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GLOBAL EXISTENCE AND CONVERGENCE OF
SOLUTIONS OF THE CALABI FLOW
ON EINSTEIN 4-MANIFOLDS

SHU-CHENG CHANG!

Abstract. In this paper, firstly, we show the Bondi-mass type estimate of
solutions of Calabi flow on closed 4-manifolds. Secondly, in our applications, we
obtain the long time existence on closed 4-manifolds. In particular, we are able
to show the asymptotic convergence of a subsequence of solutions of the Calabi
flow on closed Einstein 4-manifolds.

§1. Introduction

Let (M, [go]) be a closed smooth n-manifold with a given conformal
class [go]. We consider the scalar curvature functional on [go]:

fM R*dp
( Ju d:“) g

Then the Euler-Lagrange equation of £ is given by

E(g) = g € [g0]-

AR — BR?* + pr =0,

where dy = dpg, A = Ay, R is the scalar curvature with respect to the

metric g, r = ( [y, R*dp)/( [y, dp) and 8= (n —4)/4(n - 1).
Now consider the negative gradient flow of £ on a closed smooth n-
manifold M with a fixed conformal class [go]:

(1.1) % =2(AR — BR* + fr)g.

For g € [go], we may write g = e** gy, for a smooth function

A: M x[0,00) — R.
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Then equations (1.1) reduce to the following initial value problem of fourth
order parabolic equation on (M, [go]):

ox 9
5 = (AR—BR* 4+ 6r),

(1.2) 9=1¢"g0; Ap,0) = Xo(p),

/ " dpug = / dio,

where dpg is the volume element of gg.
In particular, 8 = 0 for n = 4, we will consider the following equation
on closed 4-manifolds (M4, [go]):

O\
A _A
ot A,
(1.3) 9=1¢"g0; Ap,0) = Xo(p),

/ e duo—/ dpg.
M4 M4

The parabolic equation (1.3) is so-called Calabi flow in case of Kaehler
surfaces with the fixed Kaehler class due to E. Calabi ([Cal, [Ch2], [Ch3]).

For n = 2 and 3, based on the Bondi-mass type estimate of solutions
of (1.2) and [Chru], the present author proved the long time existence and
asymptotic convergence of solutions of (1.2). We refer to [CW] and [Ch5]
for details.

In this paper, firstly, we show the Bondi-mass type estimate of solutions
of the Calabi flow (1.3) as in Corollary 2.3. Secondly, based on Corollary 2.3
and elliptic Moser iteration plus blowing-up argument as in [Chl], we have
the CY-bound and Wi 2-norms bounds as in Theorem 3.6 and Theorem 3.7.
Then the long time existence of solutions of (1.3) was claimed. Finally, we
show the asymptotic convergence of solutions of (1.3) if the background
metric gg is Einstein.

Let @ be the Yamabe constant on (M4, [go]) which is conformal invari-
ant

. By, ()
M, = inf ——90 77
Q(M, go) :;r;so (f\‘PH dﬂo)l/Q

0
where Ey,(¢) = [ |Vel* duo + § [ Row® dpo.
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THEOREM 1.1.  Let (M, go) be a closed 4-manifold and X satisfy (1.3)
on [0,T). Then the solution of (1.3) exists on M x [0,00). Moreover, if go
is an Einstein metric, there exists a subsequence of solutions {62>‘(t)go} of
(1.3) on M x [0,00) which converges smoothly to one of the constant scalar
curvature metric goo -

Remark 1.1. In case of Kaehler surfaces with the fixed Kaehler class,
we have the similar results as in Theorem 1.1 with the stability condition
on the tangent bundle ([Ch2]).

One may think the problem here to be more difficult compare the second
order parabolic equations, due to a lack of the maximum principle for fourth
order parabolic equations. Then in order to estimate the CY-bound, we
will apply the elliptic Moser iteration method plus the blow-up argument
([Ch1)).

In Section 2, we will derive the so-called Bondi-mass type estimate of
equation (1.3) from the Bochner formula. In Section 3, based on [Chl],
[CY], we obtain the C%-bound via elliptic Moser iteration and the blow-up
argument. Then the higher order W}, >-norms estimates of the solutions for
(1.3) will follow easily from [CW] and [Chru]. Finally, we have the long-time
existence of solutions of (1.3).

In Section 4, we are able to show the asymptotic convergence of a
subsequence of solutions of (1.3) if the background metric gy is Einstein.

