any other reduction rule (except η-expansion)

for performance reasons, and to avoid missing canonical instances (c.f.,

Section 9). Similarly, the reason for delaying η-expansion as much as possible

is two-fold: It is a costly operation (since it must ensure the term η-expanded

is a product, c.f., Section 4), and it might prevent the use of a canonical

instance, for instance hiding a constant under a λ-abstraction.

13 A deliberate omission: Constraint postponement

The technique of constraint postponement (Dowek et al., 1996; Reed, 2009) is widely

adopted in unification algorithms, including the current algorithm of Coq. It has

however some negative impact in Coq, and, as it turns out, it is not as crucial as

generally believed.

First, let us show why this technique is incorporated into proof assistants.

Sometimes the unification algorithm is faced with an equation that has multiple

solutions, in a context where there should only be one possible candidate. For

instance, consider the following term witnessing an existential quantification:

exist 0 (le n 0) : ∃x. x � x

where exist is the constructor of the type ∃x. P x, with P a predicate over the

(implicit) type of x. More precisely, exist takes a predicate P , an element x, and

a proof that P holds for x, that is, P x. In the example above, we are providing

an underscore in place of P , since we want Coq to find out the predicate, and we

annotate the term with a typing constraint (after the colon) to specify that the whole

term is a proof of existence of a number lesser or equal to itself. In this case, we

provide 0 as such number, and the proof le n 0, which has type 0 � 0.

During typechecking, Coq first infers the type of the term on the left of the colon,

and only then it verifies that this type is compatible (i.e., unifiable) with the typing

constraint. When inferring the type for the term on the left, Coq will create a fresh

meta-variable for the predicate P , let’s call it ?P , and unify ?P 0 with 0 � 0, the type

of le n 0. Without any further information, Coq has four different (incomparable)

solutions for P : λx. 0 � 0, λx. x � 0, λx. 0 � x, λx. x � x.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 45

When faced with such an ambiguity, Coq postpones the equation in the hope that

further information will help disambiguate the problem. In this case, the necessary

information is given later on through the typing constraint, which narrows the set

of solutions to a unique solution.

Constraint postponment has its consequences, though: On one hand, the algorithm

can solve more unification problems and hence fewer typing annotations are required

(e.g., we do not need to specify P ). On the other hand, since constraints are delayed,

the algorithm becomes hard to debug and, at times, slow. The reason for these

assertions comes from the realisation that the algorithm will continue to (try to)

unify the terms, piling up constraints on the way, perhaps to later on find out that,

after all, the terms are not unifiable (or are unifiable only if some decision is taken

on the delayed equations).

When combined with CS resolution, or any other form of proof automation,

this technique is particularly bad, as it may break the assumption that certain

value has been previously assigned. The motivation to omit this technique came

from experience in projects on proof automation by the first author (Gonthier

et al., 2013a; Ziliani et al., 2015), and on bi-directional elaboration by the second

author (in the above example, a bi-directional elaboration algorithm will unify the

type returned by exist with the expected type, and only then unify the type of its

arguments, thereby posing the unification problems in the right order).

Our results (Section 14) show that this technique is not crucial.

14 Evaluation of the algorithm

Since, as we saw in Section 13, our algorithm does not incorporate certain heuristics,

it is reasonable to expect that it will fail to solve several unification problems

appearing in existing libraries. To test our algorithm “in the wild”, we developed

a plugin called UniCoq,4 which, when requested, changes the current unification

algorithm of Coq with ours. With this plugin, we compiled four different libraries,

and evaluated the number of lines that required changes. These changes may be

necessary either because UniCoq found a different solution from the expected one,

or because it found no solution at all. As it turns out, UniCoq solved most of the

problems it encountered.

The first set of files we considered is the standard library of Coq. With UniCoq,

it compiles almost out of the box, with only a few lines requiring extra typing

annotations. We believe the reason for such success is that most of the files in the

library are several years old, and were conceived in older versions of Coq, when it

had a much simpler unification algorithm.

The second set of files come from Adam Chlipala’s book “Certified Programming

with Dependent Types” (CPDT) (Chlipala, 2011). This book provides several

examples of functional programming with dependent types, including several non-

trivial unification patterns coming from dependent matches. As a result, from a total

4 Sources can be downloaded from http://github.com/unicoq .

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


46 B. Ziliani and M. Sozeau

of 6,200 lines, only 14 required extra typing annotations. It is interesting to note

that eight of those lines are solved with the use of a bi-directional elaboration

algorithm (e.g., Asperti et al., 2012) enabled by Coq’s Program keyword. For

instance, some lines construct witnesses for existential quantification, similar to

the example shown in Section 13.

The third one is the Mathematical Components library (Gonthier et al., 2008),

version 1.6. This library presents several challenges, making it appealing for our

purpose: (1) It is a huge development, with a total of 87 theory files. (2) It uses

CS heavily, providing us with several examples of CS idioms that UniCoq should

support. (3) It uses its own set of tactics uniformly calling the same unification

algorithm used for elaboration. This last point is extremely important, although a

bit technical. Truth be told, Coq has actually two different unification algorithms.

One of these algorithms is mainly used by elaboration, and it outputs a sound

substitution (up to bugs). This is the one mentioned in this paper as “the original

unification algorithm of Coq”. The other algorithm is used by most of Coq’s

original tactics (like apply or rewrite), but it is unsound (in Coq 8.4, it may return

ill-typed solutions). Ssreflect’s tactics use the former algorithm which is the one

being replaced by our plugin. From almost 85,000 lines in the library, less than 30

lines required changes.5

The last set of files also focuses in different CS idioms: the files from Lemma

Overloading (Gonthier et al., 2013a). It compiles almost as-is, with only one line

requiring an extra annotation.

The little extra annotations required in these libraries allow us to conclude that

our set of heuristics is a reasonable one.

15 Correctness of the algorithm

In the literature, there are usually two things to say about the correctness of a

unification algorithm. The first one is to characterize the set of solutions, which

usually involves proving that the algorithm generates MGUs. However, as we

mentioned throughout this work, in Coq we do not care about MGUs, since that

will render the algorithm pretty much useless. Several useful heuristics presented

here pick arbitrary yet sensible solutions.

