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Abstract

This paper is the first part of a long delayed revision of the manuscript ‘The growth conditions for
recurrence sequences’ (circulated in 1982) in which the authors outlined a proof of the now well
known theorem on the finiteness of the number of solutions of S-unit equations. The argument
lifting the result from number fields to arbitrary fields of characteristic zero has original features.
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The present paper was conceived in conversation between the authors at an
Oberwolfach meeting early last decade. Some of its results were announced
at a lecture by one of us at the Janos Bolyai Number Theory Colloquium
in Budapest in 1981 and much of this paper appeared as a locally published
preprint in 1982. We allude to subsequent developments both in our principal
arguments below and in the second part of this note which deals with basic
applications of the main result.

The results below are now mostly well known, with the possible exception
of the lifting argument at Section 5-6. On the other hand, our draft report
[11] has been extensively quoted and it seems undesirable that it not be put
into the public domain proper.
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© 1991 Australian Mathematical Society 0263-6115/91 $A2.00 + 0.00

154

https://doi.org/10.1017/5144678870003336X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003336X

[2] Additive relations in fields 155

1. Introduction

In 1933 Mahler [7] proved that if S, S, S, are disjoint nonempty finite
sets of rational primes then an equation

Zy+2,+2,=0,

where z; is only divisible by primes in S;(i = 0, 1, 2), has only finitely
many solutions (z,, z,, z,) € z>. Independently, Dubois and Rhin [3] and
Schlickewei [14] extended this result to equations

(1) Zy+z,+-+2,=0,

(n > 2). In fact they proved a little more: let S;, ..., S, be pairwise
disjoint finite sets of rational primes. Let € > 0 and ¢ > 0 be given. Then
(1) has only finitely many solutions in rational integers z; satisfying

(2) I1 (nz,.l I1 |z,~|,,) el

i=1 PES;

where |z| = max{|zy|, ..., |z,|}. In the present paper we apply the p-adic
subspace theorem of Schlickewei [15] to extend this result in two ways. First,
we eliminate the requirement that the sets be pairwise disjoint by asking for
primitive solutions of (1); that is, solutions with their ged(z,, ..., z,)=1.
Secondly, we generalise the result to algebraic number fields (and, ultimately,
to arbitrary fields of characteristic zero).

In that context we must, of course, identify projectively equivalent so-
lutions of (1) in elements z; of an algebraic number field K; that is, if
we presume z, # 0, as we may, we identify solutions (z,,..., z,) and
(zg, eee z;) if

/ / ’ /
(z,/2g5 -5 2,/20) = (2y/24, ..., 2,/ 2,)-

Thus we lose no generality in assuming from the outset that the z; yielding
a solution be elements of the ring of integers Oy of the number field K.

Let p be a prime of Q (where p may be the archimedean prime as usual
denoted by oo ), and denote by | |, the usual normalised absolute value
associated with p. Write Q, for the completion of Q with respect to | |,,
(so R = Q_ ), and denote by @p its algebraic closure. Then | |, has a
unique extension to Q, which we may continue to denote by | l,, .

Suppose K has degree r over Q. Then there are r distinct isomorphic
embeddings g, : K — Q, . Denote this set by G, and with o € K write aj
for the image of a under the embedding 0, € G,.
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n+1

We may define a height for a point of K"* just by setting

g
e = max/aZ,|.,

and then, for z=(z,, z,, ..., 2,) € K™ writing

z|| = max ||z,|.

el = gmax |z

If so, we can insist on the following normalisation of solutions to (1). A
point is said to be quasi-primitive if

(3) II [T max(z5 ,1,» -5 |2z ,l,) > 1

p#oo 0
with some explicit implied constant depending only on the field K. (If Oy
has class number 1 then in (3) we are just asking for a point with relatively
prime co-ordinates. In general it is well-known that any point of D;'(“ is
projectively equivalent to a quasi-primitive point.) Moreover, since we may
normalise by a unit of £ we may restrict solutions to those that are quasi-
primitive and that satisfy

o

4) mgX(lzg,wloo, s 12y oloo) D<K 12l
with the implied constants again depending only on K.