Acknowledgements. I would like to express my thanks to Prof. S.-
T. Yau for constant encouragement and for the hospitality during his visit
at Harvard University.

§2. Bondi-mass type estimates of solutions of the Calabi flow

In this section, we will derive the key estimate of equation (1.3) from
the Bochner formula as in Lemma 2.2. This is so-called the Bondi-mass
type estimate as in [Ch5] and [CW].

For g = e?*gy, Ry = Ry,, we have the following formulae for (1.3):

(2.1) R =Ry =e2(Ry— 6A0\ — 6]VA]2).

(22) AR=e2(AgR+2(VR,V))), where Ag= A, A=A,
(2.3) dp = e dpg, where dug = dpigy, dpn = dpig.
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o OR
2.4 —dp = 4ARdy:; — = —2RAR — 6A%R.

(2.5) / d,u:/ 64)‘d,u0:/ 64)‘°d,u0:/ d .
M M M M

LEMMA 2.1.  Under the flow (1.3), we have

[ R dn < C(to )
M
for 0 <T < 0.

Proof. From (2.4),

1d
—— R2du——2/ RQARdu+2/(R2AR+3RA2R)du
—6/ (AR)? dp.
M
Thus
4 Rau<o
dt J,, =T

Compare with [CW, Theorem 2.4] and [Ch5], one can show

LEMMA 2.2. (i) ([Ch4]) For go is Einstein, under the flow (1.3), we
have

d

5\
— dug < 0.
g ), ¢ W <

(ii) For any background metric go, under the flow (1.3), we have

d
d_/ 65>\ dNO S C(go,)\o).
tJm
Remark 2.1. (i) We will need (ii) for long time existence part and (i)
for convergence part of the Calabi flow.
(ii) The volume [, du = [}, e** dug will be preserved under the flow.
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Proof. In the following, the constant C' may vary from line to line
which is independent of ¢. From (2.1) and (2.2), we have

d al _ al a)‘ _ al
a/Me d,uo—oz/e (at>d,u0 a/e (AR) dpo

_ / e - =P (AR + 2(VR, VA)) dyig

«

a—2)A _ - OS2
R [(a = 4)AgA + (a0 — 2)(ar — 4)|VA]?] dpo

/¢
a/ — 4)RoAo) + (a — 2)(a — 4) Ro| VA2
—6(a — 4)(AgM)? — 3(a — 4)(2a — 2) AgA| VA2
— 6(a — 2)(a — 4)|VAY] dpso.
Now let f = e(4=®* Then
VAR = (0= 9727 2P
BoA=(a— )7 2V = (a—4) 7 A,

Hence

4

o e dpg = 20(o — 4) / (3(“_4)’\]%0|%)\|2 dpo

~afa—4) / VNG, Ro) diio
— 6a(a — /f Aof )~ dpo
S o4
— 3a(a — 4)73(40® — 24a + 36) / FoIv It duo
-2 —4 S r2
+3aa— )26~ 18) [ £80f V117 dun
Again let F' = f", for some r to be chosen later. Then

V2 =2 FC2N G R,
Aof = r TEU=NITAGF — (1 — 1)7"_2F(1_2T)/T|%F|2'
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Then
pr e dpg = 20(or — 4) / 6(0474))‘R0’%)\’2 dpg
0 0
—a(a—4) / e(o‘74))‘<V)\, VR0> do

—6a(a—n)(a—4)"1r2 / FEI=20/m(AGF)? dpsg
—6aa —4) P r [ (r(r + 1)a? — (8% + 5r — 1)a

+ 1617 + 4r — 2] /F(_1_4T)/TI%F|4 duo
+ 6a(a — 4)2r3[(2r + 1)a — 8r — 1] /F(—l—i’"“)/7“AOF|%F|2 dug.
Compute
(26) 0= /Ma(F—%—Q%F AoF) dpg
= [F R a0r P+ [(S(EF2807), V) dig
_ /F—%—Q(AOF)ZdMO - (% +2) /F—%—3AOF|%F|2dMO
+ / F=r2(VAF, VF) dpo,
and
0= /M §(F~72V |V F2) dpo
= /F_%_2AO‘%F‘2 dpio — (% + 2) /F_%_3<%F:%\%F\2 dpo) dpo
_ /F_%_QAO\%F\QdMO + (% +2) /F—%—?’AOF\%F\?@O
(e (Bed) frrtrta
By the Bochner-Lichnerowicz formula

