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Abstract

In this paper we study the asymptotic normality of discrete-time Markov control processes
in Borel spaces, with possibly unbounded cost. Under suitable hypotheses, we show that
the cost sequence is asymptotically normal. As a special case, we obtain a central limit
theorem for (noncontrolled) Markov chains.
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1. Introduction.

In this paper we are concerned with discrete-time Markov control processes (MCPs) in Borel
spaces, with the long-run pathwise average cost

S(ϕ, x) := lim sup
n→∞

1

n
Sn(ϕ, x),

where

Sn(ϕ, x) :=
n−1∑
k=0

Cϕ(xk).

Here, ϕ denotes the control policy being used (see Section 2 for details), {xk} is the controlled
state (Markov) process, and x0 = x is the initial state. The underlying optimal control problem
is to minimize (almost surely) S(ϕ, x) over the family of admissible control policies ϕ for
every x. To analyze some aspects of this problem, it is important to determine the asymptotic
behavior of the cost sequence Sn(ϕ, x). In particular, if it can be ensured that it is asymptotically
normal then we can deduce important optimality properties, which are particularly useful when
the MCP depends on unknown parameters [13], [15].

In this paper we give reasonably mild conditions for the cost sequence {Sn(ϕ, x)} to be
asymptotically normal. This line of research was initiated by Mandl [14], and further extended
by himself and his associates [11], [12], [13], [15] for MCPs with a finite state space. Mendoza-
Pérez [17], [16] extended the results in [14] to discrete-time MCPs with Borel spaces. Other
extensions include results by Lánská [9] for a class of controlled diffusions, and by Prieto-
Rumeau and Hernández-Lerma [20] for continuous-time MCPs with a countable state space.
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Asymptotic normality of MCPs 779

In all of these references ϕ is assumed to be a deterministic and optimal policy. In contrast, here
we obtain asymptotic normality for every randomized stationary policy ϕ (in a given set�—see
Section 2) which may be neither deterministic nor optimal. This means that our main result,
Theorem 3.1, yields in particular a central limit theorem for noncontrolled Markov chains. On
the other hand, since we allow randomized policies ϕ, our results are applicable to constrained
MDPs [17], [18], and to Markov games [5]. Moreover, it is worth noting that the existing proofs
of the central limit theorem for Markov chains require strong ergodicity conditions, for instance,
geometric ergodicity [19, Theorem 17.0.1] or polynomial ergodicity [8, Theorems 4.1, 4.2, 4.3,
and 4.4]. Here, however, instead of an ergodicity requirement we impose a Lyapunov-like
condition (see Assumption 3.2), in addition to growth and continuity-compactness conditions
(Assumptions 3.1 and 3.3).

To obtain our results, we combine two approaches. The first approach is to show, under
suitable conditions, the existence of solutions to the Poisson equation; see (3.4) below. The
second approach is Mandl’s approach [14] using characteristic functions.

The remainder of the paper is organized as follows. Section 2 contains a brief description
of the Markov control model of interest. In Section 3 we introduce our hypotheses and state
our main result, Theorem 3.1, which is proved in Section 4. Finally, a linear system/quadratic
cost (or LQ system) in Section 5 illustrates our results.

2. The control model

Let (X,A, {A(x) : x ∈ X},Q,C) be a discrete-time Markov control model with state space
X and control (or action) set A, both assumed to be Borel spaces with σ -algebras B(X) and
B(A), respectively. For each x ∈ X, there is a nonempty Borel set A(x) in B(A) which
represents the set of feasible actions in the state x. The set

K := {(x, a) : x ∈ X, a ∈ A(x)}
is assumed to be a Borel subset of X × A. The transition law Q is a stochastic kernel on X

given K and the one-stage cost C is a real-valued measurable function on K.
Let � be the set of all stochastic kernels ϕ on A given X for which ϕ(A(x) | x) = 1 for all

x ∈ X.

2.1. Control policies

For every n = 0, 1, . . ., let Hn be the family of admissible histories up to time n; that
is, H0 := X and Hn := K

n × X if n ≥ 1. A control policy is a sequence π = {πn}
of stochastic kernels πn on A given Hn such that πn(A(xn) | hn) = 1 for every n history
hn = (x0, a0, . . . , xn−1, an−1, xn) in Hn. The class of all policies is denoted by �.

A policy π = {πn} is said to be a (randomized) stationary policy if there exists a stochastic
kernel ϕ ∈ � such that πn(· | hn) = ϕ(· | xn) for all hn ∈ Hn, n = 0, 1, . . .. As usual, we
identify�, the set of stochastic kernels on A given X, with the set of all randomized stationary
policies. Hence, � ⊂ �.

