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Abstract. We prove that the isomorphism class of an affine hyperbolic curve defined over a field
finitely generated over Q is completely determined by its arithmetic fundamental group. We aso
prove asimilar result for an affine curve defined over afinite field.

I ntroduction

Let k beafield, and Y ak-scheme, geometrically connected and of finite type over
k. Then we have the following exact sequence of profinite groups:

1-m <Y®ksep, *) — 7T1(Y, *)&)Gk — 1. (0-1)
k

Here, Gy, is the absolute Galois group Gal (k%P /k) of the field k, * is a suitable
geometric point, and 71 means the étale fundamental group ([SGA]). The exact
sequence above yields the following outer Galois representation

py: G — Out (wl (Y X k>, *> > , (0-2)
k

where, for atopological group G, Out(G) means the group Aut(G) of continuous
group automorphisms of G divided by the group Inn(G) of inner automorphisms
of G.

Recall that, if & is of characteristic 0 and an inclusion & < C is given, then
m1(Y ®y k, *) isisomorphic to the profinite completion of the topological funda-
mental group of the complex analytic space Y (C), hence it is determined by the
homotopy type of Y (C). For example, if Y isaproper, smooth, geometrically con-
nected curveover such k, the profinitegroup 1 (Y ®4.k, *) iscompletely determined
(up to isomorphism) by the genusof Y. Thus, in order to get more information on
the k-scheme Y, we need to look at the relation between w1 (Y ®, k, *) and the
Galois group G, i.e. the exact sequence (0-1) or the outer Galois representation
(0-2).

When £ isfinitely generated over Q, A. Grothendieck proposed the following
philosophy ([Grothendieck 1], [Grothendieck 2]):
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If Y is anabelian, then the group-theoretical data (w1(Y,*),pry) (or
(m(Y @ k3P, %), py)) functorially determines the isomorphism class of
the k-scheme Y.

Although we do not have any general definition of theterm ‘anabelian’, hyperbolic
curves have been regarded as typica examples of anabelian schemes. Here, a
smooth, geometrically connected curve U over k is called hyperbolic, if it satisfies

x(U) o 2—2g—n < 0,whereg = gy isthe genusof the smooth compactification
X of U, and n = ny isthe cardinality of S(k), where S = X — U. Thus, in this
case, the philosophy above gives the following:

CONJECTURE (0.1). Let k beafield finitely generated over Q. Let U1 and U> be
hyperbolic curves over k. Then:

(i) (Weak form.) If there existsan isomorphism F: w1(U1, *) — m1(Us, *) with
pry, = pry, o F, then Uy isisomorphic to U, over k.
(ii) (Strong form.) The natural map

1S0Myschemes/k) (U1, U2)

— Isomg, (71 (Us, *), m1(Uz, *))/Inn <7Tl < 2QF, >>
k

is bijective, where
|SOI’T]G,c (71'1(U1, *), 71'1(U2, *))
dgf {‘7: € |Som(7T1(U1, *)771—1(U27 *)) | prUl = prU2 ° ‘7:}

In terms of the outer Galois representations, the formulation of this conjecture is
asfollows:

CONJECTURE (0.2). Notations and assumptions asin Conjecture (0.1), then:

(i) (Weak form.) If there exists an isomorphism F: 71 (U1 @y, k, ) — m1(Uz ®y,
k, x) with Out(F) o py, = pu,, then Uy isisomorphicto U, over k. (Here, Out(F)
denotes the isomorphism Out(w1(Uy ®y k,*)) — Out(m1 (U2 ® k,*)) induced
by F.)

(i) (Strong form.) The natural map

1S0Mschemesy k) (U1, U2)

— 1somgH" (wl

(Ul(% k, «
Inn<7r1 (Uz(? k, *>>
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is bijective, where

Isom@" (m (Ul Xk, *> , 1 (Uz (% k, *> >

k

dg {]—"e Isom <7r1 <U1®];:,*> , 1 (Uz@k,*))
k k
‘ Out(F) o pu, = pu, }

In fact, Conjectures (0.1) and (0.2) are equivalent to each other. (See Section 7, A.)
The following is one of the main results of the present paper:

THEOREM (0.3). (cf. (6.3), (7.2).) Conjecture (0.1) (hence (0.2)) is valid for
affine (= non-proper, i.e. ny;, > 0) hyperbolic curves Uy, U; over k.

Partial results (weak form for genus 0 and 1) on Conjecture (0.1) have been
obtained by H. Nakamura ([Nakamura 1], [Nakamura 2], [Nakamura 5]). (Seeaso
[Voevodskii].) We also have the following Theorem of F. Pop ([Pop 1], [Pop 2]),
which isregarded as afunction field version of Conjecture (0.1).

THEOREM (Pop). Let k be a field finitely generated over Q. Let X1 and X, be
proper, smooth curves over k. Then the natural map

1SOMschemesy k) (SPEC(k(X1)), Spec(k(X2)))
— 150Mg,, (G(xy), Gr(xy)) /INN(G(x,)
is bijective.
Recently ([Pop 3]), he generalized this result to higher-dimensional varieties.

Combining Theorem (0.3) with the main result of [Pop 3], we aso obtain the
following absolute version of Theorem (0.3).

THEOREM (0.4). (cf. (6.1).) For eachi = 1, 2, let k; be afield finitely generated
over Q and U; an affine hyperbolic curve over k;. Then the natural map

1S0Mschemes) (U1, Uz) — 1som(mry (Uy, *), w1 (Uz, *))/Inn(mr1 (U, *))

is bijective. In particular, if w1(Uy, %) isisomorphic to 71(Us, *), then Uy isiso-
mor phic to U>.

Wederive Theorem (0.3) from thefollowing finitefield version, whichisanother
main result of the present paper:
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THEOREM (0.5). (cf. (4.3).) For eachi = 1,2, let k; be afinitefield and U; an
affine hyperbolic curve over k;. Then the natural map

1S0M(schemes) (U1, U2)
— Isom(wtlame (Uy, *), ﬂ.tlame (Ua, >k))/|nn(7rt1‘5‘me (Uy, %))

is bijective. In particular, if 7M(U7, *) isisomorphic to 7@M(Uy, *), then Uy is
isomorphicto Us.
Here, 7™M means the tame fundamental group ([SGA, Exp. X111], [GM]).

Simultaneously with Theorem (0.5), we also prove the following (which is not
related to Theorem (0.3)):

THEOREM (0.6). (cf. (4.3).) For eachi = 1,2, let k; be afinitefield and U; an
affine (not necessarily hyperbolic) curve over k;. Then the natural map

150Mschemes) (U1, Uz) — Isom(mr1(Uy, #), m1(Uz, %)) /Inn(m1 (U2, *))

is bijective. In particular, if w1(Uy, %) isisomorphic to 71(Us, *), then Uy isiso-
morphic to U».

This is an affirmative answer to a sight modification of [Harbater, Question
1.12]. (Strictly speaking, the answer to the original question is negativein general.
See (6.4) and (7.3)(ii).)

Roughly speaking, the proof of Theorems (0.5) and (0.6) isamodification of K.
Uchida' s proof of the following function field version of Theorem (0.6) ([Uchidal):

THEOREM (Uchida). For eachi = 1,2, let k; be a finite field and X; a proper,
smooth, geometrically connected curve over k;. Then the natural map

1S0M schemes) (SPec(k1(X1)), Spec(k2(X2)))

= 1S0M(G ey (x1)> Gra(x)) /1NMN(Gy(x5))
is bijective.

Starting from the profinite group G(x, where k is a finite field and X is a
proper, smooth, geometrically connected curve over k, Uchida (1) characterized
the decomposition groups D,, (v: aclosed point of X) in G, x); (2) recovered the
multiplicative group k£(X)*; and (3) recovered the additive structure on k(X)) =
E(X)* U {0}.

In Step (1), he used a method concerning Brauer groups, after Neukirch. In
the present case, the group H?(D,,, Q/Z(1)"), where' meansthe prime-to-char (k)
part, vanishes for all closed points v of U, since I, = {1} and D,, ~ Z for such v.
So, instead, we exploit a completely different method, concerning Galois sections
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and rational points. The main idea of our method is described in the following
simplest case:

PROPOSITION (0.7). (cf. (2.10), (3.8).) Let k be a finite field and X a proper
hyperbolic curveover k. Let s : G, — m1(X, *) bea continuous group-theoretical
section of pr .. Then, s(G},) isthe decomposition group (deter mined up to conjuga-
cy) of some k-rational (closed) point of X if and only if X3 (k) # () for each open
subgroup H of 71 (X, *) containing s(Gy,), where X4, denotesthe finite étale cov-
ering of X corresponding to #. Moreover, the condition X3 (k) # () is equivalent
to the following group-theoretical condition:

2
> (=1)7tr 5, (03t | Hom(H N Ker(pry), Zs)) > 0,
j=0

where ¢y, isthe f(k)-th power Frobeniuselementin Gy, and l isan arbitrary prime
number distinct from char(k).

In Step (2), Uchida resorted to class field theory for the function field k(X).
His proof goes well also in the present case, if we assume that U is affine. In his
function field case, not only the multiplicative group of the function field but also
the valuation and the reduction at each closed point of X were recovered. In our
case, the valuation is recovered at each closed point of X, but the reduction is
recovered only at each closed pointof S = X — U.

In Step (3), he used infinitely many reductions freely, to prove the additivity of
the multiplicative isomorphism k1(X1) ~ k»(X2) recovered from a given (topo-
logical) group isomorphism G, (x,) = G,(x,)- In the present case, only finitely
many reductions are at our disposal. Here is one of the main difficulties in our
proof, which we overcome, roughly speaking, by constructing sufficiently many
good elementsin the function field.

We shall review the contentsof the present paper in more detail. In Section 1, we
collect generalities on the fundamental groups of curves. In Section 2, we show the
formalism of our Gal ois section method of characterizing the decomposition groups
group-theoretically, which is applied to not only finite fields but also more general
fields, like p-adic local fields and fields finitely generated over Q. In Section 3,
we show how to recover various invariants of a curve from its fundamental group.
In the finite field case, the contents of Section 2 and Section 3 give the complete
characterization of the decomposition groups. Inthe other cases, we have no method
(like the Lefschetz trace formula) of detecting whether at least one rational point
existsor not, so the formalism in Section 2 remains to be amere formalism, for the
present. (See the end of Section 2.) In Section 4, we give the proof of Theorems
(0.5) and (0.6), whose outline we have already described. In Section 5, we study
the fundamental groups of curves over discrete valuation fields. Given a good
family of hyperbolic curves over the spectrum of a discrete valuation ring, we
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show how to recover the tame fundamental group of the specia fiber from the
(tame) fundamental group of the generic fiber. The main ingredient of our solution
of this problem is the following criterion for good reduction of a hyperbolic curve
over adiscrete valuation field in terms of the monodromy on the pro-/ fundamental
group of the curve, which might be of interest, independently of the Grothendieck
conjecture.

THEOREM (0.8). (cf. (5.3).) Let S be the spectrum of a discrete valuation
ring, and n (resp. s) its generic (resp. closed) point. Let X be a proper, smooth,
geometrically connected curveover n, and D arelatively étaledivisor in X /n. Put
U = X — D and assumethat U is hyperbolic. Then the following conditions are
equivalent:

(i) (X, D) has good reduction at s, i.e. there exist a proper, smooth S-scheme
X and a relatively étale divisor ® in X/S, whose generic fiber (X,,9,) is
isomorphicto (X, D) over 7.

(i) Theimage of theinertia group of  in Out(my (Uys», *)!) istrivial for some (or
all) primenumber [ # char(k(s)), where G' meansthe maximal pro- quotient
of a given profinite group G.

For D empty, thistheoremis dueto Oda ([Oda 1], [OdaZ2]). In Section 6, we prove
Theorem (0.3), using the results in Section 4 and Section 5, together with some
global arguments. In Section 7, we givethree complementary remarks—therelation
between Conjectures (0.1) and (0.2), an application of Theorem (0.3) to profinite
group theory, and an alternative proof of Pop’s theorem above as a corollary of
Theorem (0.3).

Remark (0.9). (i) Although we did not fix the geometric points = in this section,
we will fix them and exclude ambiguity of the inner automorphismsin the text.

(i) Inthetext, wewill also prove certain pro-C versions of the theorems above,
where C isafull class of finite groups containing all finite abelian groups.

1. Generalitieson the fundamental groups of curves

In this section, we fix the notations used in the text, and recall some general facts
on the étale fundamental groups of algebraic curves.

Let k& be afield of characteristic p > 0. Let U be a smooth, geometrically
connected curve over k, and X the smooth compactification of U, which is a
proper, smooth, geometrically connected curveover k. Put S = X — U, and regard
it as a (possibly empty) reduced closed subscheme of X. Define non-negative
integersg = gy = gx andn = ny to bethe genusof X over k£ and the cardinality
of S(k), respectively. Let ¢ be the generic point of U, and put K = (&), the
function field of U.
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Fix aseparableclosurek*®, anddefinelU, X, S, and ¢ tobeU ®;, k5P, X @, k5P,
S @ kP, and ¢ ®;, k%P, respectively. Note that ¢ is identified with the generic
point of U.

Take ageometric point ¢ of U abovethe generic point £. Notethat £ also defines
a geometric point of U above £. Let the symbol - denote either (unrestricted) or
tame. Then we have the following exact sequence of profinite groups:

1 my(U,8) = my(U, &) 2 Gy — 1, (1-1)

where 7@(T, £) (resp. 7@M&(U, £€)) means the tame fundamental group of X
(resp. X) with respect to S (resp. S). (See[SGA, Exp. XI11], [GM].)

We shall introduce avariant of (1-1) above. Let C beafull class of finite groups,
i.e. C isclosed under taking subgroups, quotients, finite products, and extensions.
For aprofinite group IT, TI® denotesthe maximal pro-C quotient of IT. WhenC isthe
class of I-groups (resp. I’-groups, i.e. finite groups of order primeto /), wherel is
aprime number or 0, write IT* (resp. IT") instead of TI€. Here we mean by O-group
(resp. O'-group) trivial group (resp. finite group). Given a profinite group IT and its
(closed) normal subgroup TI, we denote TT/Ker(TT — TI°) by IT(). Observe that
T1©) coincides with IT€ if and only if G % T1/TT is a pro-C group. By definition,
we have the following:

1 - 11 ~ 11 - G -1

1 g (© G 1,
where the rows are exact and the columns are surjective. Applying thisto (1-1), we
obtain:

15 m(0,8° - mU,© L gy —» 1 (1-2)

Observe that (1-2) yields the outer Galois representation
G, — Out(my (U, €)°).

The Galois-theoretical interpretation of the exact sequence (1-2) is as fol-
lows. Define K = K to be the maximal pro-C Galois extension of Kk%® in
k(€)/ Kk, unramified on U, and, if - = tame, (at most) tamely ramified on S.
Then the sequence (1-2) is canonically identified with the following:

1 Ga(K/Kk®) — Ga(K/K) — Ga(Kk®/K) —— 1.
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Note that Gal(K/K) (resp. Gal(K /KE*)) coincides with Aut(U/U) (resp.
Aut(U/U)), wherewe define U = U "€ to be the integral closure of U in K.