1 0 9 09 19 0 0 0 0
S Dol VE[" = [V7F| + (VF,VAoF) + Rc(VF,VF),
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we have
(2.7) / F=r2(VF,VAGF) dyg

- —/F—%—2|%2F|2duo - /F—%—ZRC(%F, VE) duo
1/1
-5 (— + 2) /F%3AOF|%F|2 dpig
,
1 /1 1
+ = (— + 2) (— + 3) /F_%_4’%F’4d,u,0.
2 \r r
Combine (2.6) and (2.7), one obtains

3,1 i 0
5( +2)/Fi 3A0F|VF|? dug

-
1
:/F‘F_2(AOF)2 dpg
+E(?+2>(?+3>/F T |VF| dpio
_1_ 90919 —Llon (D 2
— [ F+ 7%\ V*F|*dug — | Fr “Rce(VE,VF)du.
Hence

/F—%—3AOF|%F|2 dyuo

2 r 1 2 r 1 0
== Fr2(AgF)2 dug — — /FF2 2F|%2d
STra [ AF du VAP dpg

31+ 2r
N %1 —:27“ /F_%_ZRC(%F’ VE) dyy
+§1t3r /F%‘*I%Fﬁduo.
Then
(2.8)

d
pr e dpg = 20(or — 4) / e(o‘_4))‘R0\%)\\2 dpg
—ala—4) / e(a_4)>‘<%)\, %Ro> dpo

—2a(a —4) 7 r?[(a —4) —6(2r +1)71] / T 2(AgF)2 dpg
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+2a(a —4) P74 (3r? + 2r + 1)(a — 4)* — 6] /F_%_4|%F|4 du
—dafo—4)2r?[a— (8r+ 1) (1 +2r) 7] /F%Q\%QF\Q dpo
-2 -2 -1 —1_9 LI
—da(a—4)r?la— Br+1)(1+2r)7"] /F r“Re(VF,VF)dup.

(i) For gp is Einstein, i.e., Rc(go) = (Ro/4)go:
Choose r =1, a = 5, then

d
29 = / & dug = 10Ry / A VA2 dpo — 40 / P Re(VE, VE) dug
+ 10/63’\(A0F)2du0 —40/63)‘|%2F|2d,u0
=10 / M AGF)? dpg — 40 / N V2F P2 dug.

But for n = 4,
(AgF)? < 4|V2FP.
This implies (i) of the Lemma.

(ii) For any arbitrary go:
First we observe, for 0 < 8 <4, QT ={pe M |A>0},Q ={pe
M| X<0}

(2.10) / P dpg = / P dpg +/ e dpg < / e dpg +/ do
M ot Q- M M
< du -l-/ dpg < C.
M M
Choose 7 = 1, @ = 5 again, then, from (2.8) and (2.9),
d 5 A ) |2 AP (o) w
il I dup <10 [ e*|VAI“Rodpo — 40 | e*Re(VA, V) duo
0 0
- 5/6’\<V)\,VRO> dpo.

Compute, for e2*R = Ry — 6A0\ — 6|%)\]2, from (2.5), (2.10)

0 0 0
—5/6)‘<V)\,VR0>duo = 5/eA\V)\\2RO dpg +5/eA(A0A)R0 dpg
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5
— E/eA(—e”‘R—l— Ro)Ro dug
5 5
=5 / e R2 dpgy — 5 / eARRo dug

SC/ekdqurC/e”duo+C/64AR2duo

<C.
and
(2.11) 10/ AVARRo dyo —40/ ARe(VA, V) dig
M M
SC’/ e)‘|%)\|2duo
M
§C/ 62’\!%)\]2du0+0/ e)‘/Q\%)\\Qduo
o+ 0-
< (J/ 62)‘|%)\|2d,u0+C/ 2|2 dyso.
M M
Now
3A0e* = e** (680 + 12|%)\|2) =e?(—e®R+ Ry + 6]%)\|2)
and

128062 = eM2(6A0A + B|VAZ) = e2(— e R+ Ry — 3|VAP).
It follows

(2.12) 6/62)‘|%)\|2du0 = —/e”‘RO dﬂ0+/e4>‘Rduo

__/e”Rodqur/RdugC

and

(2.13) 3/6)‘/2]%)\]2du0 = /e)‘/QRoduo—/eE’)‘/Qdeo
<C- /6_3’\/2Rdu
§C+/63’\du+/R2d,u

§C+/e’\duo+/R2du§C.

