
RESEARCH ARTICLE

Coded conduct: making MACSYMA users and the
automation of mathematics

Stephanie A. Dick*

Department of History and Sociology of Science, University of Pennsylvania, 303 Claudia Cohen Hall,
Philadelphia, PA 19104-6304, USA
Email: sadick@sas.upenn.edu

Abstract

This article explores an early computer algebra system called MACSYMA – a repository of automated
non-numeric mathematical operations developed at the Massachusetts Institute of Technology from
the 1960s to the 1980s, to help mathematicians, physicists, engineers and other mathematical
scientists solve problems and prove theorems. I examine the extensive paper-based training mate-
rials that were produced alongside the system to create its users. Would-be users were told that the
system would free them from the drudgery of much mathematical labour. However, this ‘freedom’
could only be won by adapting to a highly disciplined mode of problem solving with a relatively
inflexible automated assistant. In creating an automated repository of mathematical knowledge,
MACSYMA developers sought to erase its social context. However, looking at the training literature,
we see that the social operates everywhere, only recoded. This article uses the paper-based
training materials to uncover the codes of conduct – both social and technical – that
coordinated between the users, developers and machines that constituted the system.

The problem is that one is mixing two worlds – the world of mathematics and the
world of programming.

Joel Moses

Users do not come ‘ready-made’. The communities that engage with new technological
systems must be created and this process is often far more complex than simply teaching
people how to use a new tool. Would-be users must also learn to recognize when a new
tool is useful. They must develop new ways of thinking and new practices that incorporate
that supposed utility. Even when hacking or breaking or appropriating a technology, users
must learn to recognize and accommodate its affordances and limitations. We often work
just as hard for our technologies as they have ever worked for us.1 Would-be users must
learn to think in new ways, as well as to do certain things. And when would-be users are
not centralized in any particular place, this retooling of head and hand must be done at a

© The Author(s), 2020. Published by Cambridge University Press on behalf of British Society for the History of Science. This is an
Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence
(http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction
in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written
permission of Cambridge University Press must be obtained for commercial re-use.

1 See Ruth Schwartz Cowan, More Work for Mother: The Ironies of Household Technology from the Open Hearth to the
Microwave, New York: Basic Books, 1985, for a foundational articulation of this argument.

BJHS Themes (2020), 5, 205–224
doi:10.1017/bjt.2020.10

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

mailto:sadick@sas.upenn.edu
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/bjt.2020.10&domain=pdf
https://doi.org/10.1017/bjt.2020.10

distance. Technical manuals have historically served as central platforms for attempting
user-community formation at a distance. Of course, they run into well-documented and
age-old limitations related to the difficulty of fully formalizing technical skill and the
importance of face-to-face interaction, which have been the subject of many historical
studies.2 Although these limitations factor in what follows, this article focuses
primarily on a different dimension of manuals. Many complex technological systems
embody a fundamental tension – between the needs of the developers who produce
and maintain them, and the needs of their would-be users. Choices that are convenient
for developers and maintainers often translate into cumbersome or counterintuitive
experiences for those less familiar with the functionality and underlying design of
their tools.3 Relatedly, streamlined user experiences often come only at great pains to
developers and with the extensive reduction and standardization of user expectations.4

I argue that the manuals explored here were designed, in part, to mediate this tension.
They were designed to make users think more like developers. Specifically, they were
designed to make mathematicians and mathematical scientists think more like computer
programmers.

This article explores a complex technical system called MACSYMA, for ‘Project MAC’s
SYmbolic MAnipulator’.5 It was an early computer algebra system, a repository of auto-
mated non-numeric mathematical operations, developed at the Massachusetts Institute
of Technology from the 1960s to the 1980s (at which point it was privatized), to help
mathematicians, physicists, engineers and other mathematical scientists around the
United States solve mathematical problems. It was an early example of a so-called ‘expert
system’ – a branch of early artificial-intelligence research that aimed to elicit and encode
expert human knowledge in order to make it available in automated form.6 The would-be
users in question were told that the system would free them from the drudgery of much

2 Classic examples include Michael Polanyi, The Tacit Dimension, Gloucester, MA: Peter Smith, 1966; David
Kaiser, Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics, Chicago: The University of
Chicago Press, 2005; Harry Collins, Tacit and Explicit Knowledge, Chicago: The University of Chicago Press, 2010;
Steven Shapin and Simon Schaffer, Leviathan and the Air-Pump: Hobbes, Boyle and the Experimental Life,
Princeton, NJ: Princeton University Press, 1986.

3 The history of technology has long focused on innovation and novelty. Recently, some historians of technol-
ogy have shifted their attention toward maintenance. See Lee Vinsel and Andrew Russell, The Innovation Delusion:
How Our Obsession with the New Has Disrupted the Work That Matters Most, New York: Random House, 2020.

4 Early digital computers are a perfect example – they were anything but user-friendly. In the 1940s and
1950s, successful computing was always a feat given the unforgiving obtuseness of the machines, the extremely
limited capacities of early computer memory and processing, and the tedium and counterintuitiveness of pro-
gramming in machine languages. Today’s personal computers are often touted as a great triumph in ‘user-
friendly’ technological development. Perhaps ironically, however, the ‘user-friendly’ character of today’s per-
sonal computers has been the product of decades-long efforts to depersonalize computing, to standardize and
discipline users’ needs and expectations as much as possible. See Stephanie Dick and Daniel Volmar, ‘DLL
hell: software dependencies, failure, and the maintenance of Microsoft Windows’, IEEE Annals of the History of
Computing (2018) 40, pp. 26–49.

5 Project MAC, originally for ‘the Project on Mathematics and Computation’, was the first institutionalization
of the study of computing at the Massachusetts Institute of Technology. It was founded in 1963, with funding
from the Defense Advanced Research Projects Agency, under the directorship of Robert Fano, and was an
early centre for the study of artificial intelligence, time-sharing, human–machine interaction and theoretical
computer science. In the late 1960s it became the Laboratory for Computer Science. See J.A.N. Lee, R.M. Fano,
A.L. Scherr, F.J. Corbato and V.A. Vyssotsky, ‘Project MAC’, IEEE Annals of the History of Computing (1992) 14,
pp. 9–13.

6 Expert systems were, broadly speaking, attempts to reproduce intelligent behaviour in machinery by encod-
ing the expert knowledge. See Edward A. Feigenbaum, ‘The art of artificial intelligence: themes and case studies
of knowledge engineering’, Stanford Heuristics Programming Project Memo HPP-77-25 (August 1977). MACSYMA
is cited often as an early example of an expert system, though it was not called as such by its developers.

206 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

mathematical labour. However, this ‘freedom’ would only be won by adapting to a highly
disciplined mode of problem solving with a relatively inflexible automated assistant.
Users would be freed from mundane mathematical labour only insofar as they were able
to adapt themselves and their problem-solving needs to the system. And the more
adept at using the system people became, the more dependent on automated assistance
they risked becoming as well. One of the promises that accompanied MACSYMA was
that it could give users access to operations in mathematical domains about which
they themselves may know very little. This access would bind users to the system for
problem-solving capacities that exceeded their own mathematical understanding.
Herein lies a tension at the heart of many ‘liberating’ technologies – they offer
freedom but born out of both dependency and discipline. And this was much easier
said than done.

Many difficulties of using the MACSYMA system emerged at the interface between two
epistemological domains – mathematics and programming. As Joel Moses, who was in
charge of the MACSYMA project from 1971 to 1981 put it, ‘The problem is that one is mix-
ing two worlds – the world of mathematics and the world of programming.’7 Given that
both inhere in rules and formalisms, these domains may seem like natural bedfellows. The
truth is, however, that actual mathematical practice is not nearly as formalized (or forma-
lizable) as idealizations would suggest. And even what is formalized in mathematics is not
necessarily or easily automatable. Mathematicians and mathematical scientists have
developed particular forms of representation, standards of demonstration, ways of
defining and manipulating their objects of interest, many of which do not easily lend
themselves to automation. MACSYMA users had to learn to think and work without
these, and instead to translate their objects and problems of interest into forms that
accommodated the computer. Sometimes, the translation was impossible. But even
when possible, it could be difficult and cumbersome, and the manuals spent a lot of
time demonstrating how these translations could be done.