For aclosed subgroup # C (U, £)(©), denote by U, the sub-coveringin U /U
corresponding to #, and define k4, to be the integral closure of k in Uy, whichis
aseparable extension in k5P /k. If H is open, then k4, isfinite over k, and Uy, isa
smooth, geometrically connected curve over ky,. We denote invariants of Uy, /ky
by the corresponding symbols for U/k with subscript H, like X3, S#, 9%, n#u,

K, etc. Putting H = H Ny (U, )¢, we have the following exact sequence:
1—-H —H—=pr(H) =1,

which is canonically identified with

1= my(On, )¢ = m1(U3, §)©) = G,y = 1,
or
1 — Ga(K/Kyk*) - Ga(K/Ky) — Gal(Kyk®/Ky) — 1.

In our approach to the Grothendieck conjecture, it isimportant to observe not only
U itself but also all the coverings Uy .

Next, we recall some properties of the profinite group TT & (U, €).

For a (discrete) group T, denote by I'C the pro-C completion of I, and, when C
isthe class of all finite groups (resp. I-groups, resp. I’-groups), denoteit also by T'
(resp. T, resp. T'"). Define adiscrete group 1, ,, for non-negative integers g and n
by:

Hg,n = (alﬂ"'aagaﬁla"'a/Bgalea"'afYn
| ufrag Bt .. agﬁgaglﬁglyl ey = 1),

whichisknownto beisomorphicto thetopological fundamental group of acompact
Riemann surface of genus g minus n points. Note that II,,, is isomorphic to
Fogn—1if n > 0, where F,. denotesthe free group of rank r.

Thefollowing is well-known. (See [SGA], except for the description of IT".)

PROPOSITION (1.1). (i) If char(k) = O, thenTI ~ ﬁgyn.

(i) Assumechar(k) = p > 0. ThenTl” ~ I ,.For - =tameor n = 0,Iisa
quotient of ﬁg,n, hence LS (topologically) finitely generated, and IT” is isomorphic
to the free pro-p group F? of rank r, where r is the p-rank of the Jacobian variety

of X over k (hence0 < r < g). For - = (unrestricted) and n. > 0, IT is not finitely
generated, and TT” is a free pro-p group of infinite rank |&|. O
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Put

o 0, forn=0,
1, forn > 0.

COROLLARY (1.2).

( 7,029+n—¢ char(k) =0,
(@)o2tne xz, char(k) = p > 0;n = 0
o ~ or - = tame,
(272202 x []2,, #(1) = |K|, char(k)=p>0;n>0
i€l
and - = (unrestricted). O

\

Remark (1.3). We have the following information on the G.-module structure of
™ 1fn = 0,i.e. U = X, then we have a canonical isomorphism:

ﬁab ~ T(Jx), (1'3)

where Jx means the jacobian variety of X and

T(A) = limKer(m -id: A — A)(k),

am
is the Tate module of an abelian variety A over k. If n > 0 and - = tame, then we

have the following exact sequence:

0 27(1) = 2[SRH] @ (1) = T = T(Jx) 0, -4

where [ S (k)] denotes the free Z-modulewith basis S(k), to which the Gj.-action

on S(k) is extended, and

27 (1) = limKer(m - id Gy — Gy (k)
ptm

= limKer(m - id: Gp, — G ) (k),

—
m
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whereG,, isthemultiplicativegroup schemeover k. (Weusualy write Z(1) instead
of Z%(1).) In general, if n. > 0, we have the following exact sequence at | east:

0— 27(1) = 2[SH] @27 (1) - (M) = T(Jx) »0. (1)

COROLLARY (1.4). (i) Assumeeither char(k) = 0or - = tame. ThenII istrivial
ifandonlyif2—2g —n > 0,i.e. (g,n) = (0,0) or (0,1), and IT is abelian if and
onlyif2—2g —n > 0,i.e (g,n) = (0,0),(0,1),0r (1,0).

(i) Assumechar(k) > 0and- = (unrestricted). Then IT istrivial if and only if
(g,n) = (0,0), and IT is abelian if and only if (g,n) = (0,0) or (1,0). O

We shall investigate two important propertiesof II, namely, torsion-freenessand
center-freeness. Here, we say that a profinite group is torsion-free (resp. center-
freg), if it has no non-trivial elements of finite order (resp. if its center istrivia).

LEMMA (L5). Let G be a profinite group. If H® is torsion-free for each open
subgroup H of G, then GG istorsion-free.

Proof. For a proj ectlve system i)G A} of profinite groups, we can easily check
the equality (I|m GA = I|m (Gx)®. Since any closed subgroup of G isthe inter-

section of open subgroups of G, it follows that H?® is torsion-free for each closed
subgroup H. This completesthe proof, since any finite subgroup of G isclosed. O

PROPOSITION (1.6). TI° istorsion-free.
Proof. By (1.5), it suffices to check that H® is torsion-free for each open

subgroup H of T°. Let A bethe inverse image of H in II. Then H is identified
with HC. (Note that T/ = TI° / H is afinite group in C and that C is full.) Now
H® = (HC)® = (H®)C jstorsion-freeby (1.2). (Apply it to Uy.) Thiscompletes
the proof. O

Remark (1.7). In fact, we can prove more: the cohomological dimension of the
profinite group s < 2 < oo. We omit the proof of thisfact.

LEMMA (1.8). Let G be a profinite group.

(i) If H' is center-freefor all open subgroups H of G and all prime numbers/,
then G is center-free.

(i) Assumethat G istorsion-free. If G admits a center-free open subgroup, then
G isalso center-free.

Proof. (i) For a projective system {G,} of profinite groups, we can easily
check the equality (lim Gy = IiLn(GA)l. Since any closed subgroup Z of G isthe

intersection of open subgroups of G, it follows that, if Z! is nontrivial, then there
exists an open subgroup H of G containing Z such that the image of Z! in H' is
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nontrivial. Now let Z be the center of G. Suppose that Z is nontrivial, then Z! is
nontrivial for some prime number [, since Z is abelian. But then theimage of Z' in
H', which is contained in the center of H!, is nontrivial for some open subgroup
H of G containing Z. Thisis contradictory to the assumption.

(i) Let Z be the center of GG, and H a center-free open subgroup of G. Then
Z N H, contained in the center of H, istrivial. Thisimplies Z isfinite, hencetrivia
since GG istorsion-free. |

LEMMA (1.9). Assumep > Oand g > 2. Let [ be any prime number # p. If an
integer m > 0O satisfies

l2g _ lZg—l
"> W(p —1)g,
then there exists a connected étale Galois covering Y of X with Galois group
7 /I™Z, such that the abelian variety Jy /Im(Jy+) isordinary, where Y’/ X isthe
sub-covering of Y/ X corresponding to the subgroup I~ /I™Z in Z /I™Z.

In particular, for a given integer ro > 0, there exist m > 0 and a connected
étale Galois covering Y of X with Galois group Z /I™Z, such that the p-rank r of
Jy satisfiesr > rq.

Proof. Thefirst statement isaslight modification of [Raynaud, Théoreme4.3.1],
and the proof is similar. (Use the following generalization of [Raynaud, Lemme
4.3.5]:

Let k& bean algebraically closed field, A an abelian variety over k of dimension
g > 2, D an effective divisor on A, and C a proper, smooth, connected curve
on A. Then, for any prime number [ # char(k) and any integer m > 0 with
(C.D) <1™(1%9 — 1)/ (1% — 1%9~1), there exists a cyclic subgroup G of A of order
[™,suchthat DN G C IG.)

The second statement follows from the first, since the p-rank (= dimension) of
Jy /Im(Jy-) is (I™ — I™~1)(g — 1), which goesto infinity if 7 goesto infinity. O

LEMMA (1.10). Assumethat IT is not abelian (cf. (1.4)). Let [ be a prime number
% p. Let go and ng be given integers > 0.

()If2—29 —n < 0(resp. p > O, - = (unrestricted), and n > 0), then there
exists an open normal subgroup H of T with TI/ H [-group (resp. p-group), such
that gz > go.

(i) Assumen > 0.1f2—2g —n < 0 (resp. p > O, - = (unrestricted), n > 0,
and (g,n) # (0, 1)), then there exists an open normal subgroup H of T with TT/ H
an [-group (resp. a p-group), such that g > go and ny > no. In general, there
exists an open normal subgroup H of TI with TI/ H an extension of a p-group by
an [-group, suchthat g > go andny > ng.

Proof. Easy exercise. (Use abelian or meta-abelian coverings.) O
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PROPOSITION (1.11). Assume that II is not abelian (cf. (1.4)). Let I be a prime
number # p, andassumeZ/1Z € C. Assume, moreover, Z /pZ € C,if2—2g—n > 0.

(Thisoccursonly if p > 0, - = (unrestricted), and n > 0.) Then T is center-free.

Proof. If p = 0orp > 0but C does not contain Z /pZ, this follows from (1.1)
and [Nakamura 3, Corollary (1.3.4)]. (See also [Anderson], [LV].) So, we may
assumep > 0 and that C contains Z /pZ. By (1.6), (1.8)(ii), and (1.10)(i), we may
assume g > 2. Then, by (1.9), we may also assume the p-rank » of X is greater
than 1. Now (1.1) implies that IT satisfies the condition of (1.8)(i). (Note g > ¢,
ng > n,andrg > r.) This completes the proof. O

2. Characterization of decomposition groups

In this section, we treat the problem of characterizing decomposition groups in

(U, €)©). A similar problem in the case of Galois groups has been related to
the method concerning Brauer groups, after Neukirch. Here we take another way,
using the method of Galois sectionsand rational points. Although the Brauer group
method may be applied to the points on S, it does not seem to be applied to the
points on U. On the other hand, our method is efficient only for £ finite, for the
present, although its formalism is stated for more general k. (See the end of this
section.) B B

We follow the notations of Section 1, and denote ; (U, €)(©) and 73 (U, )€ by
IT and I for simplicity. In this section, we always assume that the base field & is
perfect and that the classC containsZ /iZfor all prime numbers! (henceit contains
al finite solvable groups).

Remark (2.1). The assumption on C implies that TT = (U, €)C istrivial (resp.
abelian) if and only if sois 7 (U, €). See(1.1) and its corollary (1.4).

For ascheme T', denote by Y7 the set of closed pointsof T'. For eachv € X ¢,

where X denotes the integral closure of X in K, we define the decomposition
group D; and the inertiagroup I; by

Dy = {yell | y(?) =0},

Iy = {y€ D; | v actstrividly on x(v)}.
Then we have a canonical isomorphism D;/I; ~ Gal(k(?)/k(v)), where v is
the image of ¢ in X. Observe that () is naturally identified with k& and that I;
coincideswith D; N 1I. If & ison U, then we have I; = {1}.

Let & beaclosed point of X, and define ¥ to betheimage of & in Xy, for each
closed subgroup # of I1. Define

- def

K; = U (K24) 55,
HCT
open
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where (Ky)s, means the v4-adic completion of the field K. Note Dy =

Ga(K;/K,), wherev % 1. Denote by KU (resp. K@) the maximal unramified
extension (resp. the maximal tamely ramified extension) of K, in afixed algebraic
closure of K. Then:

LEMMA (2.2). Kj; coincides with KV if and only if either & € U, or o ¢ U,

char(k) = 0 or - = tame, and (g,n) = (0,1). Otherwise, i.e. if & ¢ U and
(g,m) # (0, 1) for char(k) = O or - = tame, then

K@ame — g — K, if char(k) =0,

P Klame if char(k) > 0 and - = tame,
") kP if char(k) > 0

and - = (unrestricted).

Proof. If 4 € U, then we have K,k C K C K = K,k. This also holds for
v ¢ U, char(k) = 0or- = tame, and (g,n) = (0,1), by (1.4).

Otherwise, the inclusion f(ﬁ C K, isclear, where « is tame = sep (resp. tame,
resp. sep) if char(k) = O (resp. char(k) > 0 and - = tame, resp. char(k) > 0 and
. = (unrestricted)). Weshall prove K C K;. Notethatwehave K = K,k C K;
at least. Sincen > 0and (¢g,n) # (0, 1) for char(k) = O or - = tame, there exists
an open subgroup # with ny, > 2 by (1.10)(ii). Since K7 C (KH);;H, we may
assumeny, > 2. Then, applying (1.2) to U and U U {ir}, we see K13 C K; at
least. In fact, Gal (K@ /K ') is isomorphic to Z', and, for any exact sequence
Zy— ZP™ — 2P — 0, the left arrow Z; — ZP™ isinjective.

Now the case where char(k) = p > 0and - = (unrestricted) remains. From the
preceding argument, we have K@ IN(;,NC K;? atleast. SinceGal (K, / K1ame)
isapro-p group, it sufficesto prove that K has no 7 /pZ-extensions. Suppose the
contrary, then K; has a Z /pZ-extension, which comes from a Z /pZ-extension
L of (Ky)s, for some open subgroup #. Replacing 7 by a suitable smaller
subgroup if necessary, we may assume that f(S%) > 2. By the Artin-Schreier
theory, L = (Ky)s, (o), Wwhere o? — a = a € (Ky)g, . By the assumption
#(Sx%) > 2 and by Riemann-Roch theorem, Ay, = T'(Uy,Ox,,) is dense in
(K%)3,,, SO there exists ag € Ay, such that a — ag belongs to the valuation ring
O(KH)5H of (K3 )s,, - Let ag bearoot (in K®) of theequation XP — X = ag, and
put e = o — ap. Observee? — € = a — ap. Then we have

L = (K3)iy () C (K1) (0) (K)ay (€) C K(Ko)y, = Ky,

which is absurd since LK; / K; isaZ /pZ-extension. O
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Next, we fix some notations about Galois sections. Recall that we have the
following exact sequence (1-2):

1-T-08% 6, -1

DEFINITION (2.3). Let G be an open subgroup of G,, and denote by . the natural
inclusion G — G. Let H be an open subgroup of TI.

(i) We define
S(G) ¥ {s € Homeont(G,T1) | pros = i} ,
and
Su(G) € {5 € S(G) | s(G) C M}

(Notethat Sy (G) isempty unlesspr(#) contains G.) Werefer an element of S(G)
as section.

(i) Wesay that asection s € Sy (G) isgeometric, if itsimage s(G) is contained
in D; for some € X ¢, and denote by Sy (G')9°™ the set of geometric sectionsin
Su(G). We write S(G)9°™ instead of Si(G)9%™.

(iif) We define

o€ lim Su(G),
GCGy:open

and write Q instead of Q. We refer an element of Q as quasi-section. We define
the set 9% of geometric quasi-sections by

geom def ; eom
Qq.[ = “i>n SH(G)Q )
GCGy:open

and write Q9" ingtead of Q7.