It is equivalent, and may be preferable, to directly acknowledge that we
seek to study points of the projective space P"(K). Then it is appropriate

to define the absolute homogeneous height H(z) of a point z € P"(K) by
setting (recall that r = [K: Q])

logH®) =r"' Y Y max(loglz] |, ..., log|z} ,I,).
p o

It is the product formula for o € K*, namely
> logle,|, =0,
p a

that entails that H(z) is well-defined for a projective point. (Above, the
summations are over all places p of Q, including oo, and all embeddings
o of K into C.) Furthermore, the normalisation by r = [K : Q] guarantees
that H(z) does not depend on whether z is deemed to be defined over K or
over some extension field of K. The notation automatically incorporates the
various normalisations we imposed on z in the preceding paragraphs, and
with z so normalised we have

H(z) >< ||z ,
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with the implied constants depending only on K. (For this remark see,
say, [16].) In a context of ineffective results the two notations are essentially
interchangeable.

Let N denote the norm from K to Q. Our generalisation of the result
quoted at (2) is

THEOREM 1. Let ¢ > 0 and C > 0 be given, and let S be a finite set of
nonarchimedean primes of Q. Then the equation

Zo+z,+-+2,=0

has only finitely many solutions z € D;“ normalised so as to satisfy (3) and

(4) and moreover satisfying the following two conditions:
(i) no proper subsum of the z; vanishes; and
(ii)
- r—e
I IT wel, <clzl™.
i=0 peSU{oo}
Alternatively, the cited equation has only finitely many solutions z € P"(K)
satisfying the two conditions (i) and
(i) there is a representative of z such that (N'(z,), N(z,), ..., N(z,))
is a vector of S-integers and
n

M I W, < cE@) ™.

i=0 peSu{oo}

This result was proved independently by Evertse [4]. Indeed, we have cho-
sen to incorporate his refinements in this long-delayed revision of our draft
[11]. (Because our primary motive was to produce inequalities for the growth
of recurrence sequences it seems we strived to obtain a marginally weaker re-
sult by combining various inequalities in the argument in a rather unnatural
manner. It would be absurd to duplicate that part of the argument and,
indeed, it now seems almost impossible to do so.)

Theorem 1 yields important inequalities for recurrence sequences and
more generalised power sums; see subsequent parts of the present note and
the applications proved by Evertse [4]. Since wide classes of diophantine
problems reduce to equations in a sum of generalised units in a number field,
Theorem 1 yields results on generalised integer points on certain varieties;
see, for example, Vojta [18]. Moreover we can lift the essential features of
Theorem 1 to arbitrary fields of characteristic zero.

THEOREM 2. Let F be a field of characteristic zero and let G be a finitely
generated subgroup of ¥*. Let (a,,a,,...,a,) be an (n + 1)-tuple of
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nonzero elements of F. Then there are only finitely many projectively dis-
tinct relations

aguy+au, +---+au, =0
with (ug, u,, ..., u,) in "' and Jfor which no proper subsum of ayu, +
au, +---+a,u, vanishes.

2. Preliminaries

The proof of Theorem 1 consists of an application of Schlickewei’s p-adic
generalisation [13] of W. M. Schmidt’s Subspace Theorem [17, page 153] and
its generalisation to algebraic number fields [17, pages 272-75]). We quote
here a version of [13, Theorem 2.1] suitable for our present purposes.

LEMMA 1. Let n > 0. For each pair (p,c), with p € S U {0} and
c€qG,, let
L

Ll,a,p seees Ly 60
be m linearly independent linear forms in m variables and with coefficients
algebraic over Q in @p. For a point x = (x,, ..., X,,) € D,’:’ denote by XZ
the point (x;” pr e x,:, ) Then there are finitely many proper subspaces
t K™ containing all solutions x € Oy , x # 0, of the inequality

(5) I1 HHIL, o), < I

pESU{c0} 0 i=l

As noted above, we may replace ||x|| by H(x) in this result.

3. Proof of Theorem 1

We are given
(l) Zo+zl+"'+zn=0,
with z € P"(K).

For each pair (p, o) with p € SU {0} we then have
(6) 20t Pyt 2, =0,
and if (I, I,) is a partition of {0, 1, ..., n} then

ag
Zzi,p ZZ,,,
p

i€l i€l,
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SO
(7 maxlz, plp > Zz, R
i€l
?
Setting

Z=(z,...,2,)eK",
we define for each pair (p, g) a set of n+ 1 linear forms

(8) L, ,(Z)=2z

i1,0,p P (ISISH)

and
[{ - [{
a a
Ly 4 ,(2)) = —ZLi,a’p(zp ).
i=1

Notice that for each (p, ¢) any n of these n + 1 linear forms are linearly
independent. Further, by (6)

(9) Lo, ,p(25) =7, -

By (7) we have

(10) lzll >< iz,
and we note that for each p € SU {00},

I1IL; , @), =N(z)l,, ©<i<n).