In spite of the difficulties, many people were excited about the problem-solving
possibilities MACSYMA presented. During the 1970s, the PDP-10 computer that housed
the system became one of the most popular nodes on the ARPANET, the defence-funded
predecessor to the Internet.8 Mathematicians, physicists and engineers at government
research agencies, universities, hospitals, oil and gas companies and military research
laboratories integrated the system into their problem-solving practice. However, this suc-
cess was bought at a high cost to the development team at MIT. Building the system was
labour-intensive enough on its own, but in order to also retool the heads and hands of
mathematical scientists around the country to use it and to think about problem solving
in the requisite way, the team at MIT also wrote extensive training materials.

The official, roughly three-hundred-page MACSYMA Reference Manual, published by the
Computer Science Laboratory, catalogued MACSYMA’s functionality, and it was written
and rewritten, over and again, in some years every few months.9 Second was the
MACSYMA Primer, by Moses, which was a basic introduction to the login and command
infrastructure of the system, also frequently revised. These two documents shipped to
every interested user for five dollars and one dollar for shipping. There was also An
Introduction to ITS for the MACSYMA User which was primarily written by Ellen Golden,

7 Joel Moses, ‘The variety of variables in mathematical expressions’, in Proceedings of the 1977 MACSYMA Users’
Conference, Washington, DC: NASA, 1977, pp. 123–9.

8 Joel Moses, ‘Macsyma: a personal history’, invited presentation in Milestones in Computer Algebra, Tobago,
May 2008, p. 4.

9 Richard Bogen was the primary author; Jeffrey Golden served as editor, concerned with storage management
and debugging; Michael Genesereth wrote the appendix on grammar. Pitts Jarvis formatted the manual and
arranged printing, and Ellen Lewis (who later married Jeffrey Golden) was thanked for much helpful assistance.

BJHS Themes 207

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

the project administrator, who was also centrally involved in the production of the Manual
itself.10 Golden’s knowledge of the system was extensive, but her expertise was obscured
by the manual genre that presents hard-won technical understanding as straightforward,
authorless, ‘specifications’.11 Golden’s Introduction explained the timesharing system that
enabled multiple users to work with MACSYMA at the same time, and explained how to
access the MIT PDP-10 computer through the ARPANET. Golden (then Ellen Lewis) also
wrote ‘User aids for MACSYMA’, a resource documenting the various resources that one
might consult in learning to use the system.12 MACSYMA could prove so difficult to use
that there were even articles and conference papers that aimed simply to explain and
catalogue the different kinds of difficulty MACSYMA users may encounter. Foremost
in this genre were Moses’s ‘Algebraic simplification: a guide for the perplexed’, and
Michael Genesereth’s ‘The difficulties of using MACSYMA and the function of user
aids’.13 All of these constitute the constellation of paper-based training materials from
which this article draws.

The MIT team prophesied their own fate as manual writers in a moment of profound
optimism, or hubris, about the impact an automated algebraic system would have on
mathematical problem solving. In an early description of MACSYMA, they wrote, ‘If
such a system can be constructed, its impact on applied mathematics would be substan-
tial. Books would still be used, but only for tutorial exposition.’14 Needless to say, auto-
mated systems have not replaced books in mathematics, but the last part of the
prophesy did come true – they spent an awful lot of time writing tutorial exposition.
The training materials offer a window into the unfolding negotiations between develo-
pers, users and machines – negotiations that in fact defined what those categories
meant and what those roles entailed.

Everywhere the manuals and tutorials extol the virtues of experimentation. In a subtle
acknowledgement of the impossibility of communicating all technical skill in a written
form, users were encouraged to ‘play around’, to ‘see what works’, to ‘try things’, and
also to ‘re-read [the manual] from time to time after the user has worked with
MACSYMA so that certain parts which were unclear on prior readings will be better
understood in the context of increased familiarity with the system’.15 Learning to use
the system effectively was not the same as learning to understand or to work with the
underlying mathematics. Although MACSYMA was explicitly meant to automate existing
mathematical techniques, many of these came to look quite unfamiliar to users in their
automated form. Even MACSYMA developers acknowledged that ‘very often MACSYMA
produces large, unwieldy results affording little insight’.16 Users had to cultivate a

10 Ellen Golden, An Introduction to ITS for the MACSYMA User, Mathlab Memo #3 (Laboratory of Computer
Science, MIT, version revised 14 April 1981; original date unknown.)

11 The broader mechanisms of erasure and undervaluation of women’s knowledge, technical capacity and
contribution in the history of computing is documented in, for example, Mar Hicks, Programmed Inequality:
How Britain Discarded Women Technologists and Lost Its Edge in Computing, Cambridge, MA: MIT Press, 2017; Janet
Abbate, Recoding Gender: Women’s Changing Participation in Computing, Cambridge, MA: MIT Press, 2012; Jennifer
Light, ‘When computers were women’, Technology and Culture (July 1999) 40, pp. 455–83.

12 V. Ellen Lewis, ‘User aids for MACSYMA’, in Proceedings of the 1977 MACSYMA Users’ Conference, op. cit. (7),
pp. 277–90.

13 Michael Genesereth, ‘The difficulties of using MACSYMA and the function of user aids’, in Proceedings of the
1977 MACSYMA Users’ Conference, op. cit. (7), pp. 291–308; Joel Moses, ‘Algebraic simplification: a guide for the per-
plexed’, Communications of the ACM (1971) 14, pp. 527–37.

14 William Martin and Richard Fateman, ‘The MACSYMA system’, Proceedings of the Second ACM Symposium on
Symbolic and Algebraic Manipulation (SYMSAC), Los Angeles, 1971, pp. 59–75, 59.

15 The Mathlab group, Laboratory for Computer Science, The MACSYMA Reference Manual (Version Nine, second
printing, 1977), p. 1.

16 Genesereth, op. cit. (13), p. 301.

208 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

different kind of knowledge – knowledge of the system, of its behaviour, of its capacities,
of its other users and uses.17

Within the history of technology, interest in ‘users’ has often accompanied a desire to
get beyond a focus on invention, design and the material configuration of machines and to
recover the agency of those who take up, modify and transform them. In ‘Users as agents
of technological change’, Ronald Kline and Trevor Pinch push against the notion that
technologies determine how they will be used, insisting that ‘the use of an artifact or sys-
tem has not only resulted in unforeseen consequences, but that users have helped to
shape the artifact or system itself’.18 Similarly, Nelly Oudshoorn and Pinch’s edited collec-
tion How Users Matter: The Co-construction of Users and Technology proposes that ‘there is no
one correct use for technology’ by exploring many unexpected uses that people have
found for their machines.19 While this is certainly true, much literature on users risks
framing the history of technology as concatenated acts of ‘top-down’ and ‘bottom-up’
social construction, without attending to logics and codes that are shared between devel-
opers, users and their machines.20 Centring ‘the user’ also risks being as reductive as cen-
tring ‘inventors’ or ‘innovators’. I, too, want to unpack how use and users shaped the
MACSYMA system, but I also attend to the construction of ‘user’ as a category in the
first place, and the relationships that constituted it. Focusing on and ascribing agency
to users is not a way to invert power relations when both developers and users operate
within a shared logic, with shared codes of conduct. Historian Joy Rankin has argued
that the term ‘user’, ‘now synonymous with “end user” or “consumer,”’ fails to capture
the creative and communal approach to computing that time sharing afforded and instead
fashions the concept of ‘computing citizens’ to capture the ‘technical connections among
terminals and computers and telephone wires, but more importantly, the social and soci-
able interpersonal networks’ that constituted timesharing communities.21 The ‘codes of
conduct’ I explore here are the contractual obligations that obtained between ‘computing
citizens’ in the particular polity of the MACSYMA system, and that were folded into the
very notion of a MACSYMA ‘user’.