Remark (2.4). (i) The natural map Qy — Q is hijective, since H is an open
subgroup of TI. If weidentify Q with Q by thisbijection, Q%" isidentified with
Qgeom.

(ii) Sinceany section s: G — I isdetermined by itsimage s(G), wecanidentify
S(@G) with the set of closed subgroupsof IT which areisomorphically mapped onto
G by pr. Thus the conjugation of v € II defines a bijection S(G) ~ S(v(Q)),
where v(G) = pr(y)Gpr(y)~2, which maps S(G)%™ onto S(v(G))%°™. This
bijection induces a bijection Sy (G) ~ S,z (v(G)), where y(H) = vH~y ™1,
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which maps Sz, (G)9°™ onto S (7 (7(G))9°™. Taking the inductive limit, IT acts
on Q and Q9.

Next, we shall define important maps from the sets of pairs of Galois sections
to certain cohomology groups.

Let H be an open subgroup of I1. We define aclosed subgroup I () of # to be
the kernel of

H =3 (Uz, €)©) — m1(Xpy,6)©),

which coincides with the kernel of

7_2 = Tri(U_’Haf)C - ﬂ-l(X—’Ha E)C

By definition, we have

H/T(H) = m1( X2, €) O H/T(H) = (X3, €)°,
and

(H/T(H))® = m(Xo0, €)® = T(Jxy,)-

(Recall that C contains all finite abelian groups.) Observe that (H/I(H))® =
T(Jx,,) becomesaGy,, (= pr(H))-module.

DEFINITION (2.5). (i) For each open subgroup G of Gy, , define the map

J1(G): Su(G) x Su(G)

o

- Hgont (GvT(‘]X'H)) =i Hl(GvT(JXH)/mT(JXH))

—
m

to send apair (s1,s2) € Sy (G) x Sy (G) to the cohomology class of the (contin-
uous) 1-cocycle: G — (H/I(H))® = T(Jx,,), o — theimage of s1(c)sz(0) 2.
(ii) Define
g Qu x Q= lim  Hin(G,T(Jx,,))
GCGkH: open

as IiLnjH(G). (Note that we define j3,(G) only when G is contained in Gy, .
However, Sy, (G) is empty, otherwise.)

LEMMA (2.6). Let s; bean element of Sy, (G)9°™M for i = 1,2, andtakev; € X ¢

satisfying s;(G) C Dy,. Denote by v; theimage of o; in Xyqp—1(qy = X3 ®ky, L,
where L = k©.
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Thenv; isa L-rational point for 7 = 1, 2, and jz(G)(s1, s2) coincideswith the
image of the divisor v1 — v of degree 0 on X3 ®y,, L by

Div° (XH X L) = Jxyp (L) = lim Jx,, (L) /mJx,, (L)
ky
IMEEHDE Hipy (G, T(Tx,,))-
Proof. Since D, N#H contains s;(G), itsimage pr(D;, NH) in Gy, contains G,
which also implies that pr(Ds N H N pri(G)) coincides with G. This means v;

is L-rational.
As for the second statement, see [NT, Lemma (4.14)], [Nakamura2, 2.2.
Claim]. O

Recall (2.4)(i) that Qs is naturally identified with Q.

DEFINITION (2.7). Lets; beanelementof Q fori =1, 2.
(i) Let H be an open subgroup of I1. Then we define:

def. .
81;282 <~ jf;{(sl, 82) =0.

(ii) We define
§1 ~ 82 & 31;\;32 for al open subgroups # in TI.

(Observe that ~ and ~ are equivalencerelationson Q.)

Our approach to the problem of characterizing decomposition groups depends
on properties of the basefield k. Consider the following conditionsfor the (perfect)

field &:
(A) For any abelian variety A over k, we have
() mA(k) = {0}.
m>1

(Bx) The profinite group Gal (k((7))>/k((T))) is topologically generated by
(the images of) continuous group-theoretical sections of the surjective homomor-
phism

Gal(k((T))*®/k((T))) — Gal(k - k((T))/k((T))) = G

(Ck) (resp. (C},)) k admits a structure of Hausdorff topological field, so that
Y (k) becomes compact for any proper, smooth, geometrically connected curve Y
(resp. proper, smooth, geometrically connected curve Y of genus > 2) over k.
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We define the conditions (A), (B), (C) and (C') for thefield k by:
() < (1) forany finite extension L over k.

Examples of fields satisfying (A) are: finite fields, fields finitely generated over
Q, and p-adic local fields, i.e. finite extensions of Q,. When char(k) = 0, the
condition (By) holds if and only if £*/kE*™ # 1 for al natural numbers m > 1.
In particular, fields of characteristic 0 admitting a discrete valuation (e.g. fields
finitely generated over Q and p-adic local fields) satisfy (B). Other caseswhere (B)
holds are when GG, is afree profinite group of rank > 0. In particular, finite fields
satisfy (B). Examplesof fields satisfying (C) arefinitefields (for discrete topology)
and p-adic local fields (for p-adic topology). Examples of fields satisfying (C')
are fields finitely generated over Q (for discrete topology). (Mordell conjecture!
([Faltings], [FW]))

Thefollowing is akey proposition of our method of characterizing decomposi-
tion groups.

PROPOSITION (2.8). (i) Assumethat £ satisfies (A). Assume (g, n) # (0,0), and
assumealso (g,n) # (0, 1), (0, 2) when either char(k) = Oor - = tame. Let o bea
closed point of X', and H; a closed subgroup of D; whoseimagein D; / I; is open.
Then, for each closed point o' # @ of X, D does not contain Hj. In particular,
D; does not contain Dj.

Moreover, the map ¥ ¢ — { closed subgroupsof I}, o — Dj isinjective.

(i) Put the same assumptionsasin (i). Then, for each open subgroup G of Gy,
there exists a unique map ¢(G): S(G)9°M — X ¢ satisfying s(G) C Dy (s) for
each s € S(@G). Taking the inductive limit of (G, we obtain

P QI B

which is compatible with the actions of TI.
Themap ¢ inducesabijection . (Q9°™M/ ~) — X ¢, whichinducesa bijection
@yt H\(Q9™M/ ~) — H\X ; = By, for each closed subgroup # of IT:

Qgeom P

|

Y-
n

| |

H\(QIPM/ ~) P\ D¢

Yx.

At
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When # isopen and gy, > 0,  also induces a bijection
—_ def —
o (QI°M/ ) = Bxy = Xy(k) = HOMgpeq (s, (SpeC(k), X30),

which is compatible with the actions of pr(H) = H /H.

(iii) Put the same assumptionsasin (i), and further assumethat k satisfies (B).
Let sbeanelement of Q9™ / ~. Then D isthe closed subgroup (topol ogically)
generated by s(G) for all open subgroups G of G, and all s € S(G)%™ with

s mod ~= s. The open subgroup G5 o pr(Ds)) ischaracterized asthe maximal
open subgroup G of G, with {s € S(G)9™ | s mod ~= s} # (), and Dy ) is
characterized also as the closed subgroup (topologically) generated by s(Gs) for
al s € §(Gs)9M with s mod ~=s.

Moreover, 3(s) € U if and only if {s € S(Gs)9™ | s mod ~= s} is a one-
element set. If this is the case, the unique element s of this set satisfies D¢(s) =
s(Gs).

(iv) Assume either that & satisfies (C) or that k£ satisfies (C') and II is not

abelian. (cf. (1.4) and (2.1).) Let G' be an open subgroup of Gy, and put L = k¢.

Let s bean element of S(G). Then s belongsto S(G)9°™ if and only if X4 (L) o

HOMgpec(1,, ) (SPEC(L), X3) isnon-empty for all open subgroup A of IT containing
s(G@

Proof. First note that, for each closed subgroup K of IT and each sub-extension
M/kink/k, we have:

EX)C: Lin EXHa
KCHCII
open
and
Xe(M) = lim  Xp(M).
KCHCII
open

Denotetheimageof v € X x,. (resp. P € X (M)) inXx,, (resp. X3 (M)) by vy
(resp. Py).

(i) The assumption on (g,n) means that there exists an open subgroup o
of IT with gy, > 0. Since &’ # 0, there exists an open subgroup A of II with
04, # 0. Taking the intersection with # if necessary, we may assume gy, > O.
Moreover, we may assumethat pr(H; NH) = pr(Dy NH) = pr(#H). Infact, put
G =pr(H; NH)Nnpr(Dy NH), which is an open subgroup of G, and replace H
by H# N pr=1(Q).

Now, suppose H; C Dy, hence H;NH C Dy N'H. Thentheimageof H; N'H
in #/I(H) coincides with that of Dy N H. In fact, these are injectively mapped
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into G, by pr, and both of their (injective) images coincides with pr(#). These
images are identified with sections s and s’ of H/I(H) — pr(#). Applying (2.6)
to Xy, we seethat oy = v, Since gy, > 0 and k satisfies (A). Thisis absurd.

Putting H; = D3, we get the second statement. The third statement follows
from the second.

(ii) By definition, for each s € S(G)9™, there existsa v € X with Dy D
s(G). By (i), such v is unique. This shows the existence and uniqueness of ¢(G).
Since ¢(G) is compatible with the restriction of the open subgroup G of Gy, we
can define ¢ as

lim  o(G),
GCGy:open

which is compatible with the IT-actions by definitions.

First we prove that ¢ is surjective. Take any v € X and put v = oy, Put
G = pr(Dy), which is identified with D;/I; = Gal(k/k(v)). Now it sufficesto
show that the surjection D; — G admits a (continuous group-theoretical) section.
Since Dj is a quotient of the absolute Galois group of the fractional field of the
completion of Ox,, the following lemma settles the problem.

LEMMA (2.9). Let K be the fractional field of a henselian discrete valuation
ring, and I, the inertia group in the absolute Galois group G i of K. Then the
surjection G g — Gk /Ix admits a continuous group-theoretical section.

Proof. Let p bethe characteristic of theresidue field of the henselian valuation.
Let Px be the p-Sylow subgroup of Ik if p > 0, and {1} if p = 0. Choosing a
compatible system of power roots of a prime element, we can construct a section
of Gk /Px — Gk /Ik.Onthe other hand, Gx — Gk /P admits a section by
[KPR]. Composing them, we obtain asectionof Gx — G /Ik. O

Next, let # be an open subgroup of I1, and G a closed subgroup of Gj. Let s1
and s, be elements of S3(G)%™, which define elements of Q@ = Q4. Then, by
(2.6), (i) 2rpr-1(c) Isan L-rational point of Xyqp-1(q) = X3 ®p,, L for each
i =1,2,where L = k%.Since Jx,, (L) — Jx,, (L") isinjectivefor each finite sub-
extension L' /L of k/L, j3(s1,s2) = Oisequivalent to jy (G)(s1,s2) = 0, and,
moreover, thisoccursif and only if either gz, = 0or g3, > 0and p(s1) yrpr-1(q) =

P(82)9npr-1(c)- (Use (2.6).) Since X3, (L) — X3(k) isinjective, we have:

S]_;Z(S'z <= either gy = Oor gy > 0, (,0(81)7:[ = (,0(82)7:[.

Thuswe obtain the bijection ¢4 (Q%°M/ %J) — Xx,, if g3 > 0, and the bijection

@: (Q¥™M/ ~) — X . (For the latter, note that for each open subgroup # of
IT there exists an open subgroup H' of H with g, > 0, by our assumption.) By
definition, ¢ iscompatiblewith the IT-actions, hencesoisthe bijection ¢. Therefore
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@ inducesthe bijection ¢4, for any closed subgroup # of II. Since ¢ is compatible
with the #-actions for each open subgroup # of 11, ¢4 isaso compatiblewith the
‘H-actions.

(iii) For s € S(G)¥™M, s mod ~= s <= p(s) = @(s) <= s(G) C Dy,
by (ii). From this and the condition (B), all the statements are clear, except for
the statements on U. Note that we exclude (g,n) = (0,0) and (g,n) = (0, 1) for
char(k) = 0 or - = tame. Hence, by (2.2), v € ¥ ; belongsto U if and only if
Iz = {1}, or, equivalently, D; Ly Gy, isinjective. Since D) i generated by
5(Gs) for s € S(Gs)9°™ with s mod ~= s, @(s) belongs to U if and only if
{s € S(Gs)9M | s mod ~= s} isaone-element set. The last statement is clear.

(iv) Firstassumes € S(G)9°™, andlet H be any open subgroup of IT containing
s(G).Putd = ¢(s). Then Gal(k/k(93)) C Gy coincideswith pr(D; N#H), which
contains pr(s(G)) = G. Hence L contains (%) (in k). In particular, X4 (L) is
non-empty.

Next, let s be an element of S(G), and assume X4 (L) # 0 for all open
subgroups H of II containing s(G). Since

Xyo)(L) = lim  Xy(L),

s(G)CHCII
open

X (L) is aso non-empty by the condition (C) and Tikhonov's theorem. Here,
when we assume that TT is not abelian, observe that there exists an H containing
5(G) with g3, > 2. In fact, there exists an open subgroup H of TI with g7 > 2 by
(1.10), and since

N nm = s@)nTi={1) c &,
s(G)CHCIT
open

the compactness argument assures the existence of H with H NI c H. Then
gn =9 = 2. B B

Take any L-rational point P of X, ). (Note k) = kP(@) = k¢ = L)
Definev € ¥x, , to betheimage of P, and chooseany v € ¥ ; abovev. Asv
is L-rational, pr(D; N s(G)) = G = pr(s(G)). Since s(G) P Gy, isinjective, this
implies D; N s(G) = s(G),i.e. s(G) C D;. Inparticular, s € S(G)9M. 0

COROLLARY (2.10). (Summary of (2.8).) Assume either (a): k satisfies (A),
(B), (C) (eg. k: afinitefield or a p-adic local field), (g,n) # (0,0), and (g, n) #
(0,1),(0,2) if char(k) = 0 or - = tame; or (b) k satisfies (A), (B), (C') (eg. &:
finitely generated over Q), and II is not abelian. Then the map £; — {closed
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subgroups of 11}, o — Dy is injective. There exists a II-equivariant bijection
@: (Q9°M/ ~) — X, whichis characterized by:

Dy = (s(G) | G C Gy open, s € S(G)%™, s mod ~=s).

Moreover, for each open subgroup G of Gy, the subset S(G)%™ in S(G) is
characterized by:

5 € 8(G)¥M «— Xy (L) #0
for all open subgroups H of IT containing s(G),

where I = kC. O

Remark (2.11). Put the same assumptions as in (2.8)(i). Let G’ C G be open
subgroups of Gy. If s € S(G) satisfies s(G') C Dj for some & € X, then
s(G) C D;. Moreover, the inverse image of Q9™ by S(G) — Q coincides with
S(G)9m,

In fact, we may assume that G’ is normal in G, shrinking G’ if necessary.
Then, for each 7 € G, s(G") = s(7)s(G")s(r)~! is contained in both D; and
s(T)Dys(1) 1 = Dy(7)5. By (2.8)(i), thisimplies o = s(7)v, i.e. s(7) € Dy. The
second statement directly follows from the first.