Consider the product

-1
n
11 F(z max N(z)|. ,

(1)  F(2) (,,e}}w}lllow' ) pESIUI{w}gl (z)l,

noting that for each pair (p, o) it contains a product of n linearly indepen-
dent forms selected from the n + 1 forms (8) and (9). Let n > 0. Suppose
first that every solution z € D"“ satisfying condition (i), but not necessarily
condition (ii), of Theorem 1, has

(12) F@ > |2)™".
Then (10) implies that every solution satisfying (3) and (4) has
n
(13) IT II wedl, >z
i=0 peSU{oo}
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With ||z|| sufficiently large and 7 < ¢ this inequality is opposite to that of (ii)
of Theorem 1. Hence it suffices to prove (12) for all solutions z satisfying
the given conditions, and this we do by induction on #, noting that the case
n =1 istrivial since it is implied by the product formula in K. Accordingly,
suppose n > 1 and

(14) Fz)<|z]™".
Lemma 1 applies to the product F(z). For example, if one considers all
solutions z such that
g
12ip.07.0lp = ooax, 125l
for certain fixed subscripts i(p, o) € {0, 1, ..., n} with p € SU{oc} and
o € G,, then F(z) can be seen just to be

II I IT 12005zl

pESU{o0} 0 i#i(p,0o)

So there are finitely many proper subspaces T, , ..., Ty of K" containing
all solutions (z,, ..., z,) € Og of (14). Without loss of generality each
subspace T, has codimension 1 and is defined by an equation

(15) YmZit ot P2, =0

with the y,, in O . Fix & for the following remarks. Consider the y,;z,
(1 < i £ n) as new variables. Then (15) is of the same shape as (1) but
in fewer variables. If some proper subsum of (15) were to vanish we could
simplify and deal with yet fewer variables, say with an equation

(16) YmZmt o+ 7,2,=0,

where 1 < m < n. Then the sum (16) satisfies condition (i) of the theo-
rem. Because the y, are nonzero constants (and ||z|| is ‘sufficiently large’)
they do not make an essential contribution to |y So the induction
hypothesis applied to (16) implies, say,

-1
(17) (1‘[ [1 max I], ) I W, > ™.
p

€SU{oo} o pESU{oc} i=m

lplpl

With
(18) z, ++z,=2_,,

n

the original equation (1) becomes

(19) Z_ + 4z, =0

m=—1
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and again the induction hypothesis yields, from (7), that

-1
m—1
» (H 02‘,2’5,.Iz}’,p'p) [T ITwel,> =,
p

€SU{cc} © PESU{oo} i=—1

We now combine (17) and (20) with (14) to obtain
(21)

(pn we i | { T T (asit,)”

€SU{o0} peSU{oo} @

4 —-n/3
X max Z. Z z .
<0515m—1| ””l"> (m<k< 12k, plp ) }<< I=l

max |z} | B
0<i<n ' PP

cancel with just one of either

[ 4
max |z? or | max |z ;
(05j5m—1| M"”) (m<k<n| k.ol ) ’

and for each pair (p, ) by (18) and (19),

But the terms

. ag
z7 min{ m z; .
lz_1 1’| < (ogjsar:(q' joolo > m<k<n|zk olp )

Thus in (21) the left hand side is > 1. Since n > 0, this yields a
contradiction once ||z|| is large relative to the implied constants. This yields
Theorem 1. Its alternative formulation is equivalent: it suffices to recall our
earlier remarks and to notice that for any nonzero s in K such that A(s)
is a rational composed solely of the primes of S (thus an S-unit of Q), one

has
n

II II wezl,=I1 II Wel,. o

i=0 peSu{oo} i=0 peSu{oo}

4. Inequalities for sums of generalised units

The following by-product of Theorem 1 is a generalisation of the result that
motivated the present work. Indeed, it required a remark by Birch, made to
one of us at Budapest, 1981 (apropos the lecture [10]) for us to notice the
reformulation that became Theorems 1 and 2.

