ON ARITHMETIC CONVOLUTIONS
T.M. K. Davison
(received January 4, 1966)
1. Introduction. Let A be the set of all functians from

N, the natural numbers, to C the field of complex numbers.
The Dirichlet product of elements f, g of A is given by

f¥g(n) = Z f(d)g(nd-i), for all ne N,
dln

where the summation condition means sum over all positive
integers d which divide n. The set A with the binary
operation * (denoted by <A,*>) is a semigroup with identity 5,

§(n) = {1 if n=1 ’
0 if n>1

where

(see e.g. [1]). The group of units of <A,*> is <B,*> where
B = {f|feA, £f(1) ¥ 0} (see[1]). The number theoretic result
of most interest to us is that M, the set of multiplicative
functions, is a subgroup of B. (Recall that f ¢ B is multi-
plicative if, whenever m, n are relatively prime positive
integers we have f(mn) = f(m){(n).)

In this paper we introduce a class of binary operations
over A which includes the above product. Let X be the set of
all ordered pairs of natural numbers such that (m,n) ¢ X if, and
only if, n]m. Let a be an arbitrary function from X to C,
(a: X = C). The a - product of any pair f, g of elements of A
is given by

fag(n) = T a(nd)f(d)g(nd }), forall neN.
dfn

We say that the function a determines the product a. Itis easy
to see that distinct functions determine distinct products (c.f.
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proof of Theorem 1). The function from X to C whichis
identically 1 determines the Dirichlet product.

The class of a - products includes the following products.
The unitary product of Cohen [2], is determined by the function
a, where

if (m,n) =1

]
1
a(mn, n) = { 0 otherwise

The convolutions of Narkiewicz [6], are determined by functions
from X to C which take only the values 0,1. (It will be
realized that in this case the a(n,d) merely selects out '""suitable"
divisors.) Finally, the K-products of Subba Rao and Gioia [8],
and Gioia [3], which are given by expressions of the form
£ X g(n) = >I: £(d) g (nd™ H)K((d, na™ ")),
d|n

(where (d,nd-i) is the g.c.d. of d and nd-i) are seen to be
a-products.

We now define some special types of a-products, or
equivalently, special types of determining functions. The function
a: X = C is bounded if there is a K > 0 such that [a(m, n)[ <K
for all pairs (m,n) in X. We say a: X+ C is simple if

a(kl ,1) = a((k,l)l,l) = a((k,l)ﬂ,(k,l))

for all k, £ ¢ N (note that (k,f) denotes the g.c.d. of k and ¢).
The function a: X - C determines a convolution if, and only if,
< M, 3> is a group with identity §. We note that the products
of Dirichlet and Cohen are both bounded and simple, while the
convolutions of Narkiewicz are bounded but not simple and the
products of Subba Rao and Gioia are simple but not, in general,
bounded.

In §2 we state our main results which are then proved in
§ §3,4. Further examples of Z-products are givenin §5
(including a non-abelian product), and we indicate how the idea
of the a-product can be used to unify and extend some known
results.

I am indebted to Professor J.H.H. Chalk for his help with
the original version of these results which formed the substance

of a chapter in my doctoral dissertation at the University of
Toronto.
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2. Statement of Results. The first theorem characterizes
those functions which determine convolutions (c.f.[6, §2]).

THEOREM 1. <M, a> is a group with identity & if,
and only if, a(m, n) satisfies the following conditions:

(i) a(kmn, mn) a (mn, n) = a(kmn, n) a (km, m) for all k,m,n, ¢ N;
(ii) a(rmsn, mn) = a(rm, m)a(sn,n) whenever (rm, sn) = 1;

(iii) a(n,1) = a(n,n) =1 for all ne N.

We note that condition (ii) is that a(m, n) be multiplicative in the
sense of Vaidyanathaswamy [9]. Condition (i) gives necessary
and sufficient conditions that the a-product be associative, while
(iii) gives the existence and uniqueness of the identity. It will be
noted that inverses look after themselves (c.f. [6,(v)])! Before
stating our next theorem we define some auxiliary functions.

Let a: X = C. For all ne N, put

n

(2.1) u(n) = £ a(kn, n),
k=1

(2.2) v(n) = = a@ d)u(nd™ty,

dfn

and

(2.3) w(n) = = |v(d)].
dln

THEOREM 2. Let a(m,n) be bounded and simple. Let
geA satisfy g(n) = 0(1). Then

2 o
z gai(mn) = Eé- z g(m)u(m)m-:” +0(x Z w(k)k-1 ),
n< x 1 k< x

where ie A is given by i(n) =n for all ne N.

In the special case when a determines the Dirichlet
product this is a well-known result (see e.g.[10,p.9]); if, on the
other hand, a(in,n} determines the unitary product, then the
result is due to Cohen [2, Th.4.1].