Neither MACSYMA users nor developers were ever alone with the machine. To build or
use the system required continuous acts of accommodation, translation, communication
and calibration, not just between a user and the tool, but between mathematical problems,
machines, programming languages and other people. The system worked when these acts
generated shared codes of conduct that were both technical and social and it failed when
they did not. Diana Forsythe has argued that artificial-intelligence and expert-systems
researchers sought to erase the social, to formulate and then encode knowledge and intel-
ligence without context.22 No doubt this is what they tried to do. However, close reading

17 For other historical examples of this shift from knowledge of a problem domain to knowledge of an auto-
mated system see Stephanie Dick, ‘AfterMath: the work of proof in the age of human–machine collaboration’, Isis
(2011) 103, pp. 494–505; Hallam Stevens, ‘A feeling for the algorithm: working knowledge and big data in biology’,
Osiris (2017) 32, pp. 151–74.

18 Ronald Kline and Trevor Pinch, ‘Users as agents of technological change: the social construction of the
automobile in the rural United States’, Technology and Culture (1996) 37, pp. 763–95, 765.

19 Trevor Pinch and Nelly Oudshoorn (eds.), How Users Matter: The Co-construction of Users and Technology,
Cambridge, MA: MIT Press, 2005, p. 1.

20 Bryan Pfaffenberger, ‘The social meaning of the personal computer: or, why the personal computer revo-
lution was no revolution’, Anthropological Quarterly (1988) 61, pp. 39–47.

21 Time sharing – in which multiple users dial in to shared, centralized computers – represents a historical
alternative to the ‘personal computer’ in which everyone has their own computer in the home, lab or office. See
Joy Rankin, A People’s History of Computing in the United States, Cambridge, MA: Harvard University Press, 2018, pp.
5-6; and Julien Mailland and Kevin Driscoll, MINITEL: Welcome to the Internet, Cambridge, MA: MIT Press, 2017.

22 Diana Forsythe, Studying Those Who Study Us: An Anthropologist in the World of Artificial Intelligence, Stanford,
CA: Stanford University Press, 2001.

BJHS Themes 209

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

of the MACSYMA users’ literature reveals that the social was everywhere, but it had been
recoded around and within the system. People interacted with each other and with the
machine according to specific codes of conduct – use was always in relation to those
codes and the humans, machines and abstractions they held together. The many iterations
of printed training material reveal the process through which these shared codes were
negotiated, as well as their many overflows, failures and frictions. In particular, they
reveal the modes of thinking and problem solving that aligned with MACSYMA’s changing
capabilities, codes that were meant to align users’ and developers’ relationships with the
machine and with each other.

This article is about why MACSYMA was hard to use, how the category of ‘user’ was con-
structed in this context, what users were meant to be and do as captured in that extensive
training documentation. In the section ‘Plans and situated thinking’ (after Lucy Suchman’s
Plans and Situated Actions), I explore the user-as-‘planner’ who could break a given mathem-
atical problem down into MACSYMA-solvable sub-problems and then program a corellated
path through the system to solve it.23 According to David Alan Grier, this notion of ‘planning’
referred to ‘the process of preparing a list of instructions that describe a set of operations to
be set in motion’ by the machine, and that the concept ‘developed in the 1920s in England in
response to the production demands of World War I’.24 Industrial logics also operate
throughout the early automation of intelligence. Jonnie Penn has shown that they were,
in fact, the condition of possibility for the belief that human intelligence and knowledge
could be abstracted away from their social and embodied context, highlighting that early
artificial-intelligence systems didn’t ‘think’ or ‘know’ like people but rather like corpora-
tions.25 With MACSYMA, economic notions of programming and planning were introduced
to the work of mathematical problem solving. In order to work with MACSYMA, mathema-
ticians had to rethink their objects and problems of interest in machine-oriented, economical
terms. In that respect, they had to think (plan) like the system’s developers.

The section ‘Economizing mathematics’ explores another dimension of the MACSYMA
code that was at once technical, social and industrial. MACSYMA operated within the
strict limitations of the computers that hosted it, whose resources were easy to exhaust.
Users were instructed, through the Manual, the Primer, the ‘Maxims for the MACSYMA
user’, and online, not to hoard computing resources. This meant developing new technical
knowledge, for example, about which algebraic operations grow exponentially (and there-
fore risk exhausting available computing memory) under which circumstances. It also
meant being aware of how many ‘cycles’ of computing (roughly the work done to perform
one operation) people were using. Users were meant to think of their own problem-
solving activities, or ‘jobs’, in relation to all other activities and uses. This mutual accom-
modation and its attendant social and technical practices are a part of the ‘computing
citizenship’ that Rankin identifies in the history of American timesharing more broadly.
For MACSYMA, economic and industrial thinking was central to this sociality, because it
was central to implementation – programmers and developers looked for efficient and
optimal encodings and procedures, and users had to learn to think this way as well.26

23 Lucy Suchman, Plans and Situated Actions: The Problem of Human–Machine Communication, Cambridge:
Cambridge University Press, 1987.

24 David Alan Grier, ‘Programming and planning’, IEEE Annals of the History of Computing (2011) 33, pp. 86–8;
Devin Kennedy, ‘Virtual capital: computers and the making of modern finance, 1929–1975’, PhD dissertation
in history of science, Harvard University, 2020.

25 See Jonnie Penn, ‘Inventing intelligence: on the history of complex information processing and artificial
intelligence in the United States in the mid-twentieth century’, PhD dissertation in history and philosophy of
science, University of Cambridge, 2020.

26 For more on the epistemological stakes of implementation and memory management see Stephanie Dick,
‘Of models and machines’, Isis (2015) 106, pp. 623–34.

210 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

‘The difficulty with simplicity’ picks out one specific response to resource scarcity that
informed the development of the MACSYMA system. One of the central questions for
developers was, how to represent mathematical expressions in the system? It turns out
that the most economical or effective representational choices for automation diverged
considerably from the most economical or effective representational schemes for people.
Here, I explore the competing notions of simplicity that users and developers had to navi-
gate in order to accommodate the machine and each other as another example of new
codes of conduct taking shape.

In part to promote a situational awareness of resource consumption and community,
there was no privacy in MACSYMA – anyone could access a list of everyone who was cur-
rently dialed in and watch what they were doing. This allowed MIT developers to observe,
assist (solicited and unsolicited) and manage the behaviour of users. It also allowed users
to watch, learn and borrow from one another. There were also several different com-
mands that allowed users to communicate with one another through the system. In
this sense, as well, MACSYMA did not represent an erasure of the social, but rather a
recoding of it. Surveillance, observation, mimicry and interaction were formalized in
the manuals and normalized in the very category of user that these codes of conduct
were designed to create.

The conclusion, ‘Finally, there are still people!’, explores the means of interpersonal
engagement available to MACSYMA users. From the ungenerous ‘:LUSER’ command through
which a ‘lost user’ could ask for help from anyone who would answer to the users’ confer-
ences that were inaugurated in 1977, the importance of interpersonal interaction among
users highlighted the degree to which the necessary skills could not be transferred by
paper alone. The developers’ belief in automation, however, would not be undone, as
they believed even the human consultant would one day be automated. But first, the
next section, ‘A laboratory for mathematics’, situates the system in its historical context.