It is convenient to adopt a more conventional notation than heretofore.
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THEOREM 3. Let K be a number field and T a finite subset of its places.
Denote by S a finite set of primes of Q including those lying below the nonar-
chimedean places of T. Let H(z) denote the (absolute homogeneous) height

of points (zy:z,:-+-:z,) € P"(K). Then, for every ¢ > 0, the inequality
n -1
[Mize++zl > IT [IW@), ) I maxizl, H@®™
veT pESU{oc} i=1 veT = —

holds for all but at most finitely many z in P"(K) for which

(i) neither the sum z, +---+ z, nor any of its proper subsums vanishes;
and

(ii) the representative of z is such that (N'(z,), ..., N(z,)) is a vector of
S-integers of Q.

Note. In practice one selects S so as to validate the second condition.

PROOF. Set z, = -z, —z,—--- -z, , and denote by T the places above
SU{oc} and notin T . Since, of course, (presuming that appropriate nor-
malisations have been selected for the values)

IT 1zl IT1zel = T Wz,

veT' veT pESU{oo}
and, plainly,
-1
I1 Iz, (H max |z,.|,) <1,
veT
we see on applying (12) that Theorem 3 is entailed by a reformulation of
Theorem 1. O

5. Specialisation

The following discussion is preliminary to deriving Theorem 2 from The-
orem 1. Our initial remarks arise from a suggestion of Cassels [2] and con-
stitute the first step in a p-adic embedding argument; a summary of that
argument appears in [12]

Let F be a field finitely generated over Q and let x = (x,, ..., x,) be
a transcendence basis for F over Q. Then F = Q(x)[y], with y algebraic
over Q(x). Denote the defining polynomial of y over Z[x] by F[x}(Y),
and suppose that it is of degree r .

Each element ¢ of the field F = Q(x)[y] has a representation

b= U; 0/V,(x),

https://doi.org/10.1017/5144678870003336X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003336X

[10] Additive relations in fields 163

with U, € Z[y; x] of degree less than r in y and V, € ZIx]. Clearly, we
may choose both U, so that its set of coefficients as a polynomial in y are
relatively prime and choose V¢ relatively prime to that set of coefficients of
U, and with its set of coefficients relatively prime over Z . We may then
refer to V, € Z[x] as the denominator of ¢.

Cassels’ idea is to introduce a suitable finite set I' of elements of F with
the property that whenever » € I and y # 0 then also y~ ' €. Having
chosen I', we set

Vex) = [T %0
yel
It will always be convenient to require that I" centains the discriminant and
the leading and trailing coefficients of F[x](Y) ; we assume this implicitly
below.
Denote by
c=(¢,¢y,...5C)

t-tuples of rational integers. It is easy to see, by induction on ¢, that there
are infinitely many such ¢-tuples ¢ so that V(c) # 0 . Whenever V(c) #0 ,
we refer to a map x — ¢, together with an induced map y = y(x) — y(c)
with y(c) some zero of F[c)(Y), as a I'-specialisation of F. (This is an
abuse of language; we specialise only the elements of a subring Q[y:y €I .)

Clearly, for y € I' we have V;(c) #0. If y# 0 then y'l €I, so also
V,-1(c) #0.

We allege that if y = y(y(x); x) € I', its I'-specialisation y(y(c); ¢) is an
element of an algebraic number field K = Q(c)[y(c)] of degree at most r over
Q. But this is clear. Trivially, Q(¢) = Q and y(c) is a zero of a polynomial
F[c](Y) of degree r over Q. Moreover, if y # 0, the specialisation of y
is nonzero. For, by the definition of I'", the element y_l also belongs to I
and thus also has an image in K under the specialisation.

Now let R be a subring of F finitely generated over Z (thus of finite
type). We select the finite set I" as above so that inter alia I" contains the
generators of R. Then a I'-specialisation of F maps R C F into the number
field K of degree at most r over Q.

Moreover, by augmenting the set I controlling the admissible specialisa-
tions, we may arrange that a given element of R does not map to a root of
unity. To see this, suppose p € R is not a root of unity in F. Thus pk -1
is nonzero for all k =1, 2, .... We recall that a root of unity in a number
field of degree r over Q has order at most r’, where ¢(r') < r. Noting only
that (') — oo as ¥ — oo (in fact r’ is of order rloglogr) we see that
r' is bounded in terms of r. Then, augmenting I with the finitely many
nonzero elements pk -1 (k=1,...,r), to obtain a new controlling set
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I, guarantees that those elements are not sent to zero by a I"-specialisation
and entails that p is not specialised to a root of unity.