The second thing one might want to prove is the following correctness criterion:

Conjecture 1 (Correctness criterion for unification)

Let Φ,Σ, and Γ be a universe context, a meta-context, and a local context, and let t1
and t2 be two well-typed terms and T1 and T2 its types, i.e.,

Φ; Σ; Γ 	 ti : Ti for i ∈ [1, 2]

and such that they unify under relation R:

Φ; Σ; Γ 	 t1 ≈R t2 � Φ′; Σ′

5 The modified files of the library can be downloaded from https://github.com/unicoq/math-comp/
tree/unicoq

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 47

Fig. 24. Instantiation of the body of a fixpoint with a non-structurally recursive term.

then t1 and t2 are well-typed in the new contexts

Φ′; Σ′; Γ 	 ti : Ti for i ∈ [1, 2]

and are convertible under relation R.

However, this is false—for both the current algorithm implemented in Coq, and

the one described here. The culprit is the syntactic check required at typechecking

to ensure termination of fixpoints, the guard condition. Indeed, it is easy to make

unification instantiate a meta-variable with a term containing a non-structurally

recursive call to a recursive function, resulting in an ill-typed term correctly rejected

by the kernel typechecker.

The following example illustrates this point. It is real Coq code annotated with

the names of the meta-variables used in the derivation tree shown in Figure 24.

Example 8 (Proof of False—rejected by the kernel )

Definition False proof : False :=

let h : (nat → False) → nat → False := (*?X1*) in

let T := fix f (x:nat):False := h f x in

let : h = @id (nat → False) := eq refl (*?X4*) in

T 0.

It creates a fixpoint f with a meta-variable h (?X1) applied to f. Later on h is

instantiated with the identity function, therefore tying the knot. In the code, the

“@” symbol is notation in Coq to explicitly provide every implicit argument, in

this case the polymorphic type of the identity function. eq refl is the proof of

reflexivity.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


48 B. Ziliani and M. Sozeau

Hence, we must weaken this conjecture to use a weaker notion of typing, as in

Coen’s thesis (Sacerdoti Coen, 2004), or restrict unification so that any fixpoint term

given to it is closed w.r.t. meta variables and guarded.

For the moment, we lack a correctness proof, which we are attempting directly

in Coq. This work sets the first stone presenting a specification faithful to an

implementation that performs well on a variety of large examples (Section 14). We

anticipate that, once the basic theory is set, the proof will be simpler than for existing

algorithms, notably due to the lack of postponement which usually complicates the

argument of type preservation.

16 Lemma overloading: proof search during unification

In different examples, we saw how unification was in charge of “filling in” missing

bits of (proof) terms. For instance, in Example 4, the algorithm completed the

missing lists in the proof of list membership. We also saw in Example 6 how

the algorithm is capable of finding the missing code for the equality function,

based on the type of its operands. It was just a matter of time to realize that

it is also possible to find a proof for a lemma based on the terms (or types) of

its arguments, thanks to the proofs-as-programs concept in which CIC is based,

together with the lack of distinction between the syntactical classes of terms and

types.

Gonthier et al. (2011; 2013a) developed this concept, which they called Lemma

Overloading. In particular, they showed how to tackle certain limitations of CS to

transform the unification algorithm into an ad-hoc proof search engine. In this

section, we show some of the main ideas in Gonthier et al. (2013a), focusing on the

aspects of unification that makes Lemma Overloading possible.

We develop an example, again from list membership. Although not a very

interesting problem on its own, it already allows us to present Lemma Overloading

without needing new concepts. For more engaging and realistic problems, we invite

the reader to read Gonthier et al. (2013a).

Let us look again at Example 4. There we were proving that

y1 ∈ ([y1] ++ [y2])

by providing the proof term

inL (in head )

We relied on unification to instantiate all the meta-variables produced by the different

holes ( ) in the term. Now, would it be too much to ask for to also get the whole

proof? This is what Lemma Overloading is about.

We will proceed to explain this technique writing the necessary Coq code to solve

this problem. At high level, we will create structures and canonical instances to build

a search procedure that will look for an element x in a list s, on the way computing

the proof of x ∈ s. (As it turns out, it will be a dependently typed logic program.)

This program will do casing on the list: If it is a concatenation of two lists l and r,

it will first search for x on r, and if it is not there, in l. If the list is the consing of

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 49

Fig. 25. A tagging structure for lists.

Fig. 26. Structure to create the overloaded lemma for list membership.

element y and list l, it will first check if x is equal to y and, if not, look for x in l.

Note that this corresponds precisely to each of the list axioms presented in Figure 1.

The code will look confusing at first, but it should become clear once we tight these

ideas with the heuristics shown in previous sections. We start introducing a tagging

structure (Figure 25), crucial to distinguish the different cases of the algorithm. It

consists of a structure listTag with only one field, in this case a list, named luntag.

It is accompanied with a chain of definitions: rightTag is defined as leftTag, which

is itself defined as foundTag, and so on, until we arrive at the constructor ListTag

of the structure. The top-most definition, rightTag is made Canonical, adding the

triple (luntag, , rightTag) to Δdb, the CS database.

Then, we encode the search procedure in the structure search displayed in

Figure 26. This structure is parameterized over the element we are looking for, x,

and contains two fields: list of , a listTag and the proof of x being in the untagged

list. This field is our overloaded lemma.

This structure contains one canonical instance for each case of the procedure.

Each instance is constructed using one of the tags defined in Figure 25: the instance

tail proof , which constructs a proof using axiom in tail, is constructed using tag

tailTag; the instance found proof , which constructs a proof using axiom in head,

uses foundTag and so on. This has the effect of inserting in the Δdb the triples

(list of , tailTag, tail proof), (list of , foundTag, found proof), etc. And this is the

key to understand the idea behind tagging the list: The database cannot be populated

with the same key twice, and our example requires two instances for consing and

two for appending. With the tags, we managed to create different keys, one for each

of the instances.

With these definitions, we are now able to prove Example 4 simply writing:

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


50 B. Ziliani and M. Sozeau

Example 9 (Proving list membership using an overloaded lemma)

Definition excs : y1 ∈ ([y1] ++ [y2]) := proof .

We can provide an accurate description of what is going on under the hood to

make this proof possible, thanks to the rules provided in previous sections (most

notably, sections 8, 9 and 12). We will omit the suspended substitutions in meta-

variables, as they play no role in the example (every meta-variable instantiation will

follow the higher order pattern restriction).