3. Proof of Theorem 1. We shall prove the necessity
of the conditions first. Assume then that <M, a > is a group
with identity &, so that f3§ = f; in other words f{(n) = a(n, n)f(n)
for all ne N and all f ¢ A. From this, and a similar argument
on the left, we deduce that a(n,nJ = a(n,1) =1 for all ne N.
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Next we note that the characteristic function of the divisors of a
natural number is multiplicative. Now, given me N, ne N

such that (m, n) =1, and positive integers d and e where d|m,
and eln, construct f,g in M as follows:

(k) = {1 if k|de

0 otherwise,
and
-1 -1
= [+ k|mnd e
gix) = 0 otherwise

Then it is easy to verify that fag(mn) = a(mn, de) and that
fag(m) = a(m, d), fag(n) = a(n,e). But fageM since M is a
group; thus we have a(mn,de) = a(m, d)a(n, e), whichis
equivalent to condition (ii). Since we have proved (ii) and (iii)
we need only prove the validity of (i) on powers of a prime. Let
p be any prime number, and o {3,y be integers such that
o> B >Y>0; then we have to show that a(pa, pﬁ) B, pY) =
Q— -
Y,pﬁ ).

a(p

a(pa, pY) a(p Construct functions f,g,h in M as
follows: put (1) = g(1) = h(1) = f(pY) = g(pB-Y) = h(pQ_B) =1, and
put zero at all other arguments. Once again it is straightforward
to verify that fa(gah) (pa) = a(pa, pY) a(pa_\{, pB~Y), and

(fag)a h (pa) = a(pa, pﬁ) a(pﬁ, pY), which gives us the desired
result.

We turn now to the sufficiency of the conditions. Assume
(i). Let f, g, h be any three elements of M, and n any
positive integer. Then, we have

(fig) 3 h(n) = = a(n, d) £3g(d) h(nd 1)

dln

= Z a(n,d) Z a(d,e)f(e)g(deci)h(nd-i)
dln eld

= = = a(n,d)a(d,e)f(e)g(de-i)h(nd_i).
dln e[d

But a(n,d)a(d, e) = a(n, e)a(ne-1, de-i) by (i), so that

(f3g)3h(n) = = = a(n e)a(ne . de 1) f(e)g(de h(nd™ 1)
dneld
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B!

Z a(n,e)f(e) = a(ne-i,de-i)g(deﬁi)h(nd-
-1 -1
e|n de " |ne

£ a(n,e)f(e) gih(ne 1)
e‘n

= f 3 (gah)(n).

Thus we have shown that 3 is associative. Next, let f,g be
any elements in M, and m,n any pair of relatively prime
positive integers. Then

fig(mn) = I  a(mn,d) £(d) g(mnd-i)
d |mn
= £ I  a(mn ke) f(ke) g{mnk ‘e ).
k|m e|n

By (ii) we have a{mn, ke) = a(m, k) a(n, e), so that the previous
sum splits into a product of sums and we deduce that fig{(mn) =
fig(m) fig(n). (Note that the fact that f and g are multi-
plicative is crucial in this splitting.) It is trivial to deduce from
(iii) that & is the identity for M. It remains to show that every
element in M has an inverse in M. In fact it suffices to prove
that every element in M has a left inverse, since the two
sided-ness follows from the existence of the identity (2-sided) §;
and the fact that the inverse, if it exists, must lie in M can be
shown as follows. Suppose that f ¢ M and that gaf = 5. Define

€ € M by specifying § on prime powers by E(pa) = g(pa) and
extending g to all of N in the obvious fashion to make it
multiplicative. Then clearly

(]

Tif(a) = 0 gafeY= m gifeH= nm (I
o @ a
pln P [n
= §(n).
We now have to construct a left inverse of an arbitrary element
feM. Put f (1) =1, and assume that f i(k) has been

defined for all integers less than n, where n> 2. Define f-t
at n by
£l = -z amd) £ 1) fnah.
d|n, d<n

It is then easy to check that f-ii f(n) = §(n) for all n. Thus
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<M, a> is a group.

4. Proof of Theorem 2. In the proof of the theorem we
use a pair of lemmas in which it is assumed that a: X - C is
simple. The functions u, v, w are defined by equations 2.1,
2.2, 2.3. We note that u = v*¥i, since (a is simple!)

u(n) = X a(kn,n) = Z a((k,n)n,n) = £ a(dn,n) ¢(nd‘1)
k< n k<n d ,n
= Z a.(dz,d) Q(nd-i), for all n e N.
d|n

After putting b(m) = a(mz,m) for all m e N, we have

u = b¥@ = b¥(u*i) = (b¥u)*i; but v = b*p by definition, so

u = v¥i as stated. The proof of Lemma 1 below uses the following
well-known result (see e.g. [5,p.91 prob. 3]): If &(x,n) is the
number of positive integers less than or equal to x and prime

to n, then

$(x,n) = = p(d) [xd-i] .
d|n

LEMMA 1. Put F(x,n) = Z a(kn,n) for all x>0
k< x
and all ne N. Then, we have

F(x,n)= Z v(d) [xd—i].
dIn
2 - -1 -1
Proof. Z a(kn,n)= Z a(d ,d) ¢(xd ,nd ")
k< x d|n :

- a@a) = i p.(m)[xd—im-i

d|n m |nd

1.