A laboratory for mathematics

The MACSYMA system was built and maintained under the auspices of Project MAC, and
later the Laboratory of Computer Science at MIT, beginning in the 1960s and into the
1980s, at which time the system was privatized, amid some controversy,27 and licensed
to Symbolics Inc.28 The MACSYMA development team, called the ‘Mathlab group’, was
constituted primarily of mathematics and electrical-engineering faculty and doctoral stu-
dents who had an interest in computing and in the automation of mathematical knowl-
edge in particular. MACSYMA differed from most earlier computer systems for
mathematical problem solving insofar as it was not merely for numerical calculating. It
was not just for solving differential equations, performing Fourier transforms or calculat-
ing series; it was for manipulating non-numeric, symbolic mathematical systems.
MACSYMA allowed users to represent, simplify, substitute, transform and infer with

27 As is still the case, government-funded computer systems can be privatized as long as government agencies
retain their right to use the system free of charge. The Bayh-Dole Act that stipulated these conditions was passed
just before the transfer of MACSYMA to Symbolics, but it was still uncertain legal territory at the time.

28 LISP, for ‘List Processing Language’, was used widely in early artificial-intelligence research. First published
in 1960 by John McCarthy, it was based on an earlier set of languages, called ‘Information Processing Languages’,
developed at the RAND Corporation for use in automating logical theorem proving. See Dick, op. cit. (26); Mark
Priestley, A Science of Operations: Machines, Logic, and the Invention of Programming, New York: Springer-Verlag, 2011,
esp. Chapter 8.8; Priestley, ‘AI and the origins of the functional programming language style’, Minds and Machines
(2017) 27, pp. 449–72. Symbolics, Inc. was created in 1980 by Russell Noftsker, who served for a time as the admin-
istrator of the AI group within Project MAC at MIT. Symbolics originally manufactured computers designed to
optimally execute LISP programs, and later acquired MACSYMA.

BJHS Themes 211

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

algebraic expressions and logical propositions and, in so doing, free up its human users to
pursue what they believed were more important and ‘properly human’ cognitive tasks like
‘interpretation, analysis, planning and conjecture’.29

In this regard, MACSYMA was a part of a large-scale transformation that unfolded dur-
ing the 1960s across the United States in which computers went from being treated as
larger and more powerful versions of the electric calculating machines and human com-
puters that preceded them, to symbolic machines that could manipulate formal systems
whether they referred to numbers or not. The first reprogrammable digital computers
in the United States were both functionally intended and conceptually understood as
numerical data processors. Numbers were input to the computer, instructions were
given for the functional and arithmetic manipulation and storage of numbers, and
numeric values were also the output. The developers of MACYSYMA, alongside artifi-
cial-intelligence and automated-reasoning researchers, as well as those who sought to
establish ‘computer science’ as an academic discipline, instead subscribed to a vision of
computers as symbol-processing machines, capable of manipulating any formal system
whatever. This vision gained traction during the 1960s and 1970s, as evidenced by the cre-
ation of several conferences and journals focused on symbolic, non-numeric and algebraic
computing during that time, many serving as platforms for the circulation of research on
and with the MACSYMA system.30

The Mathlab group that oversaw its development at MIT was named after an earlier
algebraic computing system that informed the project. MATHLAB was first introduced
at the Fall Joint Computer Conference in 1965 by Carl Engelman, who held an MS in math-
ematics from MIT and who spent the majority of his career at the MITRE Corporation.
Around the same time, two doctoral dissertations were under way at MIT that also sought
to automate elements of non-numeric mathematical practice. William Martin completed
his PhD in electrical engineering in 1967 by developing the ‘Symbolic Mathematical
Laboratory’, which offered tools for the automated manipulation of mathematical expres-
sions.31 Moses, who received his PhD in mathematics in 1967, developed two programs –
SIN (Symbolic INtegrator) and SOLDIER (SOLution of Ordinary Differential Equations
Routine) – for automated integration.32 Martin and Moses were both hired as faculty
immediately following their receipt of doctoral degrees (this was not uncommon in
computing at MIT at the time), and continued their research in the automation of

29 Carl Engelman, ‘MATHLAB: a program for on-line machine assistance in symbolic computations’, Proceedings
of the Fall Joint Computer Conference (November 1965), pp. 117–26, 117.

30 Of course digital electronic computers are unavoidably numerical. Information is stored in memory in
numeric form, e.g. hexadecimal notation, which is specified by bits capable of having one of two possible states.
Computers operate according to binary operations based on the presence and absence of electrical current or the
orientation of magnetic fields, treated as corresponding to the 1s and 0s of Boolean logic. In both of these senses,
the mechanism for computing is numerical. The transition from numeric to non-numeric meant that what was
referred to by those numbers in memory or by those bits of information need not be numbers only. Systems of
correspondence were worked out and interfaces were devised that enable users to input non-numeric informa-
tion (even typing on a keyboard is an example of this) and to receive non-numeric information out of the com-
puter (all graphical user interfaces – including the appearance of words on the screen – are examples of this).
The crucial insight is that in non-numeric processing, the instructions given to the computer need not corres-
pond to well-defined mathematical functions for numbers. But they can correspond to well-defined processes in
other domains, including non-numeric formal systems in mathematics that do not reduce to arithmetic. For
more on this development see Priestley, A Science of Operations, op. cit. (28), pp. 123–56; Stephanie Dick,
‘Computer science’, in Georgina M. Montgomery and Mark A. Largent (eds.), A Companion to the History of
American Science, Hoboken: Wiley-Backwell Publishing, 2015, pp. 55–68.

31 William Martin, ‘Symbolic mathematical laboratory’, PhD dissertation in electrical engineering, MIT, 1967.
32 Joel Moses, ‘Symbolic integration’, PhD dissertation in mathematics, MIT, 1967. See also Moses, ‘Symbolic

integration: the stormy decade’, Communications of the ACM (1971) 14, pp. 548–60.

212 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

non-numeric mathematics, a field that was gaining popularity throughout the growing
computing research community in the US. MACSYMA was first devised in 1969 when
Martin decided that MIT should launch a larger-scale effort to combine his systems
with Moses’s SIN and SOLDIER, and Engelman’s MATHLAB, and grow from there. Bob
Fano, then director of Project MAC, supported the idea, and in May of 1968 submitted
the inaugural application for ARPA and Office of Naval Research funding, proposing
that symbolic manipulation systems

represent a present potential for significant assistance to working mathematicians
and to scientists and engineers who use advanced applied mathematics … The
time has now come to integrate as much as possible of these mathematical aids
into a single comprehensive system for mathematical assistance capable of helping
mathematicians and other scientists.33

The application was successful and, by the end of the year, MACSYMA development was
under way.

The system grew quickly. By 1971 it consisted of 60,000 words of code (a word being a
standardized chunk of computer memory in which instructions were stored) and no less
than twenty subroutines that could perform mathematical operations at the user’s
behest.34 By the mid-1970s, MACSYMA had become so popular and lucrative that it no
longer needed ARPA funding, and instead a User Consortium was developed for support.35

The community which had learned to use the system, integrated it into their
problem-solving practice, and in some cases contributed to its capacities, would now
pay dues for the privilege. The original members of the consortium were the
Department of Energy; NASA; the US Navy; Schlumberger, an oil and gas exploration com-
pany that invested heavily in expert-systems research in the 1970s and 1980s; and several
universities (though some were exempted from dues).36 The consortium revealed the suite
of institutions that had access – all of which were connected to the ARPANET, and with it,
the PDP-10 computer that housed the MACSYMA system. Access and use were infrastruc-
tural and institutional, as well as intellectual, feats.

The US Navy made a survey between 1977 and 1979 of the various ways MACSYMA was
being used in their research centres across the country. Everything, from ‘analysis of cir-
cuits of the Sidewinder missile control systems’ at the Naval Weapons Center, to ‘finding
intensity statistics for a multiple-scatter model of wave propagation through a random
medium’ at the Naval Research Laboratory, to the ‘generation of graphs for presentation
and inclusion in reports’ at the Naval Ship Research and Development Center, was among
the hundreds of reported uses.37 Elsewhere, users were finding applications of
MACSYMA’s capabilities for everything from the solution of theoretical-physics problems,
to the optimization of databases, to the study of medical devices, to the generation of
examples and counterexamples for number-theoretic conjectures. The users of
MACSYMA cut across disciplinary boundaries and included mathematicians, doctors,

33 Robert Fano, ‘Proposal of supplementary research in computer graphics, computer networks, and a
computer-based mathematics laboratory’, submitted to the Advanced Research Projects agency and the Office
of Naval Research, 15 May 1968, MIT Archives, Collection AC268, Box 21, Folder 34, 6–7.