The proof search starts when the type of proof gets equated with the type of

the example:

?x ∈ (luntag (list of ?f)) ≈ y1 ∈ ([y1] ++ [y2]) (10)

where ?f is the implicit structure ( ) that the CS mechanism must instantiate. After

Equation (10), rule App-FO is triggered, obtaining two sub-equations:

1. ?x ≈ y1

2. luntag (list of ?f) ≈ [y1] ++ [y2]

The first one is solved immediately with Meta-Inst, instantiating ?x with y1. For the

second one, the algorithm must find a canonical instance to solve it. The algorithm

first tries CS-Const but fails: There is no key pairing luntag with ++. Before giving up,

it tries CS-Default, which now finds that there is a default key (luntag, , rightTag).

This rule equates the argument of luntag with the instance rightTag applied to the

term on the r.h.s. ([y1] ++ [y2]):

list of ?f ≈ rightTag ([y1] ++ [y2]) (11)

Now we have again a projector of a structure on the l.h.s. and a constant on

the r.h.s., triggering rule CS-Const. It finds key (list of , rightTag, right proof), and

proceeds to perform the following actions, in order:

1. Generates a fresh meta-variable for each argument of right proof: ?x1, ?l, ?f1.

2. Equates the parameters of right proof to the parameters of ?f:

?x1 ≈ y1

3. Equates the arguments of rightTag in right proof with those in Equation (11):

?l ++ (luntag (list of ?f1)) ≈ [y1] ++ [y2]

4. Equate the argument of list of in Equation (11) with the new instance:

?f ≈ right proof ?x1 ?l ?f1

Step 2 is solved immediately with Meta-Inst. Step 3, thanks to App-FO, will first

assign [y1] to ?l, and then equate

luntag (list of ?f1) ≈ [y2]

Again, because of CS-Default, we obtain the equation

list of ?f1 ≈ rightTag [y2] (12)

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 51

Which, again using CS-Const, generates equation

?l1 ++ luntag (list of ?f2) ≈ [y2]

for fresh ?l1 and ?f2 (Step 3 above). Now the algorithm tries App-FO, but it fails

when comparing the heads (:: and ++). Before giving up, it unfolds the definition of

++ (Cons-δL
6), only to find a pattern matching on the meta-variable ?l1.

Backtracking a bit, it considers again Equation (12) and notices it can δ-reduce

the head constants at either side of the equation. But which one? Here is where the

hypothesis of being stuck comes in handy: On the l.h.s., there is a projection of meta-

variable ?f1, which is therefore stuck. If it unfolds that definition, the algorithm will

miss opportunities for finding more plausible canonical instances. Instead, it proceeds

to unfold the r.h.s. (Cons-δNotStuckR), discovering a new constant:

list of ?f1 ≈ leftTag [y2] (13)

At this point, the algorithm tries again CS-Const, finds triple

(list of , leftTag, left proof), repeating the steps mentioned above for right proof .

But it soon finds out that the head constant is not a concatenation. Fast-forwarding

a bit, it considers again Equation (13), unfolds the r.h.s., obtaining equation:

list of ?f1 ≈ foundTag [y2] (14)

This time it will try to use instance found proof , but since y2 is not the element we

are looking for (y1, the parameter of ?f1), it fails again. After unfolding the r.h.s.

once more, we get tailTag, and the process is repeated only to find out the element

was not there after all.

Backtracking again, we arrive at Equation (11). Using Cons-δNotStuckR, it unfolds

rightTag to get leftTag. The whole process is repeated, this time finding the element

on the list on the left. The whole successful derivation tree is shown in Figure 27

where, for the sake of space, we removed the unification of types in the rule Meta-

Inst, trivial in this example, and we renamed the rules: MI for Meta-Inst, R-Same for

Reduce-Same, FO for App-FO, δNS for Cons-δNotStuckR, and CS for any of the rules

for CS.

The final result can be traced following the names of the meta-variables:

In ?X1 (luntag ( list of ?X2)) ≈ In y1 ([ y1] ++ [y2])

?X1 ≈ y1

?X2 ≈ left proof ?X13 ?X14 ?X15

?X13 ≈ y1

?X14 ≈ [y2]

?X15 ≈ found proof ?X32 ?X33

?X32 ≈ y1

?X33 ≈ []

6 It is interesting to note that both sides of the equation are stuck.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


52 B. Ziliani and M. Sozeau

Fig. 27. Derivation tree of an overloaded lemma in action.

The l.h.s. δΣ-normalizes to

In y1 (luntag ( list of ( left proof y1 [y2] (found proof y1 []))))

The proof is therefore

proof ( left proof y1 [y2] (found proof y1 []))

which effectively normalizes to the proof the user wrote.

17 Related work

The first formal introduction of the problem of unification is due to Robinson

(1965), 50 years ago, making the task of listing related work on the area a rather

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 53

dull and daunting task. Instead, we focus our attention on a set of works that

inspired our work, in the narrower area of higher order unification, and refer the

reader to different books and surveys (Knight, 1989; Baader & Siekmann, 1994;

Baader & Nipkow, 1998; Huet, 2002).

Most of the work in the literature focuses on obtaining MGU, something we

purposely avoid for the sake of usability. That makes our work quite unique.

Nevertheless, we will list several works that are somehow related to ours.

We mentioned already Pfenning (1991). It presents a unification algorithm for

the CC, but without introducing definitions (as in Section 5), and only unifying

β-normal terms. The unification of meta-variables presented in Section 3 is similar

to the one presented in this work.

Definitions were added to the aforementioned work in Pfenning & Schürmann

(1998), taking particular care of when to δ-unfold constants. More precisely, they

consider a class of definitions which are strict; a semantic subclass of terms in which

injectivity is guaranteed, that is, it is valid that

c t ≈ c u =⇒ t ≈ u

and therefore if t �≈ u, then the algorithm fails without unfolding c. Our algorithm

always unfolds constants, therefore potentially considering again the unification of t

and u, which can be a major performance bottleneck. But it is not so easy to port the

ideas from Pfenning & Schürmann (1998) to our setting, most notably because of

CS resolution (see e.g., Section 16). Ultimately, it might be just a case of narrowing

the notion of strict terms, although if it ends up being too narrow it might end up

pretty much useless.