Assuming the conditions (A), (B), and (C) (or (C')) for thefield & and the minor
conditionson (g, n), what remain for our group-theoretical characterization of the
decomposition groupsin IT = 73 (U, £)(©)?

First, we exploited the exact sequence

101086, 1.

So, we have to characterize II in II or to start from II Lt Gy..
Second, to define the equivalence relation ~ for each open subgroup # of II,

we used the closed subgroup I(#) of #. So, we haveto characterize I(H) for each
such . (Of course, this problemistrivial if n = 0.)

Third, to characterize the subset S(G)9%°™ in S(G) for each open subgroup G
of G, we have to detect whether X (L) is empty or not for each open subgroup
H of II, where L = kC.

Thefirst and the second problems are settled for £ finite or & finitely generated
over Q. However, the third problem is most essential and still open for & finitely
generated over Q (unless we use the Grothendieck conjecture over such k&, of
course.)

Remark (2.12). For k finitely generated, we might conjecture S(G) = S(G)9™.
Anyway, these three problems are main topics of the next section.
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3. Characterization of variousinvariants

We follow the notations of Sections 1 and 2. The aim of this section is to describe
various invariants of the curve U in terms of the profinite group TT = 7 (U, £)(©).
We assume that the class C contains Z /17 for all prime numbers! asin Section 2,
and also assumethat TT = 7 (U, £)€ isnot trivial, i.e. exclude (g, n) = (0,0), and
aso (0,1) if char(k) = O or - = tame. (cf. (1.4) and (2.1).) We mainly consider the
case where k isfinite and the case where & is finitely generated over Q.

1.1I and p = char(k).
By our assumption that IT is not trivial and by (1.2), p = char(k) is recovered
by IT asfollows:

PROPOSITION (3.1). If T isfreeasa Z-module, then char(k) is 0. Otherwise,
char(k) is positive, and is the unique prime number p such that (ﬁab)p' isfreeasa
Z¥'-module. O

As is well-known (cf. [Nakamura 3, Lemma (1.6.2)], [Pop 2, Introduction]),
when k is afield finitely generated over Q, we can recover II from II as follows:

PROPOSITION (3.2). Assume that k is a field finitely generated over Q. Then
II is the maximal closed normal subgroup of II which is (topologically) finitely
generated.

Proof. Immediate from [FJ, Theorem 15.10]. O

On the other hand, when k£ isfinite, G, isisomorphic to Z, hence, in particular,
isfinitely generated. (Moreover, if n > 0 and - = (unrestricted), II is not finitely
generated. See (1.1).) So the preceding characterization of II fails in this case.
However, we have the following:

PROPOSITION (3.3). Assumethat % isa finite field.
(i) Thefollowing are all equivalent:

(a) either n = 0or - = tame;
(b) TT isfinitely generated,

(b') I isfinitely generated;
(c) IT? isfinitely generated;
(¢') (IT?)? isfinitely generated.

(Note that the conditions (b) and (b") do not involve p = char(k).)
(i) If n = 0 or - = tame, then

I = Ker(IT — I/ (IT®)0rs).
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(iii) If n > O and - = (unrestricted), then char(%) is the unique prime number
p such that (TT®)? is not finitely generated as a Z,-module.
Put

N' = Ker(Il — (G)?' ~ 7V,
N = Ker(Il — (Gy)? ~ 7Zy).

Then

N’ = Ker(TT — (1) /()" )iors),
and N is the unique closed subgroup of II such that (a) II/N ~ Z,; and (b)

log(#(((N®)? )ors)) = O(p™) (m — +o00), where
Ny, ® Ker(II — (II/N)/p™ ~ Z /p™Z).

Moreover,IT = N’ N N. B

Proof. If n = 0or - = tame, then, by (1.1), IT is finitely generated, henceso is
I1, since G, isnow finitely generated. If n > O and - = (unrestricted), then we see
that Homeont (11, Z /pZ) is infinite-dimensional as a 7 /pZ-vector space, using the
Artin—Schreier theory. Therefore (IT?)? is not finitely generated. Theseimply (i).

Next, we have the following exact sequence (written additively):

0— (ﬁab)gk —TI® - G, = 0,

where, for atopological G',.-module M, the G.-coinvariant quotient M, isdefined
by:

Mg, € M/{o(m) —m | m € M,o € Gy).
Note that (when M is compact)

where ¢y, isthe §(k)-th power Frobenius element in Gy.

Let P be the characteristic polynomial of the Frobenius element ), € G on
the free Z#'-module (TI™)?'. (For the Gx-module structure of T, see (1.3).) The
coefficientsof P arein z,and the absolutevaluesof theroots of P areeither f(k)1/2
(for 2g roots) or f(k) (for n — e roots, wheree isOfor n = Oandis1forn > 0). In
particular, P(1) is a non-zero integer, hence (ﬁab)g,c (resp. ((ﬁab)l")gk) is finite
in the case (ii) (resp. (iii)). (For the case (ii), observe that P(py) is 0 also on the
pro-p part.) Now, al the statements except for NV in the case (iii) are clear.

Next, check the conditions (a) and (b) for N. (a) immediately follows from the
definitionof N. For (b), letas, . . . , azg 1y betherootsof P. Since ((N®)P )iors =
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@) /(" — 1A similarly as above, we have b((NZ2)? Jiors) = Pon(1)',

where
29+n—e .
Pm(T) = H (T_af )
=1

and a’ means the maximal integer (> 0) primeto p dividing agiven integer a # 0.
Thus

BN )iors) = Pr(1)' < |P()]
= [T — o[ <TI(A+ "))

(L+g"" /)29 (14 g™ )" = < (2977 /2)%9 (27" )¢

_ 22g+n—aq(g+n—a)pm

?

where ¢ = §(k), and (b) follows from this.
Finally, let M be any closed subgroup # N of II satisfying IT/M ~ Z,, and
put M,, = Ker(II — (II/M)/p™) and k,, = kP (M=) Then
R ab ’
, M, ")P
(ME) s = — )

/

T(JXMm )P
(on — (MW (Prn — DT (Jx,y, )7

Observe that the sequence k1 C ko C --- C k,, C --- stabilizes, from the
assumption M # N. Now, [GK, Theorem 1 and Theorem 2] implies that there
exists C' > 0 such that

log(#((M) )iars)) > Cp?™,

for sufficiently large m. O

2. g = #(k) and the Frobenius element ;. (for & finite).

By arecent theorem of Pop [Pop 3], for & finitely generated over Q, the profinite
group G, determines the isomorphism class of the field k. Thus, in this case, TI
also determines theisomorphism class of & by (3.2). Moreover, [Pop 3] aso shows
that any automorphism of G, for such & comes from an automorphism of & or,
more precisely, an automorphism of & mapping & onto itself.

On the other hand, for & finite, (the isomorphism class of) the profinite group
G, ~ Zisindependent of k and does not determinetheisomorphism classof % (nor,
equivalently, #(k)). Moreover, for such k, any automorphism of &, which preserves
k automatically, defines the identity in Aut(G), while Aut(G) = Aut(Z) = Z*
ishig.

However, thefollowing proposition showsthat IT determinesf (%) and the Frobe-
niuselement o, € G, = T1/TI group-theoretically. (Recall (3.1)(3.3) that the prime
number p = char(k) is determined by T1.)
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PROPOSITION (3.4). Assumethat £ isfinite, and denote by . the ff(k)-th power
Frobeniuselement in Gy,.

(i) The subgroup ¢ o ©% of Gy, hasthefollowing properties: (a) G, istopolog-
ically generated by ®; and (b) for each open subgroup # of IT with (#®)?" # 0,
the image of ® N pr(#) by

max
~ 1

pr(H) — Aut | A\ (H®)? | = (Z7)*

’
b
Z

iscontained in £pZ.

The properties (a) and (b) (for one such H) characterize ®.

(ii) The Frobenius element ¢, has the following properties: (a) @ is generated
by ; and (b) for each open subgroup A of IT with (#®)?" = 0, the image of
i P € pr(H) by

max
pr(H) — Aut | A\ (H®)Y | = (Z7)*
7
iscontained in £p%>0.
These properties (a) and (b) (for one such #) characterize ¢y.
(iii) For each open subgroup # of II, denote by |44 the set of the absolute

values of the eigenval ues of the action of ¢, = l”*™ ™) on the free Z#'-module

(H®Y',

When TT is abelian, then the Z?'-rank 4o of TI” iseither 1 or 2, andis 1if and
onlyif n. > 0. We have | Ay | = {fi(k)[“+P(F)l/i0} for any open subgroup 7 of TI.
These characterize (k) in this case.

When 11 is not abelian, then

| Az C {f(k)IGEPOOVE |G =1 2},

andn > Oif and only if (|.A%|) = 2 for some open subgroup H of IT. If n = O,
then

Az = {f(k) P2,

These characterize (k) in this case.
Proof. (i) From the isomorphism (1-3) and the exact sequence (1-5) (for Uy),
we can compute the character

max
P Pr(H) = Aut| \(H®Y | = (27)"

/
~p
Z
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and obtain

det __ ny —n, +ny—¢
0% _>‘k7{ H O,HX!I?-L HE,

where  is the cyclotomic character pr(H) C Gy — (ZP')* = Aut(Z¥' (1)), and
Ak, isthe character defined as

Pr(H) — pr(H)/(pr(#))? ~ {£1} < (Z"),

and no,3 ©(Sn) = #(Xs,, ). In particular,
pg.?((pEchpr(H)]) — (_1)n7{7n0,7{|i(k%)g%+nﬂfg’
which liesin +pZ. Since & N pr(H) = ol ¥ e have pdet ([

+p”. So @ satisfies (b), and also (a) clearly.
Now, assume (H®)? # 0(«<= 2gy+ny—e > 0<= (g, n%) # (0,1) <
gy +ny — e > 0), then

Ker(p$7') C Ker((p%7)%) = Ker(3 2+ =9)) = {1}.

If o € pr(H) satisfies p$¥ (o) € +p?, then we have pg_?(?')s = gt (plCRPT )
for some s € Zso and r € Z. This implies o € @l "% since pr(#) =

PO 7 This implies that @' with the condition (b) for # satisfies
(@GP (] (c &' NH) C PPN \whichimplies®' C o = ®.1f, moreover,
d' satisfies (a), then it must coincide with ®.

(i) Observethat, for o € Gy, ® = o” if and only if o = . or ¢, *, and that

det( [Gkipr(”'l)])

P2 (@ — (_1)n71*n0,7{|i(k%)gw+n%*€ c :th>o,

if gy +ny —e > 0.
(iii) As has been explained in the proof of (3.3), the absolute values are
Bk )12 = (k) CPT N2 (2g,, times) and i(ky,) = f(k)\FE P D] (ng, —e times).
From our assumption that I is non-trivial, I is abelian if and only if either
(g,m) = (0,2) and - = tame, or (g,n) = (1,0). Inboth cases, we have (g3, ny) =

(g,m) for any open subgroup # of II. Since

1, for (g,n) =(0,2), = tame, }

l0=29+n—¢=
0= {2, for (g,m) = (1,0),

the statements for the abelian case hold.
Assumethat IT ishot abelian. If n = 0, thenny, = 0for al open subgroup H of
I1. If n > 0, then, by (1.10)(ii), there exists an open subgroup # such that gz; > 0
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and ny > 1, hence fi(|Ay|) = 2. The statements for the non-abelian case follow
from this. a

3.gandn.
We can recover (g, n), using the Frobenius weight.

PROPOSITION (3.5). Assumethat k is finite. Define P to be the characteristic
polynomial of thef{(k)-th power Frobeniuselement o), € Gy, onthefreeZ?'-module

(TI®)¥', and A the set of roots of P.

(i) n > Oifand onlyif IT” "isafree pro-p’ group. (cf. (3.4) for another criterion
forn > 0.)
(ii) If n = 0O, then

ab. ../

g = drank, (T*)7) = 3 (A).

If n > 0, then
9= 3tm({a € A||al = f(k)¥?}),
n={fn({a€Allal =4§k)}) + 1.
Here, for a subset A’ of A, we define
i (A) B3 g,
acA’

where m,, is defined by:
P(T) = [[ (T - a)™.

acA
Proof. (i) follows from (1.1). (ii) follows from the isomorphism (1-3) and the
exact sequence (1-5). O

Remark (3.6). (i) Inthe case where £ isfinitely generated over Q, the recovery of
(g,n) from IT can be reduced to thefinite field case.

(i) Infact, whenchar(k) > Oand- = (unrestricted), IT (without G ) determines
g and n. We shall treat thisin another paper.
4. The kernel I(II) of II(= w3 (U, £)©) — m (X, €)©).

We can recover I(II), as follows.

PROPOSITION (3.7). Let #H be an open subgroup of TI. Then # > I(TI) if and
onlyif 2g3, — 2= (I1: H)(2g9 — 2).
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I(I) = N H.

FHCIT: open,2g4 —2=(TT: H)(29—2)

Proof. Thefirst statement followsfrom the Hurwitz genusformula. The second
follows from the first. O

5. The number of rational points (for % finite).

PROPOSITION (3.8). Assumethat k isfinite, and let L /£ be a finite sub-extension
of k/k. Then

’

H(X(L)) = 1+ #(L) =ty (pr | (A/I(ID)®)7),

where ¢;, € G, C Gy, isthe #(L)-th power Frobenius element (which coincides
with <42,
In particular, (X (L)) isnot empty if and only if

/

1+ H(L) —try (r | (IT/I(I))®)") > 0.

Proof. Lefschetz trace formula. (Recall (1-3) that ((TT/1(I1))®)*" isisomorphic
to T'(Jx)? asaGj-module.) O

4. The Grothendieck conjecturefor curvesover finite fields

For i = 1,2, let k; be a field of characteristic p; > 0. Let U; be a smooth,
geometrically connected curve over k;, and X; the smooth compactification of U;.
Put S; = X; — U;. Define non-negative integers g; and n; to be the genus of X;
over k; and the cardinality of S;(k;), respectively. Let ¢; be the generic point of U;,
and put K; = k(&;), the function field of Us.

Fix a separable closure k>, and define U;, X;, S;, and &; to be U; @y, ki,
X; @k, k5P, 8; @, k3, and &; @y, k3, respectively.

Take a geometric point &, of U; above the generic point ¢;. Let the symbol -
denoteeither (unrestricted) or tame, and fix afull classC of finite groups containing
z /17 for al prime numbers|.