6. Proof of Theorem 2

Fix an (n+ 1)-tuple (q,, a,, ..., a,) of nonzero elements of F and sup-

pose that, throughout the sequel, (n + 1)-tuples u and v belong to " s

with G a given finitely generated multiplicative subgroup of F*, and satisfy

_0 d ! ! /_0
agug+au +---+au, =0 and ayuy+au +---+a,u,=0.

6.1 Weak equivalence. Each relation a,u,+a,u, +---+a,u, =0 is asso-
ciated with one or more partitions 7 = (T, T, ..., T,) of {0, 1, ..., n}
according as, for each j, ZieTj a;u; = 0, but, for any proper subset 7' of
Tjs Yiera; #0.

Suppose ayu, + a,u, +---+a,u, =0 and aguy+a,uy +---+a,u, =0
have associated partitions 7 and T’ respectively. Then we say that the
pairs (u, 7) and (', 7') are weakly equivalent, and write (u, T) ~ (', T')
if T =T and, for each TJ € T, there is an element v; of G such that
u; =wv,u, foreach i€T,.

We are forced to define the equivalence relation on pairs (4, 7) in order to
ensure the transitivity of the relation. To see this, say that a relation is prim-
itive if its associated partition 7 is trivial, that is, if 7 = ({0, 1, ..., n}).
Now notice that imprimitive relations may arise from shorter primitive rela-
tions in a variety of ways.

Conversely, given a partition T = (T;,, T}, ..., T,,) fix maps TJ — TJ :
i — j(i) constant on the subsets T; of {0, 1, ..., n}. Then triples, consist-

"*! and a partition 7, determine

ing of pairs of (n+1)-tuples u and v’ in G
n+1 elements 7, of G by

—1 —1
i 4w
Plainly, if ajuy +ayu; + - +a,u, =0 and aguy + @y + - +a,u, =0
have the same associated partition 7, then

(u,T)~@,T) e t,(u,u,T)=1 foral iin{0,1,...,n}.

ti(u,u',T)=uiu;(i)u (i=0,1,...,n).

6.2 Admissible specialisations. We describe a specialisation of F as ad-
missible if the finite set I', defining the subring of F actually specialised,
contains the given coefficients a,, ..., a, and a generating set of the multi-
plicative subgroup G.
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Let f be an admissible specialisation f of F controlled by the finite
subset I' of F. Now f restricted to G, f]|;, is a group homomorphism
G — f(G), with f(G) a finitely generated subgroup of some number field
K of degree at most r over Q. Let KX denote the torsion-hull of the kernel
of this map, that is, those elements of G sent to a root of unity in K. We
shall show that there we may choose f so that it preserves the multiplicative
independence of multiplicatively independent elements, and thus so that K
is just the torsion subgroup of G.

LEMMA 2. Let g,, &,, ..., & be multiplicatively independent elements of
G. Then there is an admissible specialisation f of F so that f(g,), f(&,).
.., f(g,) are multiplicatively independent elements of a number field of
degree at most r over Q.

Proor. Given H sufficiently large relative to the data, consider the spe-
cialisations of F inducedby x— ¢ = (c,, ..., ¢,) , with each rational integer
c; satisfying |c;| < H . Select an admissible such specialisation (there are
O(H') such) and denote the image of g by g;;the g; will be elements
of some number field K of degree r over Q . We have logH(g;) < logH ,
with the implied constant depending only on the data and not on the selected
specialisation. By a result of Loxton and van der Poorten [6] if the g, are

multiplicatively dependent then there is a multiplicative relation
Zyogs=1,

in integers a ; » not all zero, with the |a ;| < (log H)s" . Accordingly, we

augment the controlling set with the elements

bl bS
gl ...gs —_

and obtain a new controlling set I', say. The construction prevents the
g; from specialising to multiplicatively dependent elements under any I-
specialisation induced by x — ¢ with each ¢; satisfying |c;| < H . Only

1 for all integer vectors b with |b;| < (log H)Y'™",

2
< H' '(log H)* ™' of the original O(H") specialisations induced by x — ¢
fail to yield an admissible specialisation with respect to I'. So if H is large
enough relative to the data this leaves a plentitude of specialisations to spare.