Some of the problems adapting Huet’s algorithm to a richer language with

dependent types were discussed in Elliott (1989).

Dowek et al. (1996) introduced constraint postponement, although with a subtle

error making the algorithm non-terminating. This work was fixed by Reed (2009)

and further used by Norell (2007) in Agda for example. In a sense, our work

goes in the opposite direction, forbidding constraint postponement (Section 13) and

fixating solutions where multiple solutions exists (rule Meta-DelDeps, Section 10).

We must note that our algorithm might non-terminate on certain inputs. First,

because the language allows for fixpoints, which are hard to check for termination

in the presence of meta-variables (Section 15), and second because CS incorporates

a Turing complete machine to the unification algorithm (as a matter of fact, the

first interpreter of the language Mtac (Ziliani et al., 2013; Ziliani et al., 2015) was

created using CS!).

The pruning judgment, the intersection judgment, and the inversion of substitution

are modified versions of those in Abel & Pientka (2011). Abel & Pientka (2011)

presents an algorithm for unification for λΠΣ, with the novelty of performing η-

expansion for Σ-types. We have not considered yet the inclusion of such rule.

CS were introduced in Säıbi (1999, chap. 4), although at a much higher level and

with a different order in which subproblems are considered. Matita’s hints are a

similar concept developed by Asperti et al. (2009).

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


54 B. Ziliani and M. Sozeau

The elaboration mechanism for the Lean theorem prover is presented in de

Moura et al. (2015), putting special emphasis on the different mechanisms, such as

overloading and the unification algorithm. With respect to unification, they restrict

themselves to a somewhat naive, Huet-style algorithm. They claim they do not

require the several heuristics presented in our work, in particular stressing that the

simple representation of meta-variables like the one presented in Section 3 suffices

for their needs. We think that the richer approach of using contextual types for

meta-variables, used in several of the aforementioned works and in ours, allows for

useful heuristics like Meta-DelDeps (Section 10), but ultimately more study on the

trade-offs of each representation should be performed.

For λProlog, Dunchev et al. (2015) created recently a fast interpreter, which

includes a fast HO-unification algorithm. The key insight of this work is to note

that there is a large fraction of λProlog programs that admits linear time unification.

An important design decision when building the interpreter was to realize that de

Bruijn levels (in opposition to the commonly used de Bruijn indices) has better

properties for a fast unification algorithm. We based our work in the current

implementation of Coq, and therefore we did not explore different representations

of terms (Coq’s internal representation of terms is using de Bruijn indices). It

might be worth the effort to study optimizations like the ones proposed in this

work.

Universe polymorphism was first introduced by Harper & Pollack (1991) where

they study a variant of the CC with universe polymorphism, definitions and typical

ambiguity. The version implemented in Coq by Sozeau & Tabareau (2014) removes

some of the restrictions in that work (e.g., variables couldn’t be polymorphic),

and changes the philosophy of the system to allow polymorphism everywhere, in

particular not unfolding polymorphic definitions in types, which would be very

expensive in practice. As we saw, this requires a subtle approach during unification

(Section 11).

When it comes to the verification and the correct construction of a unification

algorithm, Paulson (1985) provides a formalization of the algorithm in LCF’s at

the time. More recently, Vezzosi7 formalized in Agda a simple algorithm featuring

HOPU.

18 Closing remarks

We presented the first formalization of a realistic unification algorithm for Coq,

featuring overloading and universe polymorphism. Moreover, we give a precise

characterization of controlled backtracking (Section 9), which, together with over-

loading (Section 8), allow us to explain the patterns introduced in Gonthier et

al. (2013a) (Section 16). The algorithm presented in this work is predictable, in

the sense that the order in which subproblems are evaluated can be deduced

directly from the rules. In particular, we have not introduced the technique of

7 https://github.com/Saizan/miller

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 55

constraint postponement, which reorders unification subproblems (Section 13). This

omission, made in favor of predictability, has shown not to be problematic in practice

(Section 14).

The algorithm includes a heuristic, incarnated in the rules Meta-DelDeps, that

forces a non-dependent solution where multiple solutions might exist. We have

studied various scenarios where it is being used, and shown that this heuristic

can be replaced in most cases by smarter tactics and elaboration algorithms

(Section 10.4).

The ideas presented in this work were built from the ground up, starting from the

basic CC (Section 3) up to the full CIC implemented by Coq (Sections 7–11).

In the future, we plan to prove soundness of the algorithm (see Section 15), and

to improve its performance to make it significantly faster than the current algorithm

of Coq.

Acknowledgments

We are deeply grateful to Georges Gonthier for his suggestion on adding the Meta-

DelDeps rules, Enrico Tassi for carefully explaining the θ reduction strategy and its

use, and Andreas Abel, Derek Dreyer, Hugo Herbelin, Aleksandar Nanevski, Scott

Kilpatrick, Viktor Vafeiadis for their important feedback on earlier versions of this

work. We are also thankful to the anonymous reviewers of the ICFP’15 paper for

their input. And with special gratitude for the anonymous reviewers of the present

work for helping polish this long article.

References

Abel, A. & Pientka, B. (2011) Higher-order dynamic pattern unification for dependent types

and records. In Proceedings of International Conference on Typed Lambda Calculi and

Applications (TLCA). Berlin, Heidelberg: Springer, pp. 10–26.

Asperti, A., Coen, C. S., Tassi, E. & Zacchiroli, S. (2006) Crafting a proof assistant. In Berlin,

Heidelberg: Springer-Verlag, ed. Altenkirch, Thorsten and McBride, Conor, pp. 18–32.

Asperti, A., Ricciotti, W., Coen, C. S. & Tassi, E. (2009) Hints in unification. In TPHOLs, ed.

Berghofer, Stefan, Nipkow, Tobias, Urban, Christian, Wenzel, Makarius, LNCS, vol. 5674.

Berlin, Heidelberg: Springer, pp. 84–98.

Asperti, A., Ricciotti, W., Coen, C. S. & Tassi, E. (2012) A bi-directional refinement algorithm

for the calculus of (co)inductive constructions. Log. Methods Comput. Sci. (LMCS)

8(1), 1–49.

Baader, F. & Nipkow, T. (1998) Term Rewriting and All That. New York, NY, USA: Cambridge

University Press.