Put

I, = 73 (Ui, &

and
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for_ simplicity. Define K; to be the maximal pro-C Galois extension of Klkfep in
K(€;)/ Kk, unramified on U;, and, if - = tame, (at most) tamely ramified on S;,
and U; theintegral closure of U; in K;. Note that we have:

Hi = Gd(KZ/KZ) = AUt(ﬁZ/Uz)

and
IT; = Gal(K;/Kk;F) = Aut(U;/T).
Define
|S()m(Ul/U1, Uz/Uz)
R A ;
©(F, F)elsom(Uy, Uy) x Isom(Uy, Uy) is commutativey
h—-"——U,
. )
where |som means 1 S0Mschemes) -
LEMMA (4.1). (i) The projection
P |Som(ﬁ1/U1, Uz/Uz) — Isom(Ul, ﬁz)
isinjective. Thus Isom(T1 /Uy, U/ U>) isidentified with
P ;
F elsom(U, Uy) is commutative for some F' € Isom(Uy, Us)
hh—-"——U, J

(i) The projection
p. |S()m(Ul/U1, [jz/Uz) — |SOIT1(U1, Uz)
is surjective, and

pilp((ﬁ', F)) = FAUt(Ul/Ul) = AUt(ﬁz/Uz)F.
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Proof. (i) follows from the fact that Uy — Us isfaithfully flat.
To prove (i), we need the following lemma:

LEMMA (4.2). Let A be afinitely generated integral domain over a field &, and
assume that % isintegrally closed in A. Then any subfield of A is contained in &,
i.e. k isthe maximal subfield of A.

Proof. Suppose that there exists a subfield K of A, not contained in k. Take
any t € K — k, then ¢ is transcendental over k& by assumption. Since A isfinitely
generated over itssubring k|t], theimage of Spec(A) — Spec(k[t]) isconstructible
and dense, hence is open (and dense). (Observe the topology of Spec(k[t]).) Let F
be the prime field of k, then it is easy to see that Spec(k[t]) — Spec(F[t]) is an
open map. Thus, the image of Spec(A) — Spec(F[t]) is open. On the other hand,
sinceF(t) C K C A, the image of Spec(A) — Spec(F|t]) is the generic point
Spec(F(t)) of Spec(F[t]). Thisisabsurd. O

By thislemma, any isomorphism F': U; ~ U, inducesanisomorphism k; ~ k;
compatiblewith F'. (Choose affine open coveringsif necessary.) Then, we see that
there exists an isomorphism F': Uy ~ U extending F'. Now, it is clear that there
existsan isomorphism Uy ~ U, extending F'. (If G, isapro-C group, then we can
directly prove the existence of an isomorphism U; ~ U, extending F'.)

The second statement of (ii) directly follows from the definition. O

The aim of this section is to prove the following theorem.

THEOREM (4.3). Assume that both k1 and k&, are finite, and that n; > 0 (resp.
n; > 0and 2 — 2g; —n; < 0) for somei € {1,2}, if - = (unrestricted) (resp.
- = tame). (Observe that this condition is equivalent to saying that n; > 0 and II;
is not abelian.)

Then the map

lsom(U1 /Uy, Uz Us) — 1som(Ily, IT,), (F,F) — F(-)F~1

is bijective.

We shall provethisby constructing the inverse map, borrowing sometechniques
of [Uchida].

Let F be an isomorphism I1; — II, (as topological groups). We may assume
that n1 > 0 (resp. ny > 0 and 2 — 297 — ny < 0) if - = (unrestricted) (resp.
- = tame), considering FLif necessary. ThenII; isnot abelian, and neither isIIq,
afortiori. ThusII, is also not abelian, hence I1, is not trivial. Therefore, we apply
the results in Section 3 to both U7 and Us.

By (3.3), F(II1) = Iy, and, by (3.1), p1 = p. Denote this prime number
by p. Now, F induces an isomorphism Gy, = T1;/TI; — TIp/T; = GY,, which
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we also denote by F, and, by (3.4), F(¢r,) = ¢k, and (k1) = #(k2). By (3.5),
(91,n1) = (g2, m2), which we denote by (g,7).

By (2.10), together with (3.7) and (3.8) (for each open subgroup of I1;), F
induces a bijection X % 7 By, which we denote by f = f#, characterized by:
Df(f,l) = f(D{,l) for each v, € 25(1' Note that f(EXl N U]_) = EXZ N ﬁz by
(2.8)(iii). This bijection induces a bijection X Xy, — 2 X, (y) for each closed
subgroup #1 of 111, which we also denote by f. In particular, we obtain abijection

X, (k1) = 2x, 5, = Bx, FOHD Xz,m(’”)’
for each open subgroup #; of I1;. (Observe F(#H1) = F(H1).) Sincethe bijection
fiEx, = Xx, sendsXx, N Uy onto X x, N Uz, wehavef(S1) = 4(S2), whichwe
denote by ng. Note that ng < n and the equality holds if and only if all points on
S; are k;-rational for some (or al) i € {1, 2}.

For eachv; € Y x,, choosean; € X ¢ abovevz Let Fj;, betheinverseimage of
gok by Dalo — Gy, . If both ¢; and o] areabovevz, then £, and F are canonically
|somorph|c to each other. So, we may and do write F,, mstead of F3,. By locdl
classfield theory, together with (2.2), we have:

Ky/Oy =17, ifvel;
F,, =4 K, if v; € S; and - = (unrestricted)
Ky /(1+9Mmy,), ifv; €S; and - = tame,

where K, is the v;-adic completion of K;, O,, isthe valuation ring of K,,, and
oM, isthe maximal ideal of O,,.

Inany case, F inducesisomorphismsTI$® — T2 and F,, — Fy(,,) (v1 € Tx,),
which are also denoted by F. Now, taking the restricted direct product IT' of F,,
(vi € X x,) with respect to Ker(F,, — Gy, ), we obtain the following commutative

diagram:
I "7, — ] 'Fo
UJ_EEX]_ vzezxz
a ab
12 2.

(Infact, IT’ coincideswith @.) The horizontal arrows are isomorphisms. Define Fy
(resp. F») to bethe kernel of the left (resp. right) vertical arrow, then we obtain an
isomorphism F; — F5, which we also denote by F.

By (global) classfield theory, we have

F, = KX
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(So far we have only used the assumption that II, is not abelian. Here we use the
assumption n; > O for thefirst time. In fact, if n; = 0, then F; = K /k;.)

Let H; be any open subgroup of 11, and put H, = F(H1). We can apply the
arguments until now to the isomorphism

11 (Urp,, €) = Ha 5 Ho = w1 (Un 4y, 6).
In this situation, we write various symbols with index #1 or H>.
LEMMA (4.4). Theisomorphism

K 1>T’H1 =Fiy, = Foy, = K2>j’H2
induced by F is an extension of

K1><:F1—>F2:K2><.

Proof. Similar to [Uchida, Lemma 9]. (Observe that, for each w; € ¥, ,,.
abovew; € Yy, thetransfer map induces Fy,, — Fy, ;) 0

COROLLARY (4.5). LetZ; beaclosed subgroup of IT; and put Z, = F(Z;). Then
JF induces an isomor phism

X X
Ki7, = K71,

(which we also denote by F.)
In particular, F induces an isomor phism

[~ X [~ X
K — K. O

Extend by 0 — 0 the group isomorphism F: K, — K. to the (multiplicative)
monoid isomorphism K1 — K», which we also denote by F.

CLAIM (4.6). Theisomorphism F: K1 — K is additive.

This is the main difficulty in the proof. Assuming this, we shall first complete
the proof.

Since 4; € T(U;, Ox,) in K; coincideswith
{a € K | theimageof a by K = F; proj; F,, C D;’;‘? — G,

isin wff" for each v; € UZ-.} u {0},
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wesee F(A1) = A,. Hence F(A;) = A, dso holds, where

A €10, 04).
(Notethat A; istheintegral closure of 4, in K;.) Thus we obtain amap

Isom(I1y, ITp) — Isom(Uy /U, Uz/U>).

From the functorialities it follows that

lsom(Uy1 /Uy, Uz/Uz) — Isom(I1y, ITp) — Isom(Uy /Uy, Uz/Us)
isthe identity. We have to prove that

Isom(IIy, IIp) — Isom(Uy1 /Uy, U /Us) — Isom(Ily, 1)
is also the identity. For this it sufficesto prove that

Isom(Iy, ITp) — Isom(Uy /Uy, Uz /Us)

is injective. Let 7, F' be elements of 1som(Il;, IT;) which induce a same ele-
ment of Isom(U1/Us, Uz/Uz). Put & = F'~1F, then £ induces the identity in
Isom(Uy /Uy, U1 /Uy). In particular, for any closed subgroup # of II;, we have
E(H) = H. Applying this to the closed subgroup H = z” for each element z of
I1;, weobtain £(z) = z*®) for somea(z) € Z*. Whenz isalifting of ¢y, € Gy,
(3.4) impliesa(z) = 1. Sincell; istopologically generated by such x’s, we obtain
that £ isthe identity.

Now only the claim (4.6) remains. For this, we resort to the following:

LEMMA (4.7). For eachi = 1, 2, let k; be an algebraically closed field, and X; a
proper, smooth, connected curve over k;. Put K; = k;(X;) and £; = X;(k;). Let
S; be a subset of ¥;.

Now, assume that we are given an isomorphism 7 : K1 — K> asmultiplicative
monoids and a bijection f: X1 — 35 with f(S1) = S», satisfying the following
(@)(0)(c):

(a) For each P, € X1, the diagram

d
K1~ 70 {400}
K» — 2% 70 {400}

is commutative, where P, o f(Py).
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(b) For each P, € S1, we have F(1 + Mx, p,) = 1+ Mx, p,, Where P o
f(P1). (Note that we have F(Ox,,p,) = Ox,,p,, F(O%, p,) = O%, p,» and
f(mxl,Pl) = mth,Pp by (a))

(©) #(S1) = 3.

Then F: K1 — K> isadditive.

We can apply thislemmato F: K, 5, — K> 5,, Where #H; is an open subgroup
of IT; with nyg, > 3and Hp = F(H1). Infact, (8) follows from the fact that the
composite of

KiX’J:L- = lim Finyl_ — lim F’H'.,P- -
s71lg B 3 i B i
HiCH,CH; HiCH,CH;
open open
— [im FiypiH,I/Ker(E-,pm{ —>le) =7
_ — * P
’HiC’H;C’Hi
open

coincideswith ordp,. (b) follows from the fact

1+ imxﬂi’},i
_ X [im i P X
= Ker OXﬁiaPi — _ (Ker(F“Pi,H’i — le)) = kz’
ﬁiCH;C’Hi
open

(c) follows from our assumption. Since, by (1.10),

K; = ,Hicnyn%?g K; 7,
open
F: K; — K isadditive.

Until the end of this section, we concentrate on the proof of (4.7). So wefollow
the assumptions and the notationsin (4.7).

We need the definition of minimal elements in a function field (following
[Uchida]) and some lemmas. Uchida usesinfinitely many ramified points to prove
the additivity, but in the present case, only finitely many ramified points are at our
disposal. Hereis adifficulty.

Let & bean agebraically closed field, and X aproper, smooth, connected curve
of genusg over k. Put K = k(X) and X = X (k).

DEFINITION (4.8). (i) Let 2 bean element of K *, and define ()o (resp. (x)oo
to be the numerator (resp. denominator) divisor of z. (Note (z) = (z)o — (Z)co-

)
)
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Then we say that = is minimal, if [((z)~) = 2. Here, for adivisor D on X, we
definel(D) = dim,(T'(X, O(D))).

(i) Let D be an effective (= non-negative) divisor on X . Then we say that D
is minimal, if there exists a minimal element x € K* with (z)o, = D. Thisis
equivalentto: /(D) = 2and[(D') = 1 for any effective divisor D' 3 D.

LEMMA (4.9). Let = bea minimal element of K and (‘c‘ g) amatrixin GLy(k).
Then (az + b) /(cx + d) isalso minimal.

Proof. Thisreducesto the followingtwocases.c =0,d=1,a=d =0,b =
c = 1. Thefirst caseis clear, since (azx + b)s = (). The second follows from
(7Yoo = (z)o andI((2)0) = I((2)o0)- 0

LEMMA (4.10). Let D be an effective divisor of degree g with /(D) = 1. Then for
each P € ¥, wehavel(D + P) = 2. In particular, any element z € I'(X, O(D +
P)) — k isminimal. (Note: this does not necessarily imply that the divisor D + P
isminimal.)
Proof.
Riemann—Roch

2=deg(D+P)—g+1 < I((D+P)<I(D)+1=2
The second statement follows from the first. O

Let S be a subset of ¥. The following lemmas (4.11) and (4.13) assure that
sufficiently many minimal elementsexistin K.

LEMMA (4.11). Let Py, P1, P, bedistinct pointsin X. Thenthereexistsa minimal
element z € K satisfying z(P;) =i for eachi € {0,1, oo}.
Proof. We have the following:

CLAIM (4.12). There exists an effective divisor D of degree g which satisfies:
l(D) =1; l(D + Py — Py — P]_) =0 and Supp(D) ? Po, Py.

If ¢ = 0, the divisor D = 0 satisfies the conditions. Assume g > 0, then
such D is‘general’. To be more precise, let .J3- be the degree ¢ part of the Picard
variety of X. (J% isisomorphicto Jx = Jg’(, since k is algebraically closed.)
Put X" = X"/@, foreachn > 0 (X(© = Spec(k)), and define a morphism
7 X9 = J% by (Q1,...,Q,) = Q1+ -+ + Q. Then it is well-known that
4 is birational, hence there exists a non-empty open subset V' of J such that
4. §7X(V) — V is an isomorphism. For i = 0,1, define j/: X(9=Y — J% by
(Q1,--+,Qg—1) = Q1+ -+ + Qy_1 + P, and define j5: XY — J{ by
(Q1,...,Qg—1) = Q1+ -+ Qy—1+ Po+ Py — Py, Then, for each

2
(Q1,...,Qy) €471 (V —~ sz(X@”)) (k),
=0
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the effective divisor D = Q1 + - - - + @), satisfiesthe conditions.

Now, choose an effective divisor satisfying the conditions of (4.12). Then, by
(4.10),1(D 4 Py) =2,andany z € T'(X, O(D + Py)) — k isminimal. Puty =
z—z(Po). (Noteordp,(z) > 0,sinceSupp(D) # Po.) Theny(P;) =ifori =0, 0.
Supposey(P;) = 0, theny isanontrivial element of I'( X, O(D + Py, — Po— P1)),
which contradicts to the choice of D. Thus we can define

Y

y(P1)’
which satisfies z(P;) =i fori =0, 1, co. By (4.9), z isminimal. O

LEMMA (4.13). Assume #(S) > 2. Consider the following conditions for an
element z in K *:
(1) zisminimal and f({z(P) € kU{o0} | P € S}) > 2;
(2) zisminimal and {z(P) € kU {occ} | P € S} D {0, c0}.
(Clearly (2) implies (1).) Then we have
K* = (z € K* | x satisfies (1))
= (k(z)* | z satisfies (2)).