34 Joel Moses, ‘Progress report of the Mathlab group’, July 1970, MIT Archives, Collection AC282, Box 25, folder
‘Papers and Memos of Joel Moses 1966–74’.

35 MIT Archives, Collection AC268, Boxes 22–4.
36 Moses, op. cit. (8), p. 5.
37 L. Kenton Meals, Use of MACSYMA in the Naval Laboratory Research Community (January 1977–1978),

Computation, Mathematics, and Logistics Department Departmental Report DTNSRDC/CMLD-79/09 (July 1979),
pp. 11–17.

BJHS Themes 213

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

engineers, physicists and others. They were a community of primarily ARPA-funded math-
ematical scientists at powerful institutions in the military–industrial–academic complex
who may not have had other reasons to interact. By the late 1970s, MACSYMA had, in
many ways, outgrown even the formidable infrastructure of MIT and it became, in
1981–3, one of the earliest government-funded computer systems to be privatized, at
which point the hard-won MACSYMA community became a market and the automated
knowledge at work in the system was commodified. Once it had been extracted, packaged,
operationalized and centralized, mathematical knowledge could now conveniently be put
up for sale.

Plans and situated thinking

MACSYMA was designed to assist in problem solving by performing operations like alge-
braic simplification, differentiation, symbolic integration, matrix multiplication and so on,
in an automated way. The central insight was that many complex mathematical problems
can be broken down into series of these various operations. The MACSYMA user’s job was
to break a problem down into sub-problems, each of which is known to be solvable by the
MACSYMA system. This was called ‘planning’ and it was picked out as one of the uniquely
human abilities for which automated tools were to free the human mind.38 Planning is an
industrial term, as Grier, Penn, and Kennedy have shown, entering the world of comput-
ing by way of inter- and post-war industrial culture.

According to Genesereth, who completed a PhD in applied mathematics at Harvard
University, and worked on the MACSYMA system during the 1970s, a ‘typical’ (read,
‘ideal’) MACSYMA user should proceed analytically: ‘in solving his problem the user
acts in accordance with a standard, high level planning algorithm’.39 Depending on the
complexity of the problem, sub-problems themselves may need to be broken down into
further sub-problems executable by MACSYMA, and so on ‘until a level is reached contain-
ing only MACSYMA commands’.40 That is, the user takes the problem she wants to solve
and codes an algorithmic path through MACSYMA’s capabilities that would hopefully cul-
minate in a solution. Genesereth represented planning algorithms as a ‘state and transi-
tion augmented network (called SATAN)’ (see Figure 1).41 MACSYMA users disciplined
their problem-solving practice in order to follow SATAN through the dark mills of auto-
mated mathematics.

The practice of breaking down mathematical problems into constituent sub-problems
long precedes the modern digital computer. For example, throughout the nineteenth cen-
tury, machines were manufactured that could perform only addition. Adding machines
could solve any problem that could be reduced to a series of additions.42 Multiplication
is such a problem. In order to multiply two numbers together, you just need to be able
to add and count (add 1) each time you’ve added. MACSYMA could do a lot more than
just add but the principle was similar. MACSYMA also allowed people to call on operations
that were more difficult by hand or that they may not have the mathematical knowledge
to execute on their own.

38 Engelman, op. cit. (29), p. 117.
39 Genesereth, op. cit. (13), p. 297.
40 Genesereth, op. cit. (13), p. 297.
41 Genesereth, op. cit. (13), p. 297.
42 On the history of nineteenth-century calculating machines, and their relation to industrialization, see

Lorraine Daston, ‘Enlightenment calculations’, Critical Inquiry (1994) 21, pp. 182–202; Simon Schaffer,
‘Babbage’s intelligence: calculating engines and the factory system’, Critical Inquiry (1994) 21, pp. 203–27;
Matthew Jones, Reckoning with Matter: Calculating Machines, Innovation, and Thinking about Thinking from Pascal to
Babbage, Chicago: The University of Chicago Press, 2016.

214 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

Figure 1. Diagram of the SATAN planning strategy. The original caption reads ‘A flowchart for the “typical” user’s

planning strategy’. Michael Genesereth, ‘The difficulties of using MACSYMA and the function of user aids’, Proceedings
of the 1977 MACSYMA Users’ Conference, NASA, 1977, pp. 291–308, 297.

BJHS Themes 215

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

For example, one may wish to minimize a convex function (a bowl-shaped curve) f (x) –
that is, find the input to that function that outputs the lowest number on the curve (that
input is called the ‘minimizer’ of the function). This task can be broken down into steps
that MACSYMA can execute. Thanks to the fact that f (x) is convex, a point x is known to be
a minimizer of f if, and only if, the derivative of f is equal to zero at x. In order to solve this
problem, one can first take the derivative of f (x) and then solve for any value x where the
derivative f′(x) is equal to 0. Once any point x has been found such that f′(x) = 0, this point
will be a minimizer of f and the problem is solved. Here, the two sub-problems are (1)
taking the derivative and (2) solving the equations. This process can be solved on
paper, but it can be tedious. MACSYMA could do derivatives and solve specific equations,
and so a solution to this problem can also be produced by translating this plan into the
appropriate executable MACSYMA commands, beginning with

DIFF(EXP(F(X), X, 1));

The function ‘DIFF(exp, v1, n1, v2, n2, …) differentiates [the] exp[ression] with respect to
each vi, ni times’. Next, a user could call the SOLVE command in order to get MACSYMA to
solve f (x) wherever f ′(x) = 0.43 Here, the drudgery of executing these steps was replaced by
the drudgery of planning the sub-problem sequence and programming MACSYMA to exe-
cute it, in hopes that time is spared in the end. ‘In using automatic, recursive rule appli-
cation, the user is sacrificing the effort necessary to control MACSYMA to eliminate the
drudgery of applying the rules himself’.44 Planning – coming up with a series of
MACSYMA operations that would solve a given problem – and programming – translating
that series into the requisite commands – were the primary tasks of the MACSYMA user,
and its utility corresponded to one’s ability to encode problem solving this way.

However, there was no algorithm for coming up with a problem-solving algorithm. One
of the ‘Maxims for the MACSYMA user’ found in the Primer was ‘The user should antici-
pate a certain amount of trial-and-error in many calculations in order to determine a
good sequence of operations for obtaining the solution.’45 The Manual explained each par-
ticular capability of the system and how to call it so users could plan problem-solving
paths. The Manual is also peppered throughout with suggestions about the effects of order-
ing and combining certain operations. For example, some of MACSYMA’s ‘most powerful
and versatile commands’ were those for the evaluation and simplification of algebraic
expressions. Calling EV(exp, arg1, …, argn), for example, ‘evaluates the expression exp
in the environment specified by the argi’. However, for certain problems, it may make
sense to simplify an expression before evaluating it, or to ‘resimplify’ it without
‘reevaluating’. As such, NOEVAL – a function that ‘suppresses the evaluation phase of
EV’ – the Manual states, ‘is useful in conjunction with the other [argument specifications]
in causing exp to be resimplified without being reevaluated’.46 Or, another example, the
function XTHRU(exp) ‘combines all terms’ of an expression over a common denominator.
‘It can be better’, the Manual notes, to use XTHRU before calling another function
RATSIMP(exp) (which ‘rationally simplifies’ a given expression) ‘in order to cause explicit
factors of the gcd of the numerator and denominator to be canceled thus simplifying the
expression to be RATSIMPed’.47 That is, XTHRU does one particular part of the simplifi-
cation that makes the next part more effective and efficient. These operations were

43 Mathlab Group, MACSYMA Reference Manual, Version Nine, p. 69.
44 Genesereth, op. cit. (13), p. 303.
45 Mathlab Group, MACSYMA Primer, 5 September 1977 version, p. 24.
46 Mathlab Group, op. cit. (45), p. 51, my emphasis.
47 Mathlab Group, op. cit. (45), pp. 57, 61.