Baader, F. & Siekmann, J. H. (1994) Handbook of Logic in Artificial Intelligence and Logic

Programming. New York, NY, USA: Oxford University Press, Inc.

Bender, M. A., Fineman, J. T., Gilbert, S. & Tarjan, R. E. (2015) A new approach to

incremental cycle detection and related problems. ACM Trans. Algorithms 12(2), 14:

1–14:22.

Brady, E. (2013) Idris, a general-purpose dependently typed programming language: Design

and implementation. J. Funct. Program. (JFP) 23, pp. 552–593.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


56 B. Ziliani and M. Sozeau

Cervesato, I. & Pfenning, F. (2003) A linear spine calculus. J. Log. Comput. 13(5),

639–688.

Chlipala, A. (2011) Certified Programming with Dependent Types. MIT Press. Available at:

http://adam.chlipala.net/cpdt/.

de Moura, L., Avigad, J., Kong, S. & Roux, C. (2015) Elaboration in dependent type theory.

Arxiv e-prints, May.

Dowek, G., Hardin, T., Kirchner, C. & Pfenning, F. (1996) Unification via explicit substitutions:

The case of higher-order patterns. In Proceedings of lics’95. IEEE Computer Society Press,

Washington, DC, USA, pp. 36637–4, 366–381.

Dunchev, C., Guidi, F., Sacerdoti Coen, C. & Tassi, E. (2015) Elpi: Fast, embeddable, λprolog

interpreter. In Logic for Programming, Artificial Intelligence, and Reasoning, Davis, M.,

Fehnker, A., McIver, A. & Voronkov, A. (eds), Lecture Notes in Computer Science, vol.

9450. Berlin, Heidelberg: Springer, pp. 460–468.

Elliott, C. M. (1989) Higher-order unification with dependent function types. In Proceedings

of 3rd International Conference Rewriting Techniques and Applications, LNCS, vol. 355.

Berlin, Heidelberg: Springer-Verlag, pp. 121–136.

Garillot, F. (2011 December) Generic Proof Tools and Finite Group Theory. PhD Thesis, Ecole

Polytechnique X.

Garillot, F., Gonthier, G., Mahboubi, A. & Rideau, L. (2009) Packaging mathematical

structures. In TPHOL. ed. Berghofer, Stefan, Nipkow, Tobias, Urban, Christian, Wenzel,

Makarius: Springer, pp. 327–342.

Gonthier, G., Mahboubi, A. & Tassi, E. (2008) A Small Scale Reflection Extension for the Coq

System. Technical Report, INRIA.

Gonthier, G., Ziliani, B., Nanevski, A. & Dreyer, D. (2011) How to make ad hoc

proof automation less ad hoc. In Proceedings of Inernational Conference of Functional

Programming (ICFP). New York, NY, USA: ACM, pp. 163–175.

Gonthier, G., Ziliani, B., Nanevski, A. & Dreyer, D. (2013a) How to make ad hoc proof

automation less ad hoc. J. Funct. Program. (JFP) 23(04), 357–401.

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux, S., Mahboubi,

A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev, A., Tassi, E. & Théry, L.

(2013b) A machine-checked proof of the odd order theorem. In ITP. ed. Blazy, Sandrine,

Paulin-Mohring, Christine, Pichardie, David. Springer, pp. 163–179.

Harper, R. & Pollack, R. (1991) Type checking with universes. Theor. Comput. Sci. 89(1),

107–136.

Huet, G. P. (2002) Higher order unification 30 years later. In Proceedings of the 15th

International Conference on Theorem Proving in Higher Order Logics. In TPHOLs ’02.

London, UK: Springer-Verlag, pp. 3–12.

Knight, K. (1989) Unification: A multidisciplinary survey. ACM Comput. Surv. 21(1),

93–124.

Mahboubi, A. & Tassi, E. (2013) Canonical Structures for the working Coq user. In ITP. ed.

Blazy, Sandrine, Paulin-Mohring, Christine, Pichardie, David. Springer, pp. 19–34.

Miller, D. (1991) Unification of simply typed lamda-terms as logic programming. In ICLP.

ed. Beaumont, Anthony and Gupta, Gopal, MIT Press, pp. 255-269.

Nanevski, A., Pfenning, F. & Pientka, B. (2008) Contextual modal type theory. ACM Trans.

Comput. Logic 9(3), pp. 23:1–23:49.

Norell, U. (2007) Towards a Practical Programming Language Based on Dependent Type

Theory. PhD Thesis, Chalmers University of Technology.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 57

Norell, U. (2009) Dependently typed programming in Agda. In Types in Language Design

and Implementation (TLDI). ed. Pieter Koopman, Rinus Plasmeijer, and Doaitse Swierstra,

ACM, pp. 230–266.

Paulson, L. C. (1985) Verifying the unification algorithm in lcf. Sci. Comput. Program. 5(2),

143–169.

Peyton Jones, S., Vytiniotis, D., Weirich, S. & Washburn, G. (2006) Simple unification-

based type inference for GADTs. In Proceedings of Inernational Conference of Functional

Programming (ICFP). New York, NY, USA: ACM. pp. 50–61.

Pfenning, F. (1991) Unification and anti-unification in the calculus of constructions. In

Proceedings of 6th Annual IEEE Symposium on Logic in Computer Science, Ieee Computer

Society, Washington, D.C., United States, pp. 74–85.

Pfenning, F. & Schürmann, C. (1998) Algorithms for equality and unification in the presence

of notational definitions. In Types for Proofs and Programs, ed. Altenkirch, Thorsten and

Naraschewski, Wolfgang and Reus, Bernhard, LNCS. Springer-Verlag, p. 1657.

Reed, J. (2009) Higher-order constraint simplification in dependent type theory. In Proceedings

of the Fourth International Workshop on Logical Frameworks and Meta-Languages: Theory

and Practice (LFMTP). New York, NY, USA: ACM, pp. 49–56.

Robinson, J. A. (1965) A machine-oriented logic based on the resolution principle. J. ACM

(JACM) 12(1), 23–41.

Sacerdoti Coen, C. (2004) Mathematical Knowledge Management and Interactive Theorem

Proving. PhD Thesis, University of Bologna.