6.3 Strong equivalence. Let f be a specialisation, selected according to
the lemma and fixed from hereon. Set f(u;,)=w, (i=0,1,...,n). On
applying f to the relation

aguy+au, +---+a,u, =0
we obtain a relation
flag)wy + fla)w, +---+ f(a,)w, =0
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in some number field K of degree at most r over Q. Let 7, be a partition
associated with this relation.
Similarly, the relation

/ / !
aguy+au, +---+au, =0

specialises to
! ! !
Sflapwy + fla)w, +--- + f(a,)w, =0
in K , say with an associated partition Tf' .

Once each relation ayw,+a,w, +---+a,w, = 0 is associated with some
partition once for all, we may say that u and u' are strongly equivalent—
relative to the given specialisation and the choice of associated partitions,
and write ux ', if

/ /
W, T,)~ (W, T)).

Since weak equivalence is an equivalence relation on the pairs (u, 7) it

readily follows that strong equivalence is an equivalence relation on the u.

6.4 Counting equivalence classes. In Theorem 1 we deal with primitive
relations over number fields and inter alia prove that, given the (n+ 1)-tuple
(f(a), ..., f(a,)) and a finitely generated subgroup f(G) € K> , there are
just finitely many weak equivalence classes of pairs (w, {0, 1, ..., n}) over
a number field K . A fortiori, the same holds for weak equivalence classes
arising from given relations of length shorter than n. Because there are just
a finite number of partitions of {0, 1, ..., n}, it follows readily that a given
(f(ay), ..., f(a,)) and a finitely generated subgroup f(G) € K* yield only
finitely many weak equivalence classes (w, Tf) in a number field K .

Thus there are only finitely many strong equivalence classes of (n + 1)-
tuples u € G**' with aguy,+au, +---+au, =0.

Hence, to prove Theorem 2, it suffices to show that each strong equivalence
class comprises only finitely many weak equivalence classes.

6.5 The inductive step. Suppose that # ~ u’ . Then, by the choice of the
specialisation f,

f(r(u, 0, 7)) =1
entails that
t,u,T)=1 fori=0,1,...,n.

Hence there is an (m + 1)-tuple (v,, v, ..., v,,) of elements of G so that

!/

u; = ;U foreach i € TJ and each TJ € Tf

Thus, with bj =3 er au; for j=0,1,..., m, thereis an (m + 1)-tuple

i€T,

https://doi.org/10.1017/5144678870003336X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003336X

[14) Additive relations in fields 167
(Vg Vys ..., 0,) in G™*! satisfying the relation
byvy+bv, +--+b,v, =0.

The point is that m < n, so this new relation is shorter than the ones with
which we began. We therefore assume that each of the b, is nonzero. In the
contrary case, we have a relation

bj=Zaiu,.=0

ieT;

with |T;| < n, and we work with it as a new shorter relation in the argument
below.

We remark, in passing, that if ayu,+a,u, +---+ a,u, =0 is a primitive
relation then, both, none of the & ; can vanish and the new relation itself is
primitive,

6.6 The main argument. Theorem 2 is obvious for n = 1 and, as induction
assumption, we may have assumed its truth for relations on fewer than n+1
summands. In particular we may take as further induction assumption that,
when m < n, a given (m+ 1)-tuple (b,, b,, ..., b,) of nonzero elements
of F yields only finitely many weak equivalence classes of pairs (v, 7) of
(m+ 1)-tuples ve G™"' satisfying the relation byvy+bv, +---+b,v, =0
with associated partition 7 of {0, 1,..., m}.

We have shown that each u' strongly equivalent to u either yields an
(m+ 1)-tuple v e G™" satisfying the relation byvy+bv, +---+b,v, =0
with the bj nonzero, or EieT. au; =0, some j.

In the former case there are just finitely many weak equivalence classes
(v, T) by the induction assumption; so the u’ arise from only finitely many
weak equivalence classes. That makes plain that each strong equivalence class
comprises only finitely many weak equivalence classes, completing the proof.
In the latter case, we have a shorter relation on the u; to begin with and,
again, induction completes our argument.

6.7 Remarks. The principal argument is an in extenso rendition of the
argument which appears as a ‘one line’ remark in our original manuscript
[11]; Evertse (in a conversation with one of us at Leiden in 1982) pointed
out that a few more words might well be needed. Robert Rumely (ARGS
visiting fellow at Macquarie University in 1985) suggested the notions of
weak and strong equivalence. Lemma 2, for which we originally had rather
more dubious arguments, is implicit in work of Masser [9] (and independently
came to the attention of each of us during 1985).
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6.8 The referee’s suggestion. Actually, it suffices to prove the following
result:

THEOREM 2’ . Let F be a field of characteristic zero and let c,, c,, ...,
c, be nonzero elements of F. Denoteby G,, G,, ..., G, finitely generated

subgroups of F* . Then the equation
(22) U+ Uy + o+ u, =1

has only finitely many solutions in elements u, € G, (1 <i < n) for which
no proper subsum of ¢, u, + c,u, + -+ +c,u, vanishes.