Proof. We may assume f(.S) < oo, taking afinite subset of .S' (with cardinality
> 2) if necessary. Choosing three distinct points Py, P, € S and P; € X, we see,
by (4.11), that there exists at least one element x € K * satisfying (2), hence (1).
So any constant ¢ € k* C K* iswritten as a product of elements satisfying (1):

c=(cx)z™L.
Now, take any f € K*. Then we can write

N

(f) = (P —Qi),

i=1
with {P;,Q;} NS # (O foreachi =1,..., N.Infact, choose Py € S, then:

n

(f) =Y (P -QY), P,Qiex

=1
= > (P —Po)+ > (Po—Qj).
=1 =1

PutS" ={Pi,...,PyN,Q1,...,Qn}US, whichisafinite subset of X.
CLAIM (4.14). Thereexist effectivedivisors Dy, ..., Dy, Dy11 = D1 of degree

gwhichsatisfy: [(D;) = 1; Supp(D;)NS" = 0; and D; — D; 1 islinearly equivalent
toP, — Q;, foreachi=1,..., N.
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Follow the notations in the proof of (4.11). Define a non-empty open subset W
of J%- by

W=V | jo(x),
Qes’

where jo: XY — J{ isdefinedby (Ry,...,Ry_1) = Ri+ -+ Ry_1 + Q.
Then for each (Ry, ..., R,) € i~ X (NN (W + 24P, — @i))), put D1 = Ry
+---+R,.Define Dy = B™ +---+ R{™ by j(R{™, ..., RI™) = j(Ry, ...,
R,) — XY (P, — Qi) form = 2,..., N + 1. Thenal the conditions are satisfied.
Take D1, ...,Dy,Dyy1 = D1 asin (4.14). Thereexists f; € K* satisfying

(fi) = Pi— Qi+ Diy1— Dy,
foreachi=1,..., N. Thenwe see

(f) =(fo) +---+ (fn)-

Hence there exists a constant ¢ € k£ such that

f=cfi... [N

Now ¢ is a product of elementsin K* satisfying (1) as we have already seen,
and, foreachi =1,..., N, either f; isaconstant € k> or f; satisfies (1). In fact,
f; belongsto T'(X, O(D; + Q;)) — {0}. Hence f; iseither in kX (<= P; = Q;) or
minimal, by (4.10). If f; isminimal, thenwesee f;(P;) = 0and f;(Q;) = oco. Since
fi(S — {P, Q:}) € k¥, f; setisfies (1). (Recall §(S) > 2and {P;,Qi} N S # 0))
This completes the proof of the first equality.

The second follows from the first, together with (4.9). O

Now turn to the proof of (4.7). First we note that F (k1) = k. In fact, k; is
the set of divisible elements in the multiplicative monoid K; for each i = 1, 2.
Consider the following condition

(c') #(S1) > 2 and Fy, isadditive.

Wefirst prove (a)(b)(c) = (a)(b)(c).

Let P1o, P11, P1 o bedistinct pointsin S1. By (4.11), there exists a minimal
r1 € K| satisfying z1(P1;) = i for each i = 0,1, 00. Then z» w F(z1) isa
minimal element in K>, by the condition (a). (Observe that x; is minimal in K;
if and only if I'(X;, O((zi)s0)) 2 ki and T'(X;, O(D})) = k; for any effective
divisor D; 3 (zi)eo ONX;.) Put Po; = f(Py;) foreachi = 0,1, co. Thenwe have
x2(P,;) = iforeachi = 0,1, co. Infact, this follows from the condition (a) (resp.
(b)) for i = 0, 00 (resp.i = 1).
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Let &1, 71 beany two elements of k1, and we shall prove F (&1 +n1) = F(£1) +
F(m). Since F(0) = 0and F(—1) = —1, wemay assume &1 # 0, n1 # 0, and
&1+ m # 0.Aséiz1+n1isaminima elementin Ky with (£1214+71) 00 = (1) 00,
F(&121+m1) isaminimal elementin Ko with (F(£121471)) 00 = (F(21)) 00, by the
condition (a). Therefore, thereexist £2, 12 € ko with F(é121+m1) = E2F (21) + 2.
Considering the images of both sidesin Oy, 5, /(1 + Mx,,p,,) = k3 , we have
F(m) = n2. (Usethe condition (b).) On the other hand, we have

Fla+mey?) = F(éawa+m)F(ay?)
(E2F (1) + 1) F (1) ™ = &2 + mpF (1) ~h

Considering theimages of both sidesin O, p, /(14 Mx,,p, ) = k; , wehave
F(&1) = &. Findly, considering the images of both sides of F(¢121 + m1) =
EF (1) +m2in O)X(zypz’l/(l +Mx,p,,) = k3, we obtain

F(la+m) =& +m=F()+ Flm).
Next we prove that (a)(b)(c’) implies the additivity of F.

CLAIM (4.15). Let z1 be any minima element in K; satisfying {z1(P1) €
kU {OO} | P € S]_} D {0,00} Then -7:|k1(m1) is additive, and .7:(/91(:171)) =
ko(F(x1)).

In fact, we have F(&121 + n1) = F(&1)F(z1) + F(m) for each &1,m € kg,
just as above. Thereby we obtain

F (71M> _ ]:(vl)ITIIZ:E}'(m) — Flayi))
J

Hj(l"]_ — 517]‘) F(w1) — ‘7:(/81,]')) .

From thisand the additivity of 7|x,, wecan easily deducethe additivity of |, (,)-
The second statement follows from the first and the fact F (k1) = k».

Now, (4.15) together with (4.13) reduces the problem to the following lemma.
(Identify k1 with k, = F(k1) viaF.)

LEMMA (4.16). Let k be an algebraically closed field, and X and Y integral
schemes separated of finitetypeover k. Let ¢: k(Y) — k(X)and f: £x — Ey (or,
equivalently, f: X (k) — Y (k)) be (set-theoretical) maps. Assume the following:

(@) ¢l = idy.
(b) f iscontinuousand dominating in Zariski topology.
(©) ¢ 1 (Mxz) N Oy, y(z) = My, 4 for each closed point z of X.
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Assume moreover that we are given a family {Ly} ca of subfields of £(Y)
containing k such that

(d) ¢|1, : Ly — k(X) isaring homomorphismfor each A € A.

(i) Assumethat £(Y") isgenerated by L (A € A) asafield. Then, thereexistsa
unique k-algebra homomorphism: k(Y) — k(X)) such that

(A) |1, = ¢|1, for each X € A.

(B) There exists a non-empty affine open subscheme U of X on which g, is
defined as a morphism: U — Y such that f and g,, coincide with each other
on U (k). Here g, isthe dominating rational map X ~- Y defined by the field
homomorphism: k(Y') — k(X).

(ii) Assumethat ¢ is a homomor phism of multiplicative monoids and that k(Y")
isgeneratedby L, (A € A) asamultiplicative monoid. Then ) in (i) coincideswith
¢, gy is defined as a morphismeverywhereon X, and f and g,, coincide with each
other on X (k).

In particular, ¢ isthen additive.

Proof. (i) The uniquenessimmediately followsfrom (A) or (B).

Assume first that A isafinite set. For each A € A, choose a finitely generated
k-subalgebra B), of L, whose fractiona field is L. (Note that L, /k is finitely
generated field, as k(Y") /k isfinitely generated.) Put B = k[B)]xca, Whose frac-
tional field is k(Y") by the assumption. SinceY” and Spec(B) areintegral schemes
of finite type over k£ whose function field is the same field k£(Y'), there exists a
common non-empty affine open subscheme Spec(B’) of Y and Spec(B). Then,
since f is Zariski continuous, there exists a non-empty affine open subscheme
Spec(A) of X, such that the image of Spec(A)(k) C X (k) by f is contained
in Spec(B')(k) C Y (k). Put A" = A[p(Bx)]aea- Since Spec(A) and Spec(A')
are integral schemes of finite type over £ whose function field is the same field
k(X), there exists acommon non-empty affine open subscheme U = Spec(A”) of
Spec(A) and Spec(A’). Let 1) be a k-algebra homomorphism

® B/\—>AI
k

AEA

defined by ¢(®by) = [T #(by).

CLAIM (4.17). Thefollowing diagram (of sets) is commutative
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!
Yspec(4) — Lispec(B)

U M

Yy Spec(B')
N N
U Spec(B)

N J©
Spec(4’) — Spec( ® BA> ,

AEA

where (x) isthe closed immersion associated with

% By » B,®by — Hb,\.
AEA

Sincethediagram startsfrom X, it sufficesto check the commutativity restrict-
ing everything to the set of its closed points or, equivalently, its k-rational points.
Since

Spec ( % BA) (k) = ] Spec(By)(k),

AEA AEA
we only have to check the commuitativity of the following:

Ssper(4) —-+ Sspoc()
U N
Xy Yispec(B)
N ]

Vpec( )~ Sspen(By);

for each A € A. Now, take any = € 7. Then the commutativity follows from the
following equalities:

¢ 1 Myy NA)N By = ¢ 1(My,) N By
= ¢ (Mue) N Ospec(r), 1) N Ba

—
O
~

Mspec( '), f(x) N B
— (mSpec(B’),f(m) N B,) N B)\.
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By (4.17), the morphism

(31}
AEA

associated with ¢ maps X;; into the subscheme Spec(B’) of Spec(@ k BA).
AEA
Recall

® 5
Spec(B') ¢, Spec(B) _C  Spec (m ) .

ThereforeitinducesamorphismU — Spec(B'). Composing thiswith Spec(B’) —
Y, weobtainamorphism g: U — Y. By definition and (4.17), g coincideswith f
onU(k). Since f isdominating, so is g. Hence we can associate a field inclusion
P k(Y) = k(U) = k(X) with g. (g9, = ¢ by definition.) Now, we have two
ring homomorphisms ¢ and ¢: Ly — k(X). Since 4|, = |5, = ¢|p,, these
coincide with each other. From this, we also see that ¢ is a k-homomorphism.

For general A, we can take afinite subset A’ suchthat k(Y') isgenerated by L,
(A € A'). From the preceding arguments we can associate 1x/: k(YY) — k(X). If
A" isanother such subset of A, weseexr = 1ppruar = 1Par, using the uniqueness.
This settles the general case.

(i) Foreachb € k(Y'), wecanwriteb = by, - - - by, (A € A, by, € Ly,). Then
we have

P(b) = P(br,) - (bay) = Bbr,) -~ D(bry) = ¢(b).
In particular, ¢ isaring homomorphism. Now, for eachz € ¥ x, we have
¢(Oy,f()) = ¢k + My f(z))
= ¢(k) + ¢(9ﬁY,f(:v)) Ck+Mxyz =0Oxy.

Therefore, for each open subset V' of Y, we obtain a ring homomorphism

V OY m OY,y ﬂ OX,Z‘ = F(fil(v)a OX)a

yeEXy IEEf_l(V)

where f~1(V) is the unique open subset of X satisfying Yy = f1(=y).
Thisgivesamorphism X — Y, which coincideswith f on X x and which induces

b =9 k(Y) = k(X). 0

5. Thefundamental groupsof curvesover local fields

In the next section, we reduce the Grothendieck conjecture for curves over fields
finitely generated over Qto the Grothendieck conjecturefor curvesover finitefields,
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which is already proved in affine cases in the previous section. For this, given a
curve over a discrete valuation field, we have to recover the tame fundamental
group of the reduction of the curve from the (tame) fundamental group of the curve
itself. Thisis the main goal of this section. We solve this problem by relating it to
acriterion for good reduction of a curve over a discrete valuation field.
Thenotation in this section is partially independent of that of the other sections.
Let S bethe spectrum of adiscrete valuation ring R, n the generic point of .S, s the
closed point of S, K = «(n) the fractional field of R, and k = k(s) the residue
fieldof R. Let G = Ga(K*/K) and I C G theinertia group at s (determined
up to conjugacy). Put p = char(k)(> 0), the residue characteristic of R. For a
proper, smooth K -scheme X, we say that X hasgood reduction at s, if there exists
aproper, smooth S-scheme X whose generic fiber X,, isisomorphic to X over K.
For X an abelian variety, the following criterion for good reduction iswell-known.

THEOREM (Néron—-Ogg—Shafarevich—Serre-Tate). Let X be an abelian variety
over K. Then X hasgood reduction at s if and only if I actstrivially onthel-adic
Tate module T'(X)! for some (or, equivalently, all) prime number I # p. O

On the other hand, when X isa proper, smooth, geometrically connected curve,
thefollowing criterion for good reduction and its proof has been given by Takayuki
Oda ([Oda 1], [Oda 2]). (He states his theorem only when S is alocalization or a
completion of the integer ring of an algebraic number field.)

THEOREM (Oda). Let X be a proper, smooth, geometrically connected curve of
genus > 2 over K. Then X hasgood reduction at s if and only if theimage of I in
Out(71 (X g, ¥)!) istrivial for some (or all) prime number [ # p. O

(In this section, we do not have to specify the geometric point *.)

This theorem now can be regarded as a corollary of deep results by Asada—
Matsumoto—-Oda ([AMQ]) on the universal local monodromy, which are based
on transcendental and topological methods. In this section, we generalize Oda's
theorem for not necessarily proper curves by ‘algebraic’ methods.

From now on, X aways denotes a proper, smooth, geometrically connected
curveover K, and D denotesarelatively étale effective divisor in X /K. Note that,
when char(K') = 0, arelatively étale divisor in X /K isjust areduced (effective)
divisorin X/K.PutU = X — D. Thedivisor D isuniquely determined by U.

DEFINITION (5.1). We say that (X, D) has good reduction at s, if there exist a
proper, smooth S-scheme x and arelatively étale divisor © in /S whose generic
fiber (X,,D,) isisomorphicto (X, D) over K. Werefer suchan (%, D) asasmooth
model of (X, D).

Let g be the genus of the curve X and n the number of D(K) = D(KS®).
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Remark (5.2). Thesmooth model (X, D) isuniqueif 2—2g —n < 0. Thisfollows,
for example, from the uniqueness of the stable model. (See [DM], [Knudsen].)

Now our criterion for good reduction of X isgiven asfollows:

THEOREM (5.3). Assume 2 — 2g — n < 0. Then the following conditions are all
equivalent:

(@ (X, D) hasgood reduction at s.
(b) Theimage of I in Out(ry(Ugs», *)P') istrivial.
(c) For each prime number [ # p, theimage of I in Out(my(Ugs», *)!) istrivial.

(d) Thereexistsaprimenumber [ # p, suchthat theimageof 7in Out(my (Ugksn, ¥)")
istrivial.

Proof. Theimplication (a)=-(b) followsfrom [SGA, Exp. XI11], and the impli-
cations (b)=-(c)=-(d) aretrivial. We shall concentrate on the proof of (d)=(a). By
descent theory, we can easily reduce the problem to the case where R is strictly
henselian, hence G = 1.

We denote 1 (U, ) (resp. m1(Ugs, *)) by II (resp. II). By (1-3) and (1-5), we
have:

([M)® ~ T(Jy), n =0,
0— Z4(1) - Z[D(K*)| Q) 24(1) — (T)®

Z

— T(Jx)" — 0 (exact), n > 0.