Säıbi, A. (1999) Outils Generiques de Modelisation et de Demonstration Pour la Formalisation

des Mathematiques en Theorie des Types. Application a la Theorie des Categories. PhD

Thesis, University Paris 6.

Sozeau, M. & Tabareau, N. (2014) Universe polymorphism in Coq. In Proceedings of

International Conference on Interactive Theorem Proving (ITP). Berlin, Heidelberg,

Springer, pp. 499–514.

The Coq Development Team. (2012) The Coq Proof Assistant Reference Manual – Version

V8.4. Available at: http://coq.inria.fr/V8.4/CREDITS.

Wadler, P. & Blott, S. (1989) How to make ad-hoc polymorphism less ad hoc. In Proceedings

of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

New York, NY, USA: ACM, pp. 60–76.

Ziliani, B. & Sozeau, M. (2015) A unification algorithm for Coq featuring universe

polymorphism and overloading. In Proceedings of the International Conference of

Functional Programming (ICFP). New York, NY, USA: ACM, pp. 179–191.

Ziliani, B., Dreyer, D., Krishnaswami, N. R., Nanevski, A. & Vafeiadis, V. (2013) Mtac: A

monad for typed tactic programming in Coq. In Proceedings of the 18th ACM SIGPLAN

International Conference on Functional Programming (ICFP), New York, NY, USA: ACM,

pp. 87–100.

Ziliani, B., Dreyer, D., Krishnaswami, N., Nanevski, A. & Vafeiadis, V. (2015) Mtac: A monad

for typed tactic programming in Coq. J. Funct. Program. (JFP), Cambridge University

Press, 25.

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


58 B. Ziliani and M. Sozeau

A The full unification algorithm

A.1 The language

t, u, T ,U = x | c[
] | i[
] | k[
] | s | ?x[σ] terms and types

| ∀x : T . U | λx : T . t | t u | let x := t : T in u

| matchT t with k1 x1 ⇒ t1 | . . . | kn xn ⇒ tn end

| fixj {x1/n1 : T1 := t1; . . . ; xm/nm : Tm := tm}
σ = t suspended substitutions

s = Type(K
+
) sorts

K = κ | K + 1


, κ ∈ � ∪ 0− universe levels

Φ = 
”| = ”C universe contexts

C = · | C ∧ 
 O 
′ where O ∈ {=,�, <} universe constraints

Γ,Ψ = · | x : T ,Γ | x := t : T ,Γ local contexts

Σ = · | ?x : T [Ψ],Σ | ?x := t : T [Ψ],Σ meta-contexts

E = · | c : ∀Φ. T , E | c := t : ∀Φ. T , E | I, E | Φ, E global environment

I = ∀Φ,Γ. { i : ∀y : Th. s := {k1 : U1; . . . ; kn : Un} } inductive types

A.2 Reduction rules

(λx : T . t) u �β t{u/x} let x := u : T in t �ζ t{u/x}
(x := t : T ) ∈ Γ

x �δΓ t

?x := t : T [Ψ] ∈ Σ

?x[σ] �δΣ t{σ/bΨ}
(c := t : ∀
| = C. T ) ∈ E

c[κ] �δE t[κ/
]

matchT kj[κ] t with k x ⇒ u end �ι uj{t/xj}

F = x/n : T := t an = kj[κ] t

fixj {F} a �ι tj{fixm {F}/xm} a

t ↓w
βζδι kj a

matchT t with k x ⇒ t′ end�θ matchT kj[κ] a with k x ⇒ t′ end

anj ↓w
βζδι k b

fixj {F} a1 . . . anj �θ fixj {F} a1 . . . anj−1 (k b)

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 59

A.3 Unification algorithm

Type-Same

C′ = C ∧ u R κ C′| =


| = C; Σ; Γ 	 Type(u) ≈R Type(κ) � 
| = C′; Σ

Var-Same

Φ; Σ; Γ 	 x ≈R x � Φ; Σ

Rigid-Same

h ∈ I ∪ K C1 = C0 ∧ κ = κ′ C1 |=
(
| = C0); Σ; Γ 	 h[κ] ≈R h[κ′] � (
| = C1); Σ

Flexible-Same

h ∈ C Φ0 |= 
 = κ � Φ1

Φ0; Σ; Γ 	 h[
] ≈R h[κ] � Φ1; Σ

Univ-Eq

Φ |= i = j

Φ |= i = j � Φ

Univ-Flexible

if‘Vjf ∈ 
 C ∧ i = j |=
(
| = C) |= i = j � (
| = C ∧ i = j)