PrOOF. We refer to a solution u = (u, u,, ..., u,) of (22) as admissible
if it satisfies the conditions of the theorem. We proceed by induction on
M= ZLI rankG,; , where the rank of an abelian group is defined as the rank
of its torsion-free part. Our induction assumption is the truth of the theorem
if the sum of the ranks is less than M. If M = 0 then the groups G, are
finite and there is nothing to prove. Nor is it any restriction to suppose that
each G, has rank at least 1, for otherwise (22) is readily transformed into
finitely many similar equations involving fewer than # summands, and we
prove each of these to have only finitely many admissible solutions.

Accordingly we may select, for each i, a g; € G; not aroot of unity. Next,
as described in Section 5, we construct a finite set I" so that specialisations
S controlled by I' have the property that no element of the groups G, is
sent to zero, that the f(c,) are nonzero and none of the f(g;) are a root of
unity. Furthermore, the f(c;) and the multiplicative subgroups f(G,) are
contained in some number field K. Set

H,={g€G,: f(g)isaroot of unity} (1<i<n).

Then for each i we have rank H;, < rankG;. To see this, notice that if
rank H; = rank G; then H, has finite index, say m, in G; whence g™ e H,
for every g € G. But that is a contradiction because, by the construction,
f(g;) is not a root of unity.

Then a solution u of (22) yields a solution f(u) =w= (w,, w,, ..., w,)
of

fle)w, + fle)w, + - + fe )w, =1
with w; € f(G;) for 1 < i < n; and there is a subset I C {1, 2,..., n}
such that }°.., f(c)w;=1 and ¥, f(c,)w; #0 for D#K CI.

By Theorem 1 there is a finite subset S of K, depending only on the
f(a;), the f(G,) and n (and thence only on the g, the G, and n) such
that each w; € §. This is to say, for each solution u of (22) and each
ief{l,2,...,n},thereisan s € S such that f(u,)=s.
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We take i = n and complete the inductive step by showing that (22)
has only finitely many admissible solutions u with f(u,) = s. Indeed, let
u and v be solutions with f(u,) =s and f(v,) = s respectively. Then
f(u,/v,)=1,s0 u,/v, € H,. Thus, on writing ¢, =c,v, and u, =u,/v,,
we have

(23) CUy +CoUy + -+ + c;u'n =1

with u; € G, for i=1,2..., n—1 and u, € H_, whilst each proper subsum
on the left is nonzero.

But, according to the induction hypothesis, (23) has only finitely many
admissible solutions (u,, u,,...,u,_,, u:,) , 50 (22) has only finitely many
admissible solutions u with f(u,) =s.

We are grateful to the referee for allowing us to incorporate this argument
in the present manuscript.

7. Generalisations to function fields

There are now other generalisations of Theorem 1. Denote by L an ar-
bitrary field of characteristic zero and let F be a function field over L of
genus g . Then, sharpening results of Mason [8], Brownawell and Masser [1]
show that every solution u in P"(F) of

Ug+u +---+u,=0,

such that no proper subset of the u; is linearly dependent over L, has pro-
jective height bounded explicitly in terms of g and the numbers m(v) of
elements amongst the u; which are units at the respective values v of F.
A relevant corollary is that if the u; all are S-units for some finite set S of
values, with S of cardinality |S|, then the height of a solution is bounded
by

gn(n—1)(|S| +2g - 2).

This result is skew to those above in that it neither includes nor is included in
ours. Nonetheless, it seems clear that on taking the base field of finite tran-
scendence degree over @, and using Theorem 1 as the base of an induction
on both the transcendence degree ¢ of F over Q and on n, one may derive
Theorem 2 by an argument which Masser has described as “ ... ‘specialis-
ing’, except that one does not actually need to specialise at all” (conversation
with one of us at IAS, Princeton, 1986). The task has recently been carried
out by Evertse and Gydry [, Appendix], and is indeed quite straightforward
as predicted.
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