216 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

specified in relation to others, to signal the importance of sequential thinking – of planning,
especially where resource consumption was concerned.

The system included many hundreds of operations and variations like these and, as
such, charting possible and optimal paths and combinations could be difficult:

In a programming system such as MACSYMA there are often many ways to go about solv-
ing a given problem as well as many constraints and frustrations which must be dealt
with. Some ways will not succeed due to space or time constraints and others may
work but may be unnecessarily slow. Frequently a better understanding of the computer facil-
ities will lead to a reformulation of the problem lending itself to a much improved solution.48

The goal was not simply to learn to use MACSYMA; it was to see mathematical problem
solving through the lens of the system’s capabilities such that one could be a better plan-
ner, recognize dimensions in a problem one might not have been looking for before, and
develop a sense of what sequences of MACSYMA operations were effective in different
problem domains.

Each MACSYMA operation was meant to be an encoding of existing mathematical prac-
tice, the system imagined as a collective repository of the things mathematicians know
how to do. MACSYMA thus embodied a theory of knowledge – specifically that it can
be made both explicit and procedural for the purposes of automation.49 Martin and
Fateman, the two primary drivers of MACSYMA’s development, mused in 1971, ‘Our
rough hypothesis is that a mathematician knows perhaps 10 000 mathematical facts.
For example, if a student learned four facts an hour, four hours a day, five days a
week, nine months a year for forty years, he would learn some 12 000 facts.’50 Most of
those facts, they believed, took the form of operations, of ‘how-tos’: mathematicians
know how to integrate, they know how to simplify algebraic expressions, they know how
to take the limit of a function. In general, expert-systems practitioners theorized knowl-
edge as procedural in this way, believing it could be translated into commands of the kind
that can be given to a computer. But herein lay one of the core difficulties for making use
of the system.

Genesereth proposed that MACSYMA was grounded in a ‘conception of mathematical
knowledge as a body of programming rules’.51 In trying to explain why many users
struggled with the system, he suggested that ‘a user may define his operators by the iden-
tities they satisfy, but MACSYMA insists on function definitions and unidirectional
replacement rules’. That is, mathematicians may define their objects by the properties
they have or the constraints they satisfy, but MACSYMA requires instead a procedure for
creating that object or for recognizing instances where it can be replaced with some
equivalent. As a simple example, one definition of an even number might be, ‘n is even
if, and only if, there exists a number m such that n = 2m’. All even numbers will satisfy
this property, but this definition doesn’t offer an explicit procedure for creating even
numbers or establishing whether a given number is even. One such procedure might
be ‘divide n by 2. If there is no remainder, then n is even’. This is a trivial example,
because the transition from a property-based definition to a procedural one is somewhat
obvious. However, these translations were often quite difficult, and in some cases impos-
sible. Mathematical knowledge could only be ‘implemented in MACSYMA as variable

48 Mathlab Group, op. cit. (45), p. 1, my emphasis.
49 For a history of the related field of automated theorem-proving see Donald MacKenzie, Mechanizing Proof:

Computing, Risk, and Trust, Cambridge, MA: MIT Press, 2001.
50 Martin and Fateman, op. cit. (14), p. 59.
51 Genesereth, op. cit. (13), p. 302.

BJHS Themes 217

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

values, function definitions, and TELLSIMP rules, etc., rather than as a set of mathematical
definitions and constraints’.52 MACSYMA development involved the translation of math-
ematical knowledge and practice into programming rules, and that required users to learn
to think in these terms as well. Planning meant not only translating a given problem into
MACSYMA-executable sub-problems and commands, but also thinking of the objects and
relations at stake in a given problem procedurally in the first place. This was part of how
MACSYMA users learned to think like developers, like planners, like programmers. And
ideally they would be able to contribute their own knowledge to the system, in the requis-
ite, procedural, operationalized form.

Users were encouraged to encode and operationalize their own knowledge, and attach
it to the system in the so-called ‘SHARE directory’:

The SHARE directory contains programs, information files, etc. which are of interest
to the MACSYMA community. Most files on SHARE; are not part of the MACSYMA
system per se and must be loaded individually by the user … Many files on SHARE;
were contributed by MACSYMA users, and all MACSYMA users are encouraged to
do so.53

Users were not only meant to think like developers, but ideally to become them, able
to translate their own knowledge and needs into the system. One function of the ever-
updating Reference Manual was to catalogue the collective code contributed by those
users and make it available to others. Each SHARE directory module was introduced by
the command a user would type to call it forth. For example, ‘INTSCE LISP contains a rou-
tine, written by Richard Bogen, for integrating products of sines, cosines and exponentials
of the form EX(A*X+B)*COS(C*X)^N*SIN(C*X)^M. The call is INTSCE(expr,var).’54 Little
information was given for each contribution besides the author’s name, the call command
and a couple of examples. The directory tracked how successfully users’ knowledge and
needs had been shoehorned into the affordances of the system, packaged for automation.
It was a repository of shared codes.

Economizing mathematics

The ‘ideal user’ of the MACSYMA system adopted as much as possible the perspective of a
developer. The previous section focused on the translation of mathematical knowledge
and practice into MACSYMA-executable operations. This section turns to the awareness
of resources that users were also meant to share with developers, who must understand
and accommodate the limitations of the system. The training materials aimed to instill a
sense that computing resources were both scarce and shared, and thus everyone had to
adopt a certain etiquette of consumption.55 Throughout the user aids, economic language
was used to describe the project of problem solving with MACSYMA – computing opera-
tions were ‘jobs’ and resource-reducing plans ‘paid’. Part of thinking like a developer was
thinking economically in this way.

Ellen Golden highlighted many of MACSYMA’s limitations in An Introduction to ITS for
the MACSYMA User. For example, the system ‘will permit you to have up to eight jobs at
one time, but since the system can only accommodate about 120 jobs for all users

52 Genesereth, op. cit. (13), p. 302.
53 Mathlab Group, op. cit. (43), p. 209–30.
54 Mathlab Group, op. cit. (43), 222.
55 The negotiation of shared resources in time-sharing communities is explored extensively in Rankin, op. cit.

(25).

218 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

(including the systems jobs), it is not recommended to have more than two or three’.56

She continues:

Occasionally it may be necessary to logout in order to switch terminals, or to permit
someone else to use your terminal, but you may have a job you do not want to lose,
or which hasn’t finished running. The thing to do is to detach yourself, or to disown
the job … Disowning running jobs is inconsiderate, however. If a disowned job wants
to print out, it will not be able to and will just stop. This defeats the purpose of its
existence and takes up a job slot in the system. What this means is you should only
disown running jobs when it is absolutely necessary.57

Paying attention to a job’s impact on the system as a whole – how many cycles, how much
memory it consumed, was a shared code of conduct. Speaking of his experience using
MACSYMA at Harvard University in the 1980s, number theorist Fernando Gouvea indi-
cated that ‘the hardest part is that we were all using shared computers with not that
much capability which meant that you could easily do things that would get you in trou-
ble, that would get the systems administrator screaming at you – “you shouldn’t be using
all our cycles!”’58 Whereas most end users of today’s computing systems can operate in
relative isolation and ignorance of what others are doing, or of the overall systems and
networks in which they are consuming resources, MACSYMA users were made aware
that they operated in an ecosystem of shared and limited resources, and had to behave
accordingly.