Then (2.11), (2.12) and (2.13) imply (ii) of the Lemma. [
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COROLLARY 2.3. (i) For go is Einstein, under the flow (1.3), one
obtains

/ e dug < C1(go, M),
M

for all 0 <t < T < 0.
(ii) For any background metric go, then

/ 65)‘ d,uo < Cg(go,)\o) + 03(907)\0)t7
M
forall0 <t <T.

Remark 2.2. From (ii) of Corollary 2.3, under the flow (1.3), we have

/ e dug < Co + Cst.
M

This will be enough for the long time existence of the solution of (1.3)
which will imply the first part of assertion for Theorem 1.1. But for conver-
gence part, we will need the uniformly bound on [ M e dpuo under the flow
(1.3) which is held when gg is Einstein as in (i) of Corollary 2.3.

§3. A priori estimates and long time existence

In this section, following Corollary 2.3, [Chl] and [CY], we will have
the C%-bound via elliptic Moser iteration and the blow-up argument as in
Theorem 3.6. Then, based on [CW] and [Chru], one can get the bounds
on all Wi o norms as in Theorem 3.7. All these together will imply the
long-time existence of solutions of (1.3).

Define

E,={p: AP) > nt, |En| = / dpp.

Ey

In the following, the constant C' may vary from line to line.

LEMMA 3.1.  Under the flow (1.3), there exists ng > 0, lop > 0 such
that

‘Eno‘ > lo > 0,

forall0 <t <T.
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Proof. First, from the Corollary 2.3 (we refer to Remark 3.1 as below),
we may choose 0 < e <1 such that

(3.1) / eI dug < C.
M

Now

(/ 64’\duo>2 < (/ (4=e)A dﬂo)(/ e(4+€)’\d,u0>
M M
< C/ 4=9A g

Since [, €** dpyo is fixed under the flow (1.3), say [,, €**dug = V. Thus

V2
< /M 4= g0
But, for all n > 0,

/ (40 duo—/ 6(4E)Aduo+/ 4= g0
M B c

n n
(4—€)/4
< ([ eam) )y
E”I
Now for sufficiently small 79, say
e 1V?
’I]O V< 5?
Then )
]' V —€ €
5 S (V)= (B )1,

This implies, for lo = V(V/2C)*/¢
’Em’ > ZO'
[

Remark 3.1. The delicate part of the proof in [CY] is the estimate
(3.1) which is held for € = 1 under the flow (1.3) due to Lemma 2.2. If gq is
Einstein, then [y is independent of the maximum time 7" < co. If gg is not
Einstein, then the estimate is still held as long as the maximum time 7T is
finite.
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LEMMA 3.2.  Under the flow (1.3), there exists a constant C > 0 such

that
/ N duy < C,
M

for0<t<T.

Proof.  Choose no, lp as in Lemma 3.1, for D = Ej , consider the
Raleigh-Ritz characterization for A;(D), one has

il o= iz

From Lemma 3.1, we have

0 et 2
VvV ln —‘ dpg.
Mo

DI =V~ |By| <V — 1o
Then, from Faber-Krahn inequality ([Chav])
(D) > C(ly) > 0.

Now
et |2 1

1n—( diig < —— /

/e/\Sno ml = Clo) Ju

M
_C(ll )/ (Ro — ¢ R) dug
0 M
<! (/ Rodpo+ — | R%dp+ /du>
Clo) \ 2 Ju 2 Ju
<C.

On the other hand

e* |2
/ In —| dug < /
er>no o er>no

All these imply the Lemma. 0

A2 1
6—‘ dpg < —2/ ey < C.
Mo o J M
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Now, by using the result of Lemma 3.2, we have the local Sobolev
constant bound Cs with respect to g.

LEMMA 3.3.  Under the flow (1.3), there exists a constant k1 > 0 such

that, if
/ R2 dﬂ < K1,
By

then, for some constant Cs

(/B f4du)1/2§Cs[/B \Vf\Qdqu/B deu]

for f € C3°(B,).

