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Abstract. If P is a Sylow-p-subgroup of a finite p-solvable group G, we prove
that G0 \NGðPÞ � P if and only if p divides the degree of every irreducible non-lin-
ear p-Brauer character of G. More generally if � is a set of primes containing p and
G is �-separable, we give necessary and sufficient group theoretic conditions for the
degree of every irreducible non-linear p-Brauer character to be divisible by some
prime in �. This can also be applied to degrees of ordinary characters.
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A well-known Theorem of Thompson (12.2 of [3]) states that a finite group G has
a normal p-complement if the degree of every non-linear irreducible complex char-
acter of G is divisible by p. Gow and Humphreys [1] proved that the same conclusion
holds if p divides the degree of every non-linear irreducible q-Brauer character for a
prime q 6¼ p when G is q-solvable. They also showed that there exist p-solvable
groups of arbitrary p-length, where p divides the degree of every non-linear irre-
ducible p-Brauer character. We use known results about the McKay conjecture to
give necessary and sufficient conditions for p to divide the degree of every non-linear
irreducible p-Brauer character of a p-solvable group G.

Theorem A. The degree of every non-linear p-Brauer character of a p-solvable
group G is divisible by p if and only if G0 \NGðPÞ � P whenever P is a Sylow-p-sub-
group of G.

More generally, given a set of primes � with p 2 �, we give in Theorem B
necessary and sufficient group-theoretic conditions for the degree of each non-linear
irreducible p-Brauer character of a �-separable group G to be divisible by some
prime in �, at least when G satisfies some separability conditions. This can also be
applied to ordinary characters of G by choosing p with (p,|G|)=1.

Actually Theorem A is valid whenever G satisfies McKay’s conjecture for p-
Brauer characters of p0-degree. Theorem A is not true for all finite groups, at least
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when p=2. The simple group of order 168 has a self-normalizing Sylow-2-subgroup, but
it also has two irreducible 2-Brauer characters of degree 3. The other direction also fails
in general since the simple group of order 60 does not have a self-normalizing Sylow-2-
subgroup, yet the degrees of its irreducible 2-Brauer characters are 1,2,2, and 4.

We conjecture that Theorem A is valid for all finite groups when p is odd, but it
seems hard to find groups G satisfying either condition with p < 2 and G not p-sol-
vable. An example of a group G that is not p-solvable and satisfies both conditions
with p=3=|G:G0| has G0 ffi L2ð27Þ: (See [4].) For p>3, a theorem of Glauberman
shows that no Sylow-p-subgroup of a simple non-abelian group is self-normalizing.
(See the Corollary to Theorem 5.14 of [7].)

For P 2 SylpðGÞ, the McKay conjecture asserts that the number of irreducible
characters of G with p0-degree equals the number of such characters of NGðPÞ. For p-
solvable groups, E. Dade first proved this, and a simpler proof due to Okuyama and
Wajima appears in [5]. The following generalization is the main result of [8].

Theorem 1. If G is p-solvable and �-separable for a set of primes � and H is a
Hall-�-subgroup of G, then

jfj 2 IBrpðGÞjjð1Þ

is a �0-number|}=|{Z2 IBrp ðNGðHÞÞjað1Þ is a �0-number|.

Theorem A is immediate from Theorem B by setting �={p}.

Theorem B. Let H be a Hall-�-subgroup of a �-separable group G for a set � of
primes with p 2 �. Assume that G is p-solvable. Then the degree of every non-linear
irreducible p-Brauer character of G is divisible by some prime in � if and only if
G0 \NGðHÞ=H0 is a p-group.

Proof. We first prove the theorem when H is normal in G. Let P 2 SylpðGÞ. Now
H0P � H and H0P=H0 is a normal Sylow-p-subgroup of G=H0. Since H/H0P is a
normal abelian Hall-�-subgroup of the p0-group G=H0P, the degree of every
j 2 IrrðG=H0PÞ ¼ IBrpðG=H

0PÞ is a �0-number. Now assume that the degree of every
non-linear irreducible p-Brauer character of G is divisible by some prime in �. Then
every j 2 IrrðG=H0PÞ is linear, from which it follows thatG0 � H0P and thatG0=H0 is a
p-group. For the converse, assume that G0=H0 is a p-group. Then G0 � H0P and every
j 2 IrrðG=H0PÞ is linear. Since H0P=H0 is a p-group, every irreducible p-Brauer char-
acter of G=H0 is linear. Consequently if b is a non-linear irreducible p-Brauer character
of G, then an irreducible constituent g of bH0 is not principal. We may choose
� 2 IBrpðHÞ that is an irreducible constituent of bH that lies over g. By p-solvability,
the degree of a divides |H|. Also a is not linear because the irreducible constituents
of H0 are not principal. Hence a(1) is divisible by some prime in �. Furthermore a(1)
divides b(1) by Clifford’s Theorem. (See [6, Corollary 8.7].) Hence b(1) is divisible by
some prime in �. This establishes the Theorem when H is normal in G. Setting
N ¼ NGðHÞ, we may now assume that N < G.