In addition to situating one’s ‘jobs’ within the MACSYMA economy, users were also
trained to recognize and anticipate excessively consumptive dimensions of their algorith-
mic planning. For example, two ‘Maxims for the MACSYMA user’ in the Primer referred to
the exponential growth of certain computations: ‘A common tendency for a beginning
user is to needlessly generalize a problem and thus cause inevitable exponential growth
… The user should be aware of the types of calculations which in the general case have
exponential growth.’59 This is to say that it might be possible to easily execute a particular
simplification or evaluation of an expression, matrix or Taylor series. However, a user who
wanted to evaluate more than one case might ‘consider obtaining the determinant of
the general case’ and this could lead to an explosion of data that would quickly exhaust
the available memory. In planning a problem-solving course through the system, some
‘intermediate swell’ was usually inevitable, but good planning involved cost-cutting deci-
sions all the way through: ‘it always pays to think before one tries a powerful method’, ‘it
pays to reduce the number of variables in a problem as much possible’, ‘it pays if one can
reduce the degrees of the variables’, ‘it sometimes pays to convert all expressions to the
internal rational function form’, and so on.60 Many of the ‘Maxims for MACSYMA users’
evidenced the economic and industrial thinking that users should bring to bear on
their problem-solving plans. Even though MACSYMA was meant to offer automated ver-
sions of known techniques, the system could pursue them to quite inhuman lengths,
exceeding what users would have experienced with pencil and paper. As such, they had
to develop intuitions for the behaviour of the inhuman execution of familiar techniques
and economize accordingly.

56 Golden, op. cit. (10), p. 11.
57 Golden, op. cit. (10), pp. 12–13. ‘Disowning’ a job would leave it running, but without attachment to input/

output from a user’s specific terminal.
58 Fernando Gouvea, interview with the author.
59 Mathlab Group, op. cit. (45), p. 24.
60 Mathlab Group, op. cit. (45), p. 24, my emphasis.

BJHS Themes 219

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

MACSYMA users had to adopt the economic thinking required of developers, both to
situate their own goals within the economy of jobs, and to develop the most economical
plans they could for solving a given problem. In this way, too, users had to translate their
problem-solving needs to accommodate the limitations of the system and one another.

The difficulty with simplicity

One of the most notorious economical concerns in MACSYMA’s history related to
representation. The question of algebraic simplification epitomizes the tension between
users’ needs and developers’ needs. Simplification is all about representation – there
are uncountably many different ways to represent mathematical expressions, and math-
ematicians choose to work with the symbolic and formal systems that they find most
amenable to their problem-solving needs. A primary activity of mathematical scientists
is to transform algebraic expressions into amenable forms, to perform substitutions
and transformations. For example, ‘Many symbolic calculations take the following form:
One starts with some equations such as y = g(h), z = h(x), f = x2 + y2 + z2, and expressions
such as E:

∑5
i=0 cix

i. Later one substitutes such questions and expressions into another
expression such as [(∂f /∂x)2 + 2E2]/f 3. Then one attempts to simplify the resulting
expression.’61 This was precisely a set of practices that MACSYMA was designed to help
with. In manipulating, substituting and simplifying expressions in this way, mathemati-
cians might seek to understand expressions better, to see how they behave, to understand
relationships. However, at the heart of this practice are sets of assumptions about what
simplicity is, and this turned out to be a controversial subject.

In ‘Simplification: a guide for the perplexed’, Moses explained why MACSYMA was
designed as it was, and how users needed to think differently about simplicity in order
to make sense of, and make use of, the system:

Simplification is the most pervasive process in algebraic manipulation. It is also the
most controversial. Much of the controversy is due to the difference between
the desires of a user and those of a system designer. The user wants expressions
which he can comprehend … which usually means that the expressions presented
to the user should be small. The designer wants expressions that can be manipulated
with great ease and efficiency.62

These two desires can be in tension. Designers have to consider the affordances of their
machines – specific economies of computer memory and processing time – that are quite
foreign to those whose practice was grounded in paper and pencil. Users were expecting
to find automated versions of their paper-based practices, and instead they found
computer-oriented versions that were unfamiliar and unruly.

For example, expression [1] sin(4θ) and expression [2]

4
1− cos2(p/2− u)/ cos2(u)
1+ cos2(p/2− u)/ cos2(u) cos(u) cos(p/2− u)

are equivalent. They return the same result no matter what value θ has. We might prefer to
work with [1] because it is smaller, easier to read, more intuitive, easier to calculate. However,
MACSYMA designers might prefer [2]. In implementing a large-scale system like MACSYMA,

61 Moses, op. cit. (13), p. 529.
62 Moses, op. cit. (13), p. 527.

220 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

it could be more economical to implement only one function, or operation, when possible.
For example, it might be more economical to do all trigonometric calculations in terms of
cosine, rather than implementing cosine, sine, tangent, cotangent and so on. (This is pos-
sible because sin(x) = cos(x− π/2), and other trigonometric functions can be represented in
terms of one another as well). While [2] is not the simplest representation of [1] in terms of
cosine, it could be more amenable to the built-in trigonometric manipulations that
MACSYMA can do.

For MACSYMA designers, simplicity was a function of implementation, not visual
conciseness or ease of use. But these design features made the system hard to use:
‘One of the most common complaints of users of algebraic manipulation systems is
that the expressions obtained as results of a calculation are incomprehensible and
therefore essentially useless.’63 MACSYMA designers worked continuously to accommo-
date users and to produce modules that could translate between the forms of expres-
sions that the computer could most easily work and those that users would most like
to see on a screen. But ‘simplification for the sake of comprehension’ was, for the devel-
oper, just one form of simplification among many. MACSYMA’s power derived in part
from design choices that adhered to other definitions of simplicity, forms that econo-
mized for resources other than those used in paper-and-pencil-based practice.
Breaking a problem down into MACSYMA-executable sub-problems was, among other
things, a literal act of translation in which ‘the user must translate his problems into
MACSYMA’s terms’.64

A designer had to decide ‘how he will represent expressions, what changes of represen-
tation his system will perform automatically, which of these automatic transformations
he will let the user override and modify, and what additional facilities for simplifying
expressions his system will have’.65 There were inherent trade-offs in these decisions con-
cerning how many forms of representation a system can handle, and how much freedom
users have in choosing their own forms of representation. Not all problems translated eas-
ily into MACSYMA’s terms, and some could not be translated.

Genesereth included the friction between users’ representational choices and MACSYMA’s
in his taxonomy of ‘Difficulties with the MACSYMA system’. He called them ‘communication
difficulties’, the ‘result of the difference between the primitive objects, actions, and relations
in the user’s problem and those provided by the system.’66 Often a user simply did not know
how to reformalize their problem into MACSYMA’s terms. Other times, however, there was
no ‘mapping between the primitives of the user’s problem and their representation in
MACSYMA’. In the language of expert systems, MACSYMA lacked the ‘necessary expertise’
to solve such problems. MACSYMA users, therefore, had to develop familiarity not just
with the capabilities of the system, but with the representational structures required or per-
mitted by its various operations. Designers and users of the system had to think in terms of
new economies, develop different intuitions for problem solving, and learn new representa-
tional forms in order for MACSYMA to be a useful system. These, too, were shared codes of
conduct that triangulated between users, developers and the machine.

‘Finally, there are still people!’

Ironically, in spite of the rejection of tacit knowledge implied by the project of fully auto-
mating mathematical knowledge, the MACSYMA community depended on human

63 Moses, op. cit. (13), p. 529.
64 Genesereth, op. cit. (13), p. 300.
65 Moses, op. cit. (13), p. 530.
66 Genesereth, op. cit. (13), p. 300.

BJHS Themes 221

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

interaction and informal communication for the transfer of technical skill. In addition to
the thousands of pages of training materials that circulated, users still struggled to think
like programmers, to plan, to break down problems through the lens of MACSYMA cap-
abilities, and to work with the forms of representation the system demanded. There
were likely many obstacles to this transition – background, interest, exposure to comput-
ing technology, access to community and infrastructure, and more beyond what I can
explore here. As such, people supplemented paper in the making of this community in
many ways, or, as Ellen Lewis put it at the end of her report on the various aids for
MACSYMA users, ‘Finally, there are still people!’67

Harry Collins and Diana Forsythe each observed that artificial intelligence sought to
remove knowledge from its social context.68 Artificial-intelligence and expert-systems
researchers theorized knowledge as something that could be elicited, formalized, auto-
mated, and as such something that did not inhere in a body or community or context.
However, this position is undone in practice, where ‘the social’ is not erased by automa-
tion at all but rather rearranged around it, mediated, obscured and encoded within it.