Since I actstrivially on (ﬁl)ab, we see that it also actstrivially both on D(K5%)
and on T(Jx)'. The former means D(K%) = D(K) and the latter implies the
jacobian variety Jx has good reduction at s. In particular, (X, D) admits a stable
model. Since stable models are preserved by any base change, we may and do
assume that the residuefield & is algebraically closed. After blowing-up the stable
model, we obtain aregular semi-stable model (x,®). Namely, X is a proper, flat,
regular S-scheme whose special fiber X isa (reduced) normal crossing divisor of
X, D isarelatively étaledivisorin X /S, and the generic fiber (%,,, ;) isidentified
with (X, D). We may and do assumethat the number of theirreducible components
of X, isminimal. Then there are no irreducible component of X, isomorphic to
IF’%, which meets only one other component and contains not more than one point
of D,.

Let I" bethe dual graph attached to the semi-stable curve X . (See[DM].) Since
Jx has good reduction, we have H(TI",Z) = 0, i.e. T is a tree. (Note that X, is
connected.)
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Now consider the following commutative diagram

1 a® I 1

H Lk

—  AW(IT) —— out(IT)

1

where the rows are exact. Note that TT' is center-free (1 11). From this we can
identify I with the subgroup J = Ker(IT) — Aut(TT')) of IV, and we have
0 =TT x J canonically.

Now let 7 be an open subgroup of TI("), V the étale covering of U corresponding
to#,Y thenormalization of X in U, whichisthesmooth compactificationof V/ K.
Put E =Y — V, which is regarded as a reduced divisor on Y. Assume that the
map H c IV — T issurjective. Then the following (1)—<(5) are all equivalent.

(1) Y hasaregular semi-stable model and the dual graph of any such model isa
tree, and E(K) = E(K).

(2) Y hasaregular semi-stable model, and E(K) = E(K).

(3) Theimage of I in Out(H) istrivial, where & H N 1T

(4) H="HxJ.

B)HDJ.

In fact, (1)=(2) isclear. Theimage of I in Out(#) isfinite, since the image of
H N Jin I isan open subgroup of 7. Thus, to show (2)=-(3), it suffices to prove
that theimage of I in Aut(H®) istrivial, since the kernel of Out(#) — Aut(H®)
is torsion-free ([AK], [Kaneko], [Asada], [NT]). Now the condition (2) implies
that the image of I in Aut(H®) is unipotent, henceistrivial sinceit isfinite. Thus
(2)=-(3). Aswe have already seen, the condition (3) implies that # can be written
as H x J' for some subgroup J' of # which is isomorphically mapped onto I.
Now, by the center-freeness (1.11) of A and the torsion-freeness (1.6) for ﬁl, we

seethat the centralizer of 7 in T istrivial. (Seethe proof of (1.8)(ii).) So J' should
coincidewith J. Thus (3) = (4). (4) = (5) isclear. The condition (5) implies (3)
andthefact that F isétaleover K. (For thelatter, observethat the Galois closure of
the covering Y/ X has!-th power degree.) So, aswe have already seen, (1) follows.

Now, by [SGA, Exp. X111], we have w@™e(sl,, x) ~ @Me(s(, %), which isiden-
tified with a quotient of 7i2™e(Uks, *). Herewe put st = X — . In particular, we
have

ﬁl — 71 (4, *)l ~ 1 (Us, *)l.

Define N to be the kernel of TI()) — 71(4, ¥)!, then for each open subgroup A
of IT containing IV satisfies the condition (2) above. (It immediately follows from
Abhyankar's lemma.) Thus it satisfies (5). Since N is the intersection of open
subgroups, wesee N D J.
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From now on, our argument is essentially due to Mochizuki. Let {Z; | i =
., r} bethe set of irreducible componentsin X, and put W; = Z; — ©,. Since
thedual graph T" of X, isatree, we see:

(me (U o~ H (ma (W,

Wemay assumethatfori = 1,..., 7 wehave W; # P, Al (<= (m1(W;, %)) #
{1}) andfori =7r'+1,...,r wehave W; ~ P} or A} (<= (m1(W;, +))® = {1}).
Thenwe can easily construct aquotient of (1 (i, *)")®, isomorphicto Z /17, such
that (71 (W;, *)")® is surjectively mapped onto the quotient for eachi = 1,..., '
Easy calculation shows that, for the covering corresponding to this quotient, the
number of the componentsis ' + [(r — r') and the number of the singular points
isl(r — 1). Sinceitsdual graphisatree by (1), we should have

'+l —r)=1(r—-1)+1,

whichimpliesr’ = 1. SinceI" is atree, this, together with the minimality, implies
r = 1. (Observe that, if » > 1, then the number of the irreducible components
which meet only one other component is also greater than one.) Namely, (X,D) is
a smooth model! O

Remark (5.4). By [AK], [Kaneko], [Asada], [NT], we have the weight filtration of
71 (Ugs, ¥)!, which induces the weight filtration of I:

IDI(1)DI(2) D - DI(0).

Here I/I(1) is isomorphic to a subgroup of G'Spzy(Z;) x Sy, and, for i > 1,
gr'(I) = I(i)/1(i + 1) isafree z;-module of rank < 1. Then one (and only one)
of the following occurs

(i) I 21(1) = I(o0), I/I(1):infinite;

(i) 2 I(1) = I(2) 2 I(3) = I(c0), I/I(1): finite, 1(2)/1(3) ~ Z;;
(i) I 2 I(1) = I(c0), I/I(1): finite;

(v) I = I(1) = 1(2) 2 I(3) = I(o), I(2)/I(3) =~ Z;

W) I = I(c0).

In each case, the reduction at s of the jacobian variety Jx of X and that of
(X, D) areasfollows:

(i) Both Jx and (X, D) have essentially bad reduction;
(i) Jx has potentially good reduction, (X, D) has essentialy bad reduction, and
either Jy hasbad reduction or D(K) 2 D(K');
(iii) Both Jx and (X, D) have potentially good reduction, and either .Jx has bad
reductionor D(K) 2> D(K');
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(iv) Jx has good reduction, D(K) = D(K'), and (X, D) has essentialy bad
reduction;

(v) Both Jx and (X, D) have good reduction.

Here ‘having bad reduction’ (resp. ‘having essentially bad reduction’) means
‘not having good reduction’ (resp. ‘not having potentially good reduction’).

We can prove these facts by using Frobenius weights. (Take amodel of (X, D)
over asubfield of K whichisfinitely generated over the prime field.) But we omit
this proof, since we will not use this fact later.

The following is the key lemma for our group-theoretical recovery of the tame
fundamental group of the special fiber.

LEMMA (5.5). Assume?2 — 2g — n < 0. Assumethat R is strictly henselian. Let
V' be a connected Galois étale covering of U, at most tamely ramified along D,
andY its compactification. Put £ = Y — V', which we regard as a reduced divisor
of Y. Then the following are equivalent:

(i) (X, D) hasgood reduction at s and V/U extendsto an étale covering of s, at
most tamely ramified along ©, where (X, ) isa smooth model of (X, D) and
U=%X-2.

(ii) Both (Y, E') and (X, D) have good reduction at s.
(ii") (Y, E) has good reduction at s.

(When we say that (Y, E') has good reduction, we require that the constant field of
YisK.)

Proof. (i)=-(ii) immediately followsfrom Abhyankar'slemmaand (ii)=-(ii’) is
clear.

Prove (ii")=-(ii). Let (2, ¢) be the smooth model of (Y, E). The uniqueness

impliesthat theaction of G o Aut(Y/X)on (Y, E) extendstothaton (9), ¢). Since
9) isprojective over S ([Lichtenbaum, Theorem 2.8]), the quotient ) /G exists, and
is(proper) smooth over S by [KM, p. 508 Theorem]. Since(9)/G), ~ 2,/G = X,
this completes the proof for n = 0. For n. > 0, € is a digoint union of (finite)
copiesof S: € =[] cpS(A = mo(€)). Let A; (i =1,...,r) bethe G-orbits of A,
then we see

¢/G= ][ S

i=1,...,r

Now, weclaimthat ¢/G — 9 /G isaclosedimmersion (whichimpliesthat (X, D)
has good reduction.) Since ) is projective over S, we can easily find out, for each
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i=1,...,r,aG-stable affine open subset Spec(B;) of Y containing [[,c,, S and
not meeting with [, 4, S- Thenour claimis equivalent to: the homomorphism

Bf — (H R)G:R,

AEA;

which is induced by the surjective homomorphism B; — [],c,, R defining the
closed subscheme ¢ N Spec(B;), is aso surjective. But this is clear because B;
contains R.

Prove(ii)=(i). Aswehavejust seen, (3 /G, ¢/G) isasmooth model of (X, D).
Since a smooth model is unique (5.2), we may identify (9)/G, ¢/G) with (%, D).
Now, to prove (i), we may and do assume that the finite group G = Aut(Y/X)
is simple, since any finite group is a successive extension of simple groups. (Use
also (ii")=-(ii) above.) Now, since G is simple, the action of G on 9 is either
trivial or faithful. Suppose that it is trivial. Then, by [KM, Theorem A7.2.1],
the natural morphism 9, = 2s/G — (9/G)s = X, isradicid. Thus gy = g.
Moreover, since € is the set-theoretical pull-back of ©,, we aso see ny = n.
Now, Hurwitz' formula gives: (2gy — 2 + ny) = §(G)(29 — 2+ n), which is
absurd since 2g — 2 + n > 0 by assumption. Therefore, the action of G on 9); is
faithful. This implies that the covering 9 /X is unramified at the generic point of
X;. So, by Zariski-Nagata purity, the covering /sl is étale, where o P — €E.
Since V/U is a most tamely ramified along D, %0/ is at most tamely ramified
along ®. (Abhyankar'slemma.) This completes the proof. O

Remark (5.6). Even if V/U is not Galais, (ii")=-(ii) is till true. In fact, take
a prime number [ # p not dividing the degree of V/U. Then the natural map
m1(V, %)) = 71(U, %) is surjective. (Note that the constant field of Y is K.
Thentheimageof I inOut(ry(Uxss, *)!) isaquotient of that in Out(r1 (Vicse, *)}).
Now the claim follows from (5.3).

Assume that R is henselian and (X, D) has good reduction at s. Assume
2—2g —n < 0. Let (x,D) bethe smooth model of (X, D) and put & = X — D.
Then by [SGA, Exp. XII1], we have

TETeU, %) — T, ) = TET(8, %)

The following gives a group-theoretical characterization of the quotient rieme
(4, %) =~ 7AMe(g, %) of T@ME(T, ).

THEOREM (5.7). Let H be an open normal subgroup of 7@M&(U, x). Then H

contains the kernel of 78M(U, x) — m@Me(gL, ) (=~ 7@Me(g(y, )) if and only if the
following two conditions hold
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(@) theimage of H in G contains I; B
(b) theimage of T in Out(#”') istrivial, where 7 = H N 71 (Ugso, %).

Moreover, the kernel coincides with the intersection of all open subgroups H

satisfying (@) and (b).
Proof. The first statement now follows immediately from (5.3) and (5.5). The
second follows from the first. O

6. The Grothendieck conjecturefor curvesover fieldsfinitely generated
over Q

Follow the notation of Section 4 (before (4.3)). Thefollowing, whichisthe absolute
version of the Grothendieck conjecture for affine curves over fields finitely gener-
ated over Q, is one of the main results in this section.

THEOREM (6.1). Assume that both k1 and k&, arefinitely generated over Q, and

that n; > 0and 2 — 2g; — n; < Ofor somei € {1, 2}.
Then the map

lsom(U71 /Uy, Uz Us) — 1som(Ily, IT,), (F,F) — F(-)F~1
is bijective.
Next, weshall formulatearelativeversion of thistheorem. Assumek; = k, = k
and k1 = k» = k. Define
Isomy; . (U/ Uy, U2/ U)
dgf |Som(U]_/U1, ﬁz/Uz)

N (|80m(sChem$/;;)(ﬁ1, Us) 150M schemes k) (U1, U2)).

LEMMA (6.2). (i) The projection
ﬁfc/k: Isom,;/k(ﬁl/Ul, ﬁz/Uz) — Isom,;(Ul, Uz)

isinjective.
(ii) The projection

pfc/k: Isom,;/k(ﬁl/Ul, ﬁz/Uz) — Isomk(Ul, Uz)
is surjective, and

v P (F, F)) = FAW(U1/U1) = Aut(Uz/U) F.
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Proof. (i) directly followsfrom (4.1)(i). (ii) iseasier to seethan (4.1)(ii)). O
Definealso

IIy

IT,

def

Isomg, (I11,I12) = { F € Isom(I1y, I15) is commutative

\ 7

Hereisarelative version of (6.1):

THEOREM (6.3). Assumethat % isfinitely generated over Q, and that n; > 0 and
2 —2g; —n; < O0for somei € {1,2}.
Then the map

Isomy,  (U1/Us, Ua/Us) — Isomg, (111, 113), (F, F) — F(-)F*
is bijective.

Remark (6.4). When £ isfinite, the situation is completely different from (6.3). In
fact, in this case, (3.3) and (3.4) imply

IsomGk (H]_, Hz) = Isom(Hl, Hz).

Pop’s theorem [Pop 3], together with (3.2), reduces (6.1) to (6.3). So, we shall
prove (6.3). We do this by constructing the inverse map, using the main result (4.3)
of Section 4.

Remark (6.5). In the following argument, the assumption n; > 0 is necessary only
to apply (4.3). So, if (4.3) is generalized for n; = 0, (6.3) (hence (6.1)) is also
generaizedfor n; = 0.

Teke any F € Isomg, (I11,1I7). Using the weight of a suitable Frobenius
element in Gy, we see (g1,n1) = (g2, n2), which we denote by (g,n). (See (3.5)
and (3.6)(i).)

Let 41 be an open subgroup of Iy with g3, > 2, and put H, = F(#1). Note
k3, = ku,, which we denote by k7,. Assume gy, (= gx,) > 2. Then we have the
following injective maps:

Isomy,, (U315 Uz 31,)
- Isomkﬂ (X]-:HM X2,’H2) — Isomku (JXl,'Hl’ JXZ,’Hz)

— Isomi[GkH](T(JXl,Hl),T(JXMZ)) — Isomi(T(JXl,Hl),T(JXZ,HZ)).
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Since F maps H1 onto H, and I(H1) onto I(Hz) (3.7), F induces an element of
Isorn'z\(T(JXl,Hl)a T(JXZ,’Hz))a

which we also denote by F.

CLAIM (6.6). F belongsto (the injective image of) Isomy.,, (U134, Uz,34,)-
Assuming this claim, we shall first complete the proof of (6.3).
Let %} C H1 be two open subgroups of II; with (gf,{fl >)gn, > 2, and put
Ho = F(H1), H5 = F(H}). Then the diagram

Ura Uz,
\ - \
UL, Uz,

i§ commutative. Thisis clear by definition. So, F defines an element of Isomy ((71,
Us), which we also denote by F.

LEMMA (6.7). II is generated by its open subgroups 71 with g4, > 2.