Proof. For g = €** gy and n = 4 in our case. Now with respect to go,
we have the local Sobolev constant Ay, i.e., for ¢ € C§°(B,)

(/B !w\4duo)l/2 < A0</B !%@IZduo).
\ \

Take ¢ = e f, since E,(f) = Egy ()
(frortan)" = ( [retean)™ = ( [1el*duo)”
< Ao /|V80’2 d,uo)
< Ao [Ep() - 5 [ Ro® duo)

< Ao [Ey(5) ~ 5 [ Ros duol

r 1
< Ay /|Vf|2du +5 /(R — Roe™ ) f2 du].
Let Q={p€ B,: R— Rye ?* > —K}, K > 0, estimate
(3.3) / (R — Rye=) 2 d
Bp
:/(R_RO€2/\)f2dﬂ+/ (R_R(]eiZ)\)de/L
Q B,—

o—

. —2A\ £2
< /Q (R— Roe™2) f2 d.
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Now consider €' = QN {\ < 0}, then over ¢

2\ %2
—6A0(—)\) = Ro —e“*R— 6|V)\|
< Ry—ePR<Ke* <C+ K(-\).
That is, for h = —X > 0, we have

1
~Doh < =Kh+C,

over V. But from Lemma 3.2, one has

/thuoéC;

and
KPdug<C, p>2=2 n=4.
Q/ 2
Then Moser iteration as in [Chl, Theorem 3.3] implies
-2 <C,

over ) and then
A>—C

on 2.
Therefore, from (3.3),

/ (R— Roe M) f2du < / Rf%du+C | f*dpu.
B, Q B,

This and (3.2) imply

(/B |f|4du)1/2§Ao[/B |Vf|2du+/QRf2du+c/B 72 dy]

<aol [ wrpans ([ RQdu)”z(/B f4du)1/2+C/B 72 dp).

If pr R?dy is sufficiently small such that Ao(pr R?dy) 12 < 1/2,

then
(/Bpf‘*du)l/2 SCS[/BP\Vf\QdM/BPdeu},

for some constant Cs = C(Ay). [
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Now we are ready to have the C°-bound of solution of (1.3).

(I) The upper bound estimate:
Since

AN = =2 (Agh + 2|VAP),
then
R =e 2Ry — 6e 2 (Agh+ [VA]?)
— PRy — 6(AN — e 2| VAP).
This implies
—A&ﬂ::—&ﬂ{%AA+%ﬂVMﬂ
::—eVQL%<%e*”RO—~éB0—%éQN%AP4—%ﬂVAP]
< 1—12 [R — 6_2’\R0] eM2.
That is, for g = e*2, b= £|R — e"?*Ry|, we have

(3.4) — Ag < by,

and from Corollary 2.3

(3.5) /f@gc;/ﬁwga

Now combining Lemma 3.3, (3.4), (3.5) and Moser iteration as in [Chl,
Theorem 3.3], it follows

PROPOSITION 3.4. There exists a constant = rk(k1; [ g du; [ b* du)
such that if

(3.6) / R%*dp < &,
Bp(ffo)
then, for any 0 < n < 1, there is a constant C = C(p, k,n) such that

sup M2 < C.
Bi-n)p
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Moreover, if we does not meet the condition as in (3.6). Thus, by using
the blowing up argument at the point as in [Chl, Lemma 5.2], we are able
to estimate the supernorm of the solution of (1.3). More precisely, since
fM R*dp < C, for a fixed t, we have only finite point {vi,...,v;,} such
that the L%norm of scalar curvature over B,(v;) are larger than r. Fix
v = v;, take a neighborhood N of v such that N N {vy,...,v,} = {v}. Let
r(p) = d(p,v) and assume that By,, C N for some py. Now for each small

p, define g;; = p%gij = 2 g(;j. Fix py € N, such that r(pg) = p < po. For

n = 4, we have
/RQdu—/ R?dj.
M M

Then

and

N N T
B1/2(po) B, /2(po) B, /2(po)

where § = e? and p%e”‘ = e,

Since
/ R2dp = /~ R%dji,
B,/2(po) Bi/2(po)

take p sufficiently small, we have

/ R%dy < k.
Bp/2(p0)

On the other hand, since we have the local Sobolev constant bound for
gij as in Lemma 3.3, it still holds for g;; ([Chl, (5.2)]). Then again follows
the Moser iteration

_ ~ ~ -~ 1/2
(8.7)  supg=supe? < ClleM?||p, < Cp~( / e dpuo)

B, /2(po)

on §1/2(p0)'

LEMMA 3.5.  Under the flow (1.3), there exists a constant C' such that

(3.8) / e dpug < Cpt.
Bp(ff)
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We will proof the Lemma in the end of (I). N
Now from (3.7) and (3.8), for z € By 3(po), By(z) C By2(po),

[oganzer®([ Pdw) [
By(x) B, /2(po) By (z)

< Cp—5/ e dpg < 0,0_9/ e dpo < Cp.
BPQ (m)

BPQ (Z‘)
Then ) )
sup M2 < Oy, < Cpl/2,
But )
e = 22N,
It follows
on B,/5(po) and as r(p) — 0, we get A < C on By, (v) for small rg.