Prod-Same, Lam-Same

Π ∈ {λ, ∀} Φ0; Σ0; Γ 	 T1 ≈‘= U1 � Φ1; Σ1 Φ1; Σ1; Γ, x : T1 	 T2 ≈R U2 � Φ2; Σ2

Φ0; Σ0; Γ 	 Πx : T1. T2 ≈R Πx : U1. U2 � Φ2; Σ2

Let-Same

Φ0; Σ0; Γ 	 T ≈‘= U � Φ1; Σ1 Φ1; Σ1; Γ 	 t2 ≈‘= u2 � Φ2; Σ2

Φ2; Σ2; Γ, x := t2 	 t1 ≈R u1 � Φ3; Σ3

Φ0; Σ0; Γ 	 let x := t2 : T in t1 ≈R let x := u2 : U in u1 � Φ3; Σ3

Case-Same

Φ0; Σ0; Γ 	 T ≈‘= U � Φ1; Σ1

Φ1; Σ1; Γ 	 t ≈‘= u � Φ2; Σ2 Φ2; Σ2; Γ 	 b ≈‘= b′ � Φ3; Σ3

Φ0; Σ0; Γ 	 matchT t with b end ≈R matchU u with b′ end � Φ3; Σ3

Fix-Same

Φ0; Σ0; Γ 	 T ≈‘= U � Φ1; Σ1 Φ0; Σ1; Γ 	 t ≈‘= u � Φ2; Σ2

Φ0; Σ0; Γ 	 fixj {x/n : T := t} ≈R fixj {x/n : U := u} � Φ2; Σ2

App-FO

Φ0; Σ0; Γ 	 t ≈R u � Φ1; Σ1 n � 0 Φ1; Σ1; Γ 	 tn ≈‘= un � Φ2; Σ2

Φ0; Σ0; Γ 	 t tn ≈R u un � Φ2; Σ2

Meta-δR, Lam-βR, Let-ζR

Σ; Γ 	 u
w
�δΣ,β,ζ u′

Φ; Σ; Γ 	 t ≈R u′ � Φ′; Σ′

Φ; Σ; Γ 	 t ≈R u � Φ′; Σ′

Meta-δL, Lam-βL, Let-ζL

Σ; Γ 	 t
w
�δΣ,β,ζ t′

Φ; Σ; Γ 	 t′ ≈R u � Φ′; Σ′

Φ; Σ; Γ 	 t ≈R u � Φ′; Σ′

Case-ιR
u is fix or match Σ; Γ 	 u ↓w

βζδΣιθ u
′

u �= u′ Φ; Σ; Γ 	 t ≈R u′ � Φ′; Σ′

Φ; Σ; Γ 	 t ≈R u � Φ′; Σ′

Case-ιL
t is fix or match Σ; Γ 	 t ↓w

βζδΣιθ t
′

t �= t′ Φ; Σ; Γ 	 t′ ≈R u � Φ′; Σ′

Φ; Σ; Γ 	 t ≈R u � Φ′; Σ′

Cons-δNotStuckR

not Σ; Γ 	 is stuck u u
w
�δE,δΓ u′

Σ; Γ 	 u′ ↓w
βζδΣιθ u

′′ Φ; Σ; Γ 	 t ≈R u′′ � Φ′; Σ′

Φ; Σ; Γ 	 t ≈R u � Φ′; Σ′

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


60 B. Ziliani and M. Sozeau

Cons-δStuckL

Σ; Γ 	 is stuck u t
w
�δE,δΓ t′

Σ; Γ 	 t′ ↓w
βζδΣιθ t

′′ Φ; Σ; Γ 	 t′′ ≈R u � Φ′; Σ′

Φ; Σ; Γ 	 t ≈R u � Φ′; Σ′

Cons-δR

not t
w
�δE,δΓ t′ u

w
�δE,δΓ u′

Σ; Γ 	 u′ ↓w
βζδΣιθ u

′′ Φ; Σ; Γ 	 t ≈R u′′ � Φ′; Σ′

Φ; Σ; Γ 	 t ≈R u � Φ′; Σ′

Cons-δL

not u
w
�δE,δΓ u′ t

w
�δE,δΓ t′

Σ; Γ 	 t′ ↓w
βζδΣιθ t

′′ Φ; Σ; Γ 	 t′′ ≈R u � Φ′; Σ′

Φ; Σ; Γ 	 t ≈R u � Φ′; Σ′

Lam-ηR

u’s head is not an abstraction Σ0; Γ 	 u : U

ensure product(φ0; Σ0; Γ;T ;U) = (φ1; Σ1) φ1; Σ1; Γ, x : T 	 u x ≈R t � φ2; Σ2

φ0; Σ0; Γ 	 u ≈R λx : T . t � φ2; Σ2

Lam-ηL

u’s head is not an abstraction Σ0; Γ 	 u : U

ensure product(φ0; Σ0; Γ;T ;U) = (φ1; Σ1) φ1; Σ1; Γ, x : T 	 t ≈R u x � φ2; Σ2

φ0; Σ0; Γ 	 λx : T . t ≈R u � φ2; Σ2

ensure product(
| = C; Σ0; Γ;T ;U) = (φ2; Σ2)

where φ1 = 
, i| = C for fresh universe level i

and Σ1 = Σ0, ?v : Type(i)[Γ, y : T ] for fresh ?v

and φ1; Σ1; Γ 	 U ≈‘= ∀y : T . ?v[bΓ, y] � φ2; Σ2

Meta-Same-Same

Φ; Σ; Γ 	 t ≈‘= u � Φ′; Σ′

Φ; Σ; Γ 	 ?x[σ] t ≈R ?x[σ] u � Φ′; Σ′

Meta-Same

?x : T [Ψ1] ∈ Σ Ψ1 	 σ ∩ σ′ � Ψ2 · 	 sanitize(Ψ2) � Ψ3

FV(T ) ⊆ Ψ3 Φ; Σ ∪ {?y : T [Ψ3], ?x := ?y[cΨ3]}; Γ 	 t ≈‘= u � Φ′; Σ′

Φ; Σ; Γ 	 ?x[σ] t ≈R ?x[σ′] u � Φ′; Σ′

Intersec-Nil

· 	 · ∩ · � ·

Intersec-Keep

Γ 	 σ ∩ σ′ � Γ′

Γ, x : A 	 σ, t ∩ σ′, t � Γ′, x : A

Intersec-Remove

Γ 	 σ ∩ σ′ � Γ′ y �= z

Γ, x : T 	 σ, y ∩ σ′, z � Γ′

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 61

Intersec-Keep-Def

Γ 	 σ ∩ σ′ � Γ′

Γ, x := u : A 	 σ, t ∩ σ′, t � Γ′, x := u : A

Intersec-Remove-Def

Γ 	 σ ∩ σ′ � Γ′ y �= z

Γ, x := u : T 	 σ, y ∩ σ′, z � Γ′

Meta-InstR

?x : T [Ψ] ∈ Σ0 t′, z′ = remove tail(t; z) t′ ↓w
β t′′

Σ0 	 prune(?x; y, z′; t′′) � Σ1 Σ1; Γ 	 z′ : U t′′′ = (λw : U. Σ1(t
′′)){y, z′/Ψ̂, w}−1

Σ1; Ψ 	 t′′′ : T ′ Φ; Σ1; Ψ 	 T ′ ≈� T � Φ′; Σ2

Φ; Σ0; Γ 	 t ≈R ?x[y] z � Φ′Σ2 ∪ {?x := t′′′}

Meta-FOR

?x : T [Ψ] ∈ Σ0

0 < n Φ0; Σ0; Γ 	 u u′
m ≈‘= ?x[σ] � Φ1; Σ1 Φ1; Σ1; Γ 	 u′′

n ≈‘= tn � Φ2; Σ2

Φ0; Σ0; Γ 	 u u′
mu

′′
n ≈R ?x[σ] tn � Φ2; Σ2

Meta-DelDepsR

?x : T [Ψ] ∈ Σ0 l = [i | σi is variable and �j > i. σi = (σ, u)j]