Proof. Sincek ishilbertian, TT; istopologically generated by (geometric) quasi-
sections. Henceit sufficesto provethat, for each quasi-section s: G, — 11, where
L is afinite extension of & in k, there exists an open subgroup #; with g3, > 2
containing s(G'1). Since Iy is a finitely generated profinite group, the set of its
open (topologically) characteristic subgroupsis afundamental system of neighbor-
hoods at 1. From this it follows that there exists an open characteristic subgroup

H; of TI; with gg, > 2. (Use (1.10).) Now H; o His(Gp) satisfies the desired
property. This completes the proof. O

By this lemma, the k-isomorphism F: Uy — U, induces a (unique) k-
isomorphism Uy — U,. Thus we obtain a map

Isomg, (TTy, TTz) — 1S0my, . (U1 /U, Uz/Ua).
From the functorialities it follows that
Isomy,  (U1/Us, Ua/Uz) — Isomg, (T3, IIp) — 1somy . (U1/Us, Uz/Us)
istheidentity. We have to prove that

IsomGk (H]_,Hz) — Isom,;/k(ﬁl/Ul, ﬁz/Uz) — Isomgk (H]_,Hz)
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is also the identity. For this it sufficesto prove that
|SOI’T1GIc (Hl, Hz) — |Som]‘€/k((?1/U1, Uz/Uz)

isinjective. Let F, F' be elements of Isomg, (II1, II2) which induce a same ele-
ment of Isom,;/k(f]l/Ul,Uz/Uz). Put £ = F'~L1F, then £ induces the identity
in 1somy, ;. (U1/Us, U1/U1). By the definition of the map, for any open subgroup
H1 of II; with gy, > 2, we have £(H1) = H1. We see that this is true for any
open subgroup H1 of I3, applying (6.7) to Uy y,. Since a closed subgroup is
the intersection of open subgroups containing it, this is also true for any closed
subgroup #, of II;. Apply this to the closed subgroup s(G) for each quasi-
section s: G, — I, thenweseethat € fixeseachelementin s(G,). (Recall that £
belongsto Isomg, (IT1, I11).) Sincell; istopologically generated by quasi-sections,
we obtain that £ isthe identity.

Now only the claim (6.6) remains. Replacing U; by U; 4, if necessary, we may
assumethat H, =II;and g > 2.

First, we treat the case where k is afinite extension of Q. Let Oy, be the integer
ring of k, and take a non-empty open subschemeT" of Spec(Oy,) suchthat (X;, S;)
has a smooth model (%;, &;) over T for each i = 1,2. Namely, X; is a smooth
proper over T, &; is arelatively étale divisor in X;/T, and (X; X1k, &;x k) IS
identified with (X;, S;). Then by [DM], Isom; (X1, X>) is represented by a finite
unramified T'-scheme. Shrinking T' if necessary, we may and do assume that this
schemeisfinite étale.

Now, let p be a closed point of T', and p an extension of p in (the integral
closure of T in) k. Put p, = char(x(p)). Then the decomposition group G; of
p in Gy is identified with the absolute Galois group of kg‘ the fractional field of
the henselization of O, and the inverse image of G in II; is identified with

m(U; @ k), £,)©. Thus F induces an element of

_\©O \©
IsomGkh (ﬂ-l (Ul ® ICQ, El) , 1 (UZ ® ICQ, £2> ) 3
i k k
which induces an element of

Isom [ rtame I © tame ©)
1 1;”(13)7* y 1 ﬂz;fi(p),*

by (5.7), wherest; © %, — &;. By (4.3), the last set isidentified with

tsom ( (st x(p)) /1135 009), (32650 /12 65 )
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Thustheimage of F in

Isom_; (T(x, )%, T(Jx, %)

/

= Isomip; (T(Jxlen(p))p” ) T(szxTn(p))p;)

isin (the injective image) of

1som (s w(3) /3 X (). 8z X K(5) 112 3 ()

C Isom (ul X (), 1 X m(p)) .

CLAIM (6.8). F belongsto (the injective image) of

1som, ) (43 5(9). 42 X k() ) > Tsomgy (143 5(9), 12 X 5(5) )

C Isom (ul x (), 2 X m(ﬁ)) .

In fact, since F commutes with Gal (x(p)/x(p)), it suffices to prove that F
belongs to Isom,, ) (U1 x7k(p), U2 X 7k(p)). By (4.2), F defines an element ¢, of
Aut(x(p)). Then the following diagram is commutative

T(Jxl)p:’ % T(Jxl)p:’ Weil pairing Zpi:(l)

.

T(Jx,)P» x T(Jyx,)P» 2ELPAG 55, (7).

Note that this diagram is regarded as one over the global field . So, if q is another
closed point of T', then we have 1, = 1, in Aut(ZP»Pa (1)) = (ZP»P4)*. Now, take
two closed points q1, q2 of T" with p,, # p, (¢ = 1,2) and p,, # pg,. Then the
image of ¢, = ¢4, in (ZP»Pei)* isin (pp) N (pg;), Whichis {1} by atheorem of
Chevalley ([Chevalley, Théoreme 1]). Thus., € (fo’is)X istrivial. This completes
the proof of (6.8).

From now on, our argument originates from a discussion between Mochizuki
and the author. Since Isom- (X1, X») isfinite éale over T', we have

Isom,;(le,-c, XZ,E) ~ |Som,{(;—,)(.%1 ;S H(ﬁ), X2 ;(1 I{(f)))
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So, theimage of F in

Isom, 5 <3€1 ; k(p), X2 ? ﬁ(p)) C Isomipfp (T(JXl)PL,T(JXZ)p’u)

= |Som/Z\p’p (T(J°€1 ;(1 k(p) )pL’T(JXz ;S K/(p))

corresponds to an element F, of lsom (X gy Xoz)-
Take two closed points p and q of T with p, # p,. Considering the injective
map

IS0my (X, Xp ) = 190MLyy 1 (T (Jxy)PoP0, T (T, P2 Ph),

ZP P

we see F, = F, first. Thenwe see F = F, = F, in Isom(T(Jx,), T(Jx,)).
Since F commutes with G, thisimpliesthat F belongsto (the injectiveimage of)
Isomy (X1, X2) = Isomp(X1, X2). Moreover, considering reductions at infinitely
many closed pointsinT', we seethat 7 maps S1 onto S». This completes the proof
of (6.6) inthecase[k: Q] < oo.

When & isfinitely generated over Q in general, take asmooth, connected scheme
V/Qwhosefunctionfieldisidentified with &, such that (X, S;) hasasmooth model
(X;,S;) over V for i = 1,2, and such that Isom,, (X1, A>) is finite étale over V.
Then the proof is quite similar as above but much easier: taking one closed point
P in V and considering the (whole) Tate modules, we see F € Isom (X1, X?);
considering reductions at closed pointsdensein V', wesee 7(S1) = S». (Note that
theresult in Section 5 is not necessary in this step.)

7. Complements

A. Reformulation of the main results in terms of outer Galois representations.
Let

1-10;, -1, - G — 1,

be an exact sequence of profinite groups for each i = 1,2. Then, asin (6.3), we
define

Iy

II,

def

Isom; (111, I1Ip) = < F € Isom(I14, IT5) is commutative
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On the other hand, the exact sequence above induces an outer representation
G — Out(II;),
for eachi = 1, 2. Then we define

G = G

1somQ*(TT, TT,) € { 7 € 1som(TTy, TTy) is commutative

Out(F) =

Out(ITy) Out(TT,)

Then the restriction gives amap
|&)mg(H1, Hz) — |Som8m(ﬁ1, ﬁz)
Now thefollowing isaslightly more general than [Nakamura3, Corollary (1.5.7)].

LEMMA (7.1). Assume that TI; is center-free for some i = 1,2. Then the map
aboveis bijective.

Proof. If TI; and II, are not isomorphic to each other, then the statement is
clear. So, we may assume that IT; is center-free for each i = 1, 2.

We shall construct the inverse map. Consider the following commutative dia-
gram:

1 - T, - T, - G -1

1 Inn(TT;) — Aut(TT;) — Out(TL;)

1

where the rows are exact and the left column is an isomorphism by assumption.
Then we see that I1; is naturally isomorphic to the pull-back:

Aut (ﬁz ) x Q.
OUt(ﬁi )

Thus, given F € Isom2"(TTy, TT,), we can define F € Isom(T1y, TT) as

AUt(f) X idg.
Out(F)

We can easily check that this gives the desired inverse map. O

Now, by (1.11), we obtain the following reformulation of (6.3).

https://doi.org/10.1023/A:1000114400142 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000114400142

THE GROTHENDIECK CONJECTURE FOR AFFINE CURVES 189

THEOREM (7.2). Follow the notationsin (6.3). Then the map

Isomy ;. (U1/ U1, Ua/Uz) — 1som@ (11, Th2), (F, F) — F(-)F~*
is bijective. O
Remark (7.3). (i) Dividing by TI,, we also see that the map

|somy, (Uy, U2) — 1somg (11, IT) /Inn(TT2)

isbijective. Inparticular, if Uy = U, = U, then Aut, (U) isisomorphically mapped
onto the centralizer of the image of G, in Out(IT), where IT = TI; = II,.

Note that this formulation is independent of the choices of the geometric points
onU; (i = 1,2).

(i) Follow the notations and the assumptionsin (4.3), and assume k1 = ky = k
(finite) and k1 = k> = k. In this case, the right reformulations are

iy N N o —
|Som(U1/U1, Uz/Uz) ~ |SOIT1GL; (Hl, Hz),
Isom(U1/Ux, Uz /Usz) ~ 1som@(IT1, TI2) /Inn(IT2),
Isom(Uz, Uz) ~ Isom@¥(TT1, TT2) /Inn(IT,).

See (6.4).

B. An application to profinite group theory.

The author does not know if the following purely profinite-group-theoretical
corollary of our main resultsis easily proved (or well-known).

THEOREM (7.4). Let C be a full class of finite groups containing 7 /17 for all
prime number 1. Then Out(F€) is center-free for each r > 2.

Proof. Take a field £ finitely generated over Q, and a finite extension L/k
of degree r + 1 with Aut(L/k) = {1}. (For example, k¥ = Q(T1,...,T,) and
L=kX]/ (X' +T1 X" +---+T,_1X +T,),whereTy, ..., T, areagebraical-
ly independent over Q.) Take any closed immersion Spec(L) — IP’% over Spec(k)
and put U = P} — Spec(L). Then we see Aut(U) = {1}. By (7.3)(i), this means
that the centralizer of theimage of G, in Out(m1(Uz, #)€) ~ Out(FC) istrivial. In
particular, Out(F€) is center-free. O

C. An alternative proof of a theorem of Pop.

The following is part of the main result of [Pop 2]. (See also [Pop 1], [Pop 3],
and [Spiess].)

THEOREM (Pop). Let k& be a field finitely generated over Q, and X; a proper,
smooth, geometrically connected curve over k for eachs = 1, 2. Then we have
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Isomy, (Spec(k(X1)), Spec(k(X2)))
~ 1somg;, (Gr(x,), Gr(x,)) /INN(G(xy))
(= 150M@™ (G xy)» Gi(xp)) /1NN(G i x,))-)

We shall provethisasa corollary of our main result (6.3).

Let X be a proper, smooth, geometrically connected curve over k£ and )N( the
integral closure of X in afixed algebraic closure k(X) of k(X). Then we have

where U runs over the set of (non-empty) open affine hyperbolic subscheme of X
and € means the generic geometric points defined by E(X).

For each ve 3 ~, the decomposition group D~ and the inertia group I~ are
defined as usual. V\?e need a group-theoretical characterl zation of inertia groups
This is a special case of Pop’'s local theory in [Pop 2]. However, in the case
of curves, we have much simpler solution, as follows, using Nakamura's weight
characterization of inertia groups ([Nakamura 1, Section 3], [Nakamura 3, 2.1]),
which isindependent of model theory.

First we recall Nakamura's result briefly. (Although he treats only the case
where k isanumber field, it clearly extendsto the case where k isfinitely generated
over Q.) Let U be an affine, smooth, geometrically connected curve over k with
hyperbolicity condition: 2 — 2g — n < 0. Follow the notations of Section 1. Then:

THEOREM (Nakamura). A cyclic (= topologically generated by one element)
subgroup J of w1 (U, €) is contained in the inertia group of some element of Ygif
and only if .J has a cyclotomic normalizer in 71(U, ). Here S € X — 17 O

For the precise definition of the cyclotomic normalizer, see loc. cit. Roughly
speaking, the condition turns out to be equivalent to saying that .J behaves as (a

quotient of) Z(1) with respect to some quasi-section of 71 (U, &) — G

Remark (7.5). Let, o' betwo distinct elementsin Xz. Then I; N Iy = {1}. In

fact, there exists an open subgroup # of 7r1(U,§) W|th Oy # vﬁ and ny > 3.
Then, by (1-5) (applied to H), we see I; N Iy N'H = {1}, which implies I; N I
isfinite. By (1.6), thisimplies I;; N Iy = {1}.

In particular, it follows that D isthe normalizer of T in 71 (U, €).
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From (7.5), Nakamura's result gives the following bijection

Y& — {theset of maximal subgroups of wl(U,E)

which are cyclic and have a cyclotomic normalizer in 71 (U, )},

¥ — I. By the projective limit argument, we get the following:
THEOREM (7.6). The map Vs I% gives the following bijection:

2; — {the set of maximal subgroupsof G,y
which are cyclic and have a cyclotomic normalizer in Gy, x)}- O

This gives a group-theoretical characterization of the inertia groups.
Now, construct the inverse map of

Isomy, (Spec(k(X1)), Spec(k(X2)))
— IsomGk (Gk(Xl)a Gk(Xz))/I nn(G,;(Xz)).

Takeany F' € Isomg, (G (x,): Gi(x,)/INN(Gx,)), and choose F € Isomg,
(Grexy)> Gi(xy,)) representing F. By (7.6), thisinduces a bijection

fi2s = Xa
X1 X2
characterized by: I = f(I~ ) for each 516 2;( Dividing by the actions of

) (resp. Gk(X ) (@ =1, 2) we also abtain abuectlon Yx, = Xx, (resp.
2 X1 —> 25,) WhICh we also denote by f. Thefollowing diagram is commutative:

Y
X1 X2

Yx, Yx,.

Now, take any finite subset S; of 3y, whoseinverseimagein ¥ ¢, has cardinality
> 3, and put S, = f(S1). By (7.6), F induces an isomorphism 71(U1, &) —
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m1(Up, &) over Gy By (6.3), thiscomesfrom a (unique) k-isomorphism Uy — Uy,
which induces a k-isomorphism Spec(k(X1)) — Spec(k(X2)). It is easy to see
that this isomorphism is independent of the choices of F and S1. Thus we obtain
awell-defined map

Isoma;, (G(xy)> Gi(xz)) /INN(GR(x,)
— |somy, (Spec(k(X1)), Spec(k(X2))),

which gives the desired inverse map.
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