All these imply
A< C

on M.

Proof of (3.8). As before, we have

1
—Aget = 5 [e”‘R — Ro] et
In case of R < 0, it follows
A L A
—Aoe S ERQG .

Again from Moser iteration with respect to gg, one has
ALZC

for R < 0.
Then, for B = B,N{R < 0}

J

e dpg < C/ dpg < Cp.
By

P
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On the other hand, for B = B, N {R > 0}, the same argument as
in [W, Proposition 5.4], the exterior unit normal vector v; of 8B;r has
DV+R S 0)

%/ 64’\du0:4/ 64>\ARd[L0:4/ ARdp
Bf By By

P

=4 D,,Rdo <0.
aBF

It follows
/ " dpo < / e dpg < Cp'.
Bf B

P P

This completes the proof of (3.8). 0

(IT) The lower bound estimate:
The same method as in the previous (I), firstly, for h = e, d =
+|R — e7? Ry|, we have
—Ah < dh,

and

/MWSC;/fwga

Then, again Moser iteration and the blowing up argument, the lower
bound
e A< O

is followed easily.
Then we have the C°-bound of solution of (1.3):

THEOREM 3.6.  Under the flow (1.3), there exists a constant C =
C([ e duo, Mo, go), such that

Ml zeeary < C,
fort €[0,T). Moreover, we have
A w4 < C.

forte[0,T).
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Proof. Since
[ ran<c.
M
then
/ e (ApeM) 2 dug < C.
M

But |[A||lL.. < C, it follows

/ (A(]e)\)2 dNO S C.
M
This implies

||6)\HW2,2 <C,

and from Sobolev imbedding theorem W52 C Wi 4 for n = 4, we have
[Allw,, < C.
0

For higher order estimates, it is straightforward, we refer to [Chru]
and [CW] for details.

THEOREM 3.7. ([Chru, Proposition 4.1], [CW]) The same assumptions
as in the previous lemma. There exists a constant C' = C(||o||lwa.» 90, T),
1 > 2 such that

0
IV A, )2, < C,
forte[0,T).

Then the first part of main Theorem will follow easily from Theorem 3.6
and Theorem 3.7.

84. Asymptotic convergence of solutions of the Calabi flow on
Einstein 4-manifolds

In the previous sections, we show the following bound
5\
/6 dpug < (Cy + Cst),

and the CY-bound

(4.1) sup [A(p,t)| < C(T), 0<t<T.
pEM¢
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Then we have the long time existence of solution of (1.3). However, at
the previous steps, the C(T") as in (4.1) may blow up as t — oo, but if the
background metric gg is Einstein, then

/ ™ dpg < C1.

It follows we have the uniformly bound on C(T') and [[A[lw, ,-
In this section, we will show that there exists a subsequence of solutions
of (1.3) converges to a constant scalar curvature metric ([CW]).

THEOREM 4.1.  Under the flow (1.3), if the background metric go is
FEinstein. Then there exists a subsequence {t;} such that

R — R
as t; — oo with
ARy =0
and oo
9(tj) = goo-

Proof. Since

_4 R2d,u,:12/ (AR)? du,
dt Jar M

/ / (AR)? dpdt < oo,
0 M

and then there exists a subsequence {t;} such that

then

/ (AR)*dply, — 0 as tj — occ.
M
Now since ||Al[yyr2 < C for all 0 < t; < oo, we have
/ (AR)? dpole; — 0 as t; — oo.
M

Then elliptic estimates, interpolation inequalities yield

R R,
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as t; — oo such that

ARy =0
and oo
9(tj) = goo-

Then the second part of main Theorem follows easily.

Remark 4.1. From the uniqueness results of Einstein metrics in con-
formal class by M. Obata’s results ([O]), goo is iSometric to go.
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