Putting s = dm and rearranging the summation, we obtain
-1 -
F(x,n)= Z [xs ] Z a(dz, d) p(sd 1) ;

s|n dl|s
but the inner sum is just v(s), whence the result follows.
-1
COROLLARY. F(x,n) = u(n)n = x + 0(w(n)).

Proof. = v(d)xd ]=xn (= v(dnd ) +o(z [vd)]),

d|n d|n d|n
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= xn-1 v ¥ i(n) + 0(w(n))
= xn.1 u(n) + 0(w(n)).
LEMMA 2. Put F*(x,n) = Z k a(kn,n) for all

k<x
x>0 and ne N. Then we have

F*(x,n) = gz(ni) x2 + 0(x w(n)).

Proof. By partial summation we see that
F*(x,n) = [x+1] F(x,n) - £ F(k,n)
k<x
= S, - S, say.

1 2

Now 12 1
S1 =u(n)n  x + 0(x|u(n)n f) + 0(x w(n)),

and

S2 = % u(n)n-1 x2 + 0(x]u(n)n.1 I) + 0(x w(n))
by the corollary; but !u(n)n-il = ] z v(d)d-il = 0(w(n)),
d In
1 -1 2
so that S1 - S2 = Eu(n)n x + 0(x w(n)) as stated.

We can now proceed to the proof of the theorem.

Z gai(n)= Z Z a(de,d) g(d)e
n<x n<x de=n
= T gd) F* (xd 1, d).
d<x

We use our estimate of F* and the hypothesis that g(n) = 0(1)

to obtain
-4 1 2 -3 -1
Z g(d) F¥(xd ",d)= ox X g(d)u(d)d ~ +0(x = wi(d)d ).
d<x d<x d<x

Now u(n) = 0(n) since a is bounded. Thus g(n) u(n) n-3 =0(n-2),
and so we can write

-3 2 -3 -1
Z g(du(d)d ~ = =T glmhu(m)m ~ +0(x ).
1

d<x
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It is clear that w(n) > 1 for all n, and the theorem is proved.

5. Examples and further results. Our first example
is constructed so that the product of completely multiplicative
functions is itself completely multiplicative. Itis given by

n m m!

m .
a(p ,p):(n): m , p prime, m>n>0,

and is extended to all of X using multiplicativity. In fact this

a determines a convolution, as the reader can easily prove.

The next example, also defined on prime power pairs and
extended by multiplicativity, gives a class of non-abelian
convolutions. Let ke N be at least 2. Put

a(m n)_ 1 if m=n or n =0 (mod k)
P P /%10 otherwise .

To show that a is non-abelian evaluate

- k+1 k+1 k+1 k

faglp ) =glp ) +flp ) +f(p) glp) .,
which is, in general, distinct from gaf.

Our final example is defined by

1, m odd
a(mn, n) = ot ,
(-1

) , m even

and is taken from an article of Rankin [7,forrn 33], who obtains
the formula

8 9 d 9

P (n)=—7= (= d’ - = (-1) d7)
20 31 d|n d|n
nd—1 odd nd-1 even

Using the above 3-product this can be written

8 .9_

20 31 ° al, where ig(n) = n9 and 1(n) =1 for all n e N.

We turn now to the consideration of further applications of
a-products. We define the d-analogue p  of the Mdbius function
a

poby
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When a determines the Dirichlet product (resp. unitary
product) M, is p(resp. p* of Cohen). The My of our first

example above is \, where \(n) = (-1)p , p being the total
number of prime factors of n (see e.g. [4, Thm.300]). We can
use the ''generalized' M&bius functions to define '"'generalized"
¢ functions, and, of course many other arithmetic functions.
We can also give analogues of the Ramanujan sum ([4, Ch.5.6]).

1
First we define a : NxN—- C by

1

a (n,m)= z a(n, d) p.a(d),
d [(m, n)
and then we set }
' -
clr.s)= Z a (s,k) e(rks ),
a 1<k<s

where r >0, s> 1, and e(t) = exp(2wit). Itis a straight-
forward exercise to verify that in the Dirichlet case <, is ¢,

the Ramanujan function, and in the unitary case <, is the c*
of Cohen [2]. More generally it can be shown that our c is

multiplicative, i.e. whenever (s,t) =1, we have

c (r,st) = ¢ (r,s)c (r,t).
a a a
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