Now G0H is a normal subgroup of G of �0-index, so that the Frattini argument
implies that G ¼ ðG0HÞN ¼ G0N and G=G0 ffi N=G0 \N. Let J�0 ðGÞ denote the set of
irreducible p-Brauer characters of G of �0-degree. Since G is p-solvable and
�-separable, Theorem 1 implies that jJ�0 ðGÞj ¼ jJ�0 ðNÞj. Assume that all j 2 J�0 ðGÞ
are linear. Then J�0 ðGÞ ¼ IBrpðG=G

0Þ. Since G=G0 ffi N=N \ G0 and jJ�0 ðGÞj ¼ jJ�0 ðNÞj,
it follows that J�0 ðNÞ ¼ IBrpðN=N \ G0Þ. Thus every m 2 J�0 ðNÞ is linear and also
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N \ G0=N0 must be a p-group. Since H is normal in N, we have by the first para-
graph, that N0=H0 is a p-group. Then N \ G0=H0 is a p-group, as desired.

Conversely assume that N \ G0=N0 is a p-group. Then N0H0 is a p-group and so
every m 2 J�0 ðNÞ is linear, by the first paragraph. Now N \ G0=N0 is a p-group and so
J�0 ðNÞ ¼ IBrpðN=N \ G0Þ. Since G=G0 ffi N=N \ G0 and jJ�0 ðGÞj ¼ jJ�0 ðNÞj, we have
J�0 ðGÞ ¼ IBrpðG=G

0Þ and all j 2 J�0 ðGÞ are linear, as desired. &

We used p-solvability twice in the proof of Theorem B, namely to conclude that
jJ�0 ðGÞj ¼ jJ�0 ðNÞj via Theorem 1 and to assume that bð1ÞjjHj for all b 2 ðIBrpðHÞ.

If G satisfies the conditions of Theorem B, it follows from the Theorem that
NGðHÞ does too. But the converse is false, as is evidenced by a semi-direct product
G=EP, where E is an extra-special r-group for a prime r 6¼ p, P has order p, and
CEðPÞ ¼ ZðEÞ. Then NGðPÞ

0
¼ 1 and the degree of every non-linear irreducible

p-Brauer character of NGðPÞ is divisible by p (vacuously), while G has an irreducible
p-Brauer character of degree r.

Corollary 1. Suppose that G is p-solvable and the degree of every non-linear p-
Brauer character of G is divisible by p. Let K ¼ Op0

ðGÞ and P 2 SylpðGÞ.

(i) G=K ffi NGðPÞ=NKðPÞ is abelian.
(ii) The degree of every non-linear p-Brauer character of K is divisible by p
(iii) NKðPÞ ¼ P.

Proof. The Frattini argument shows that G ¼ KNGðPÞ and so G=K ffi

NGðPÞ=NKðPÞ. The hypotheses imply that every � 2 IrrðG=KÞ ¼ IBrpðG=KÞ is linear
and thus G/K is abelian. Applying Theorem A twice, we have that K0 \NKðPÞ �
G0 \NGðPÞ � P and the degree of every non-linear p-Brauer character of K is divisible
by p.

Since K has no non-trivial p0-factor groups, it follows that K0P ¼ K and hence
that NKðPÞ=P ffi K0 \NKðPÞ=K

0 \ P. But K0 \NKðPÞ � P by the last paragraph.
Thus NKðPÞ=P is both a p-group and a p0-group, whence NKðPÞ ¼ P. &

That G=K ffi NGðPÞ=NKðPÞ in part (i) above is solely a consequence of the
Frattini argument. The conclusion above that NKðPÞ ¼ P thus shows that NGðPÞ is
as small as possible. Applying the classification of finite simple groups, we get the
following result.

Corollary 2. If the degree of every non-linear p-Brauer character of a p-solvable
group G is divisible by p, then G is solvable.

Proof. Let K ¼ Op0
ðGÞ. By Corollary 1, we have that G/K is abelian and so we

may choose a minimal normal subgroup M of G with M � K. Arguing by induction
on jGj, we conclude that G/M is solvable and so we may assume that M is a p0-
group. Now CMðPÞ � NKðPÞ ¼ P by Corollary 1. Thus M admits a coprime auto-
morphism group P with trivial centralizer and it is a well-known consequence of the
classification of simple groups that M must be solvable. Thus G is solvable. &

As sketched by the referee, there is a reasonably direct proof of Corollary 2 that
bypasses Theorem A, but that still uses the classification. By choosing the prime p to
be coprime to jGj in Theorem B, we next get results about ordinary characters.
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Corollary 3. Let H be a Hall-�-subgroup of a �-separable group G. The degree
of every non-linear � 2 IrrðGÞ is divisible by some prime in � if and only if
G0 \NGðHÞ ¼ H0.

When � is a singleton {q} in Corollary 3, the hypothesis that G is q-solvable is
unnecessary, because G must be q-nilpotent by the character theoretic condition and
Thompson’s Theorem (12.2 of [3]) or by the group theoretic condition and Tates’s
Theorem (IV 4.7 of [2]). In Corollary 3, the hypothesis that G is �-separable may be
replaced by the hypothesis that the number of irreducible characters of G of �0-degree
and the number of such characters of NG(H) are equal, as evidenced by remarks after
Theorem B.

Thompson’s Theorem (12.2 of [3]) on character degrees and Corollary 3 show
that a prime q divides the degree of every non-linear ordinary character of a finite
group G if and only if G has a normal q-complement M and CM0(Q)=1 when
Q 2 SylqðGÞ, an equivalence derived in [1]. This condition on character degrees not
only implies q-solvability, but even solvability. (See the proof of Corollary 2.)

Corollary 4. If H is a Hall-p0-subgroup of a p-solvable group G, then
G0 \NGðHÞ ¼ H0 if and only if G has no nonlinear irreducible character whose degree
is a power of p.
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