First of all, as was common in early time-sharing systems, there was no privacy in
MACSYMA. Any online user could request a list of everyone who was online at a given
time and could even observe the jobs they had under way. The MIT development team
would often observe users and offer assistance if they appeared to be having trouble.
Genesereth wrote that these human consultants ‘proved to be its most effective user
aid’.69 Lewis too emphasized,

A very useful aid to a MACSYMA user is the ability to communicate on-line and
receive assistance in this fashion. This is the best way to get help … because a
MACSYMA programmer at MIT can have access to your current MACSYMA and exam-
ine your expressions. He (or she) can also use your console remotely to demonstrate
various solutions for you.70

While the development team was overwhelmingly male, Lewis herself played a huge role
in maintaining the MACSYMA system, handling incoming and outgoing correspondence,
writing, typesetting, editing and distributing the documentation, and in this way articu-
lating and documenting the roles of ‘user’ and ‘developer’ as they took shape. She was (as
indicated here) also sometimes the one offering online help. There are still people, but
their roles and genders and labour were so easily hidden in these encoded relationships.

There were also multiple commands that users could call to connect with other users. One
command, added after the system was made available outside the MIT community, was :SEND
(“message”); with which users could ask for help from any other users who were logged in.
Another, less generous, command permitted users to request help mid-programming: ‘If you
feel you are hopelessly “lost” there is a program called LUSER which will send a message
requesting help for you. All you have to do is type :LUSER (followed by a carriage return,
of course).’71 The pejorative command signals the often cruel culture of competence signal-
ling that served (and still serves) to police the borders of technical communities.

MACSYMA-mediated community communication and the mountains of paper-based
training materials, however, ultimately did not substitute for the face-to-face

67 Lewis, op. cit. (12), p. 290.
68 Forsythe, op. cit. (22); Harry Collins, Artificial Experts: Social Knowledge and Intelligent Machines, Cambridge,

MA: MIT Press, 1990.
69 Genesereth, op. cit. (13), p. 299.
70 Lewis, op. cit. (12), p. 19.
71 Golden, op. cit. (10), p. 50.

222 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

development of shared codes of conduct. Some members of the Mathlab group toured
user institutions, like the US Navy, to offer in-person courses on MACSYMA use. The
MACSYMA User’s Conference was inaugurated in 1977 to bring users and developers
together. Many of the training documents discussed here, like Lewis’s ‘User aids for
MACSYMA’ and Genesereth’s ‘The difficulties of using MACSYMA and the function of
user aids’, were first presented at the Users’ Conference. The importance of informal
human communication and face-to-face communication in developing the MACSYMA
community is perhaps ironic given that the belief that knowledge could be extracted
from social context, community and embodiment was at the very heart of the project.
The social, however, was not erased by their efforts. It was recoded.

MACSYMA codes of conduct were developed to accommodate and coordinate the needs
of users, the priorities of developers and the limitations of machines. These codes were
both technical and social, ranging from the translation of mathematical problem solving
into algorithmic planning to the norms of resource sharing and online communication.
Users had to think as much as possible like developers, and all had to accommodate
the obtuse limitations of the underlying computing machinery. The reams of paper
that constituted MACSYMA user aids enshrined these codes, revealed their changes
over time, and sought to carry them across distances, institutions and disciplines.
Throughout, the power of this paper-based training regime and its online counterparts
was undermined by the comparative efficacy of human help.

Never to be deterred in their ambitions to automate, however, there were computer-
ized versions of the ‘help’ commands with which users could query the system itself
rather than another person. The :HELP(); command was designed to answer ‘How do I
<do something>’ and ‘What are the <arguments, switches> for <command>’ questions.72

MACSYMA would return best-guess answers based on a rudimentary natural-language
processor. The :OPTIONS(); command activated an ‘Options Interpreter’ that took the
name of some MACSYMA command as an input and output a list of things you might
do with it.73 The :DESCRIBE(); command offered more specific information about other
commands, including the inputs and arguments they required. Finally, the :EXAMPLE()
command and the DEMO directory, in keeping with the print materials’ orientation to
teaching by example, would output example calls of given commands.

Further, Genesereth lamented,

Unfortunately, human consultants are a scarce resource and quite expensive. And, as
MACSYMA is exported and its user community grows, even more consultants might
have to be provided. For this reason, work has begun on the construction of an auto-
mated consultant, called the Advisor. This program should be able to converse with
the user in English about a difficulty he has encountered and provide advice tailored
to his need.74

Lewis as well, in describing the automated assistance available in 1977, wrote, ‘This
HELPer is the beginning of the ADVISOR subsystems which will ultimately take the
place of the communication with human advisors for most questions.’75 Needless to
say, the Advisor was never completed in accordance with this vision. Neither did
MACSYMA ever become a consolidated body of all mathematical knowledge, formalized
as programming rules, though efforts in this direction continue today. The rejection of

72 Lewis, op. cit. (12), p. 281.
73 Lewis, op. cit. (12), p. 282.
74 Genesereth, op. cit. (13), p. 300.
75 Lewis, op. cit. (12), p. 281.

BJHS Themes 223

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10

tacit knowledge that underlay the development of this system undid itself as the paper-
training regime failed to fully and easily induct mathematicians into the MACSYMA user
community. Instead, far more interesting and complicated social and technical relation-
ships developed, and these constituted the system itself and its users.

Although MACSYMA did not live up to its developers’ ambitious visions, it was none-
theless an incredible success. Thousands of people learned to think in new ways, to
become planners, to develop economic intuitions – communities spanning navy research
facilities, oil and gas companies, universities and hospitals – and more disciplined them-
selves according to codes shared with each other and with the machine in order to auto-
mate their mathematical problem-solving practice. But this recoding was born out of
formidable acts of discipline and of reformalization in which the objects and practices
of mathematics were conceived in the terms of the system.

So much debate, then and now, orbits the question of what machines can and cannot
do, what they will and will not make possible. However, the MACSYMA story highlights
the degree to which this question is somewhat beside the point. The real question is,
what are people willing to do for their machines? And for the people who build, use
and profit from them? What new technical and social codes of conduct take shape as
people accommodate the machine and encounter each other through it? The user’s
manuals and printed aids are our best remaining map of what the negotiation of
those new codes looked like in the MACSYMA case and how they took shape at the inter-
section of mathematics and programming, of people and machines, and of users and
developers.

Acknowledgements. I am grateful to my fellow authors for many transformative discussions; to my very help-
ful reviewers for incisive feedback; to the editors of this volume for guidance and patience; and to Marc
Aidinoff, Travis Dick, Mynra Perez Sheldon, Henry Cowles, Oriana Walker, Jonnie Penn, Michael Barany,
Joanna Radin, Luke Stark, Lukas Rieppel, Stefan Helmreich, Peter Galison and Etienne Benson for their invaluable
perspectives on various drafts. I am also grateful to the reading group at the Max Planck Institute for History of
Science, Department II, and to Lorraine Daston and Norton Wise in particular, for their engagement with a ver-
sion of this material in May 2018.

Cite this article: Dick SA (2020). Coded conduct: making MACSYMA users and the automation of mathematics.
BJHS Themes 5, 205–224. https://doi.org/10.1017/bjt.2020.10

224 Stephanie A. Dick

https://doi.org/10.1017/bjt.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/bjt.2020.10
https://doi.org/10.1017/bjt.2020.10

	Coded conduct: making MACSYMA users and the automation of mathematics
	A laboratory for mathematics
	Plans and situated thinking
	Economizing mathematics
	The difficulty with simplicity
	‘Finally, there are still people!’
	Acknowledgements