· 	 sanitize(Ψ| l) � Ψ′ Σ0 	 prune(?x; Ψ̂′;T ) � Σ1

Σ1 ∪ {?y : Σ1(T )[Ψ′], ?x := ?y[bΨ′]}; Γ 	 t ≈ ?y[σ| l] u � Σ2

Σ0; Γ 	 t ≈ ?x[σ] u � Σ2

Meta-ReduceR

?u : T [Ψ] ∈ Σ0 t
w
�

0..1

δ t′ t′ ↓w
βζιθ t

′′ Φ0; Σ0; Γ 	 t′′ ≈R ?u[σ] tn � Φ1; Σ1

Φ0; Σ0; Γ 	 t ≈R ?u[σ] tn � Φ1; Σ1

Sanitize-Nil

ξ 	 sanitize(·) � ·

Sanitize-Keep

FV(T ) ⊆ x y, x 	 sanitize(Γ) � Γ′

x 	 sanitize(y : T ,Γ) � y : T ,Γ′

Sanitize-Remove

FV(T ) � x x 	 sanitize(Γ) � Γ′

x 	 sanitize(y : T ,Γ) � Γ′

Sanitize-Keep-Def

FV(T ) ⊆ x FV(u) ⊆ x y, x 	 sanitize(Γ) � Γ′

x 	 sanitize(y := u : T ,Γ) � y := u : T ,Γ′

Sanitize-Remove-Def

FV(T ) � x ∨ FV(u) � x x 	 sanitize(Γ) � Γ′

x 	 sanitize(y := u : T ,Γ) � Γ′

Prune-Rigid

h ∈ s ∪ C
Σ 	 prune(?x; y; h) � Σ

Prune-Var

x ∈ y

Σ 	 prune(?x; y; x) � Σ

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


62 B. Ziliani and M. Sozeau

Prune-Lam, Prune-Prod

Π ∈ {λ, ∀} Σ 	 prune(?x; y, z; t) � Σ′

Σ 	 prune(?x; y; Πz. t) � Σ′

Prune-Let

Σ0 	 prune(?x; y; t2) � Σ1

Σ1 	 prune(?x; y, z; t1) � Σ2

Σ0 	 prune(?x; y; let z := t2 in t1) � Σ2

Prune-App

Σ0 	 prune(?x; y; t) � Σ1

Σi 	 prune(?x; y; ti) � Σi+1 i ∈ [1, n]

Σ0 	 prune(?x; y; t tn) � Σn+1

Prune-Meta-NoPrune

?z : T [Ψ0] ∈ Σ ?x �= ?z

Ψ0 	 prune ctx(?x; y; σ) � Ψ0

Σ 	 prune(?x; y; ?z[σ]) � Σ

Prune-Meta

?u : T [Ψ0] ∈ Σ ?x �= ?z Ψ0 	 prune ctx(?x; y; σ) � Ψ1

· 	 sanitize(Ψ1) � Ψ2 Σ 	 prune(?x;cΨ2;T ) � Σ′

Σ 	 prune(?x; y; ?z[σ]) � Σ′, ?u : Σ′(T )[Ψ2] ∪ {?z := ?u[cΨ2]}

PruneCtx-Nil

· 	 prune ctx(?x; y; ·) � ·

PruneCtx-NoPrune

FV(t) ⊆ y ?x �∈ FMV(t) Ψ 	 prune ctx(?x; y; σ) � Ψ′

Ψ, z : A 	 prune ctx(?x; y; σ, t) � Ψ′, z : A

PruneCtx-Prune

FV(t) � y ∨ ?x ∈ FMV(t) Ψ 	 prune ctx(?x; y; σ) � Ψ′

Ψ, x : A 	 prune ctx(?x; y; σ, t) � Ψ′

Lookup-CS

(pj , h, cι) ∈ Δdb Φ1, ι = fresh(Φ0, cι) ι�δE λx : T . k[κ′] p′ v

Σ1 = Σ0, ?y : T Φ1 |= κ = κ′ � Φ2 Φ2; Σ1; Γ 	 p ≈‘= p′{?y/x} � Φ3; Σ2

Φ0; Σ0 	 (pj , κ, p, h) ∈? Δdb � Φ3,Σ2, ι ?y, vj{?y/x}

CS-ConstR

Φ0; Σ0 	 (pj , κ, p, c) ∈? Δdb � Φ1,Σ1, ι, c[
′] u′

Φ1 |= 
 = 
′ � Φ2 Φ2; Σ1; Γ 	 u ≈‘= u′ � Φ3; Σ2

Φ3; Σ2; Γ 	 i ≈‘= ι � Φ4; Σ3 Φ4; Σ4; Γ 	 t′ ≈‘= t � Φ5; Σ4

Φ0; Σ0; Γ 	 c[
] u t′ ≈R pj[κ] p i t � Φ5; Σ4

CS-ProdR

Φ0; Σ0 	 (pj , κ, p,→) ∈? Δdb � Φ1,Σ1, ι, u → u′ Φ1; Σ1; Γ 	 t ≈‘= u � Φ2; Σ2

Φ2; Σ2; Γ 	 t′ ≈R u′ � Φ3; Σ3 Φ3; Σ3; Γ 	 i ≈‘= ι � Φ4; Σ4

Φ0,Σ0; Γ 	 t → t′ ≈R pj[κ] p i � Φ4; Σ4

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028


A comprehensible guide to a new unifier for CIC 63

CS-SortR

Φ0; Σ0 	 (pj , κ, p, s) ∈? Δdb � Φ1,Σ1, ι, vj
Φ1; Σ1; Γ 	 s ≈R vj � Φ2; Σ2 Φ2; Σ2; Γ 	 i ≈‘= ι � Φ3; Σ3

Φ0; Σ0; Γ 	 s ≈R pj[κ] p i � Φ3; Σ3

CS-DefaultR

Φ0; Σ0 	 (pj , κ, p, ) ∈? Δdb � Φ1,Σ1, ι, vj
Φ3; Σ2; Γ 	 t ≈R vj � Φ4; Σ3 Φ4; Σ3; Γ 	 i ≈‘= ι � Φ5; Σ4

Φ0; Σ0; Γ 	 t ≈R pj[κ] p i � Φ5; Σ4

https://doi.org/10.1017/S0956796817000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000028