If π = {ϕ} is a stationary policy, abusing the notation, we write π = ϕ.
For notational ease, we write

Cϕ(x) :=
∫
A

C(x, a)ϕ(da | x) and Qϕ(· | x) :=
∫
A

Q(· | x, a)ϕ(da | x) (2.1)

for all x ∈ X and every stationary policy ϕ in �.
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Let (�,F ) be the (canonical) measurable space consisting of the sample space

� := (X × A)∞

and its product σ -algebra F . Then, for each policy π and ‘initial state’ x ∈ X, a stochastic
process {(xn, an)} and a probability measure Pπx are defined on (�,F ) in a canonical way,
where xn and an represent the state and control at time n, n = 0, 1, . . .. The expectation
operator with respect to Pπx is denoted by Eπx .

Let W : X → [θ,∞) be a measurable function that will be referred to as a weight function,
where θ > 0. We denote by BW(X) the normed linear space of measurable functions u on X

with finite W -norm ‖u‖W , which is defined as

‖u‖W := supx∈X |u(x)|
W(x)

. (2.2)

In this case we say that u is W bounded. Note that BW(X) is a Banach space.
Let µ(·) be a measure on X. We write

µ(u) :=
∫

X

u(y)µ(dy)

whenever the integral is well defined.

Definition 2.1. Let

Sn(ϕ, x) :=
n−1∑
k=0

Cϕ(xk) and Jn(ϕ, x) := Eϕx [Sn(ϕ, x)]

be the total pathwise n-stage cost and the total expected n-stage cost, respectively, when using
the stationary policy ϕ, given the initial state x0 = x.

3. Assumptions and main result

In this section we introduce conditions to obtain asymptotic normality.
We will first introduce two sets of hypotheses. The first one, Assumption 3.1 below, uses

a weight function W to impose a growth condition on the cost function. The second one,
Assumption 3.2, imposes in particular a Lyapunov-like condition. These assumptions will
ensure the existence of solutions to the Poisson equation (PE) in (3.4) below (see Lemma 3.1).

Assumption 3.2 has previously been used for MCPs on Borel spaces (see, for instance,
[1], [2], [7], and [10]), but it was always combined with additional conditions that imply
W -geometric ergodicity. The approach in this paper is quite different, because we do not
require W -geometric ergodicity.

Assumption 3.1. There exists a constantK > 0 and a measurable weight functionW(·) on X

such that

(a) W is bounded below by a constant θ > 0;

(b) |C(x, a)| ≤ KW(x) for all (x, a) ∈ K.

We now state our second main assumption.
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Assumption 3.2. There exist a nontrivial finite measure ν(·) on X, a nonnegative measurable
function l(·, ·) on K, and a positive constant λ < 1 such that

(a) ν(W) < ∞;

(b) Q(· | x, a) ≥ l(x, a)ν(·) for each (x, a) ∈ K;

(c)
∫

XW(y)Q(dy | x, a) ≤ λW(x)+ l(x, a)ν(W) for each (x, a) ∈ K.

Remark 3.1. Assumption 3.1(a) and iterations of the inequality in Assumption 3.2(c) yield,
for every x ∈ X, π ∈ �, and n = 0, 1, . . .,

θ ≤ Eπx W(xn) ≤ λnW(x)+ ν(W)

(1 − λ)ν(X)
. (3.1)

This fact and (2.2) show that, for every u ∈ BW(X) and p > 0,

lim
n→∞

1

np
Eπx |u(xn)| = 0. (3.2)

In addition to Assumptions 3.1 and 3.2, we next impose other conditions on the control
model. Several versions of these conditions have appeared in the literature (see, for instance,
[3], [6], [7], [10], [21], and [22]), but the main ideas go back to [1] and [2].

Assumption 3.3. For each x ∈ X,

(a) A(x) is a (nonempty) compact subset of A;

(b) C(x, ·) is upper semicontinuous on A(x);

(c) Q(· | x, ·) is strongly continuous on A(x), that is, the mapping

a →
∫

X

u(y)Q(dy | x, a)

is continuous on A(x) for each bounded measurable function u on X;

(d) the mapping a → ∫
X
W(y)Q(dy | x, a) is continuous on A(x), with W as in Assump-

tion 3.1;

(e) l(x, ·) is continuous on A(x), with l(·, ·) as in Assumption 3.2.

Suppose that Assumptions 3.1, 3.2, and 3.3 hold, and, in addition, that we replace Assump-
tion 3.1(b) with a second-order condition, say C2(x, a) ≤ KW(x). Then we can ensure the
existence of control policies that maximize the long-run pathwise average cost in Section 1.
(See, for instance, [6], [17], [20], and [23].) To obtain asymptotic normality, however, we need
to strengthen the growth condition on the cost with the following fourth-order condition.

Assumption 3.4. There exists a positive constant r2 such that

C4(x, a) ≤ r2W(x) for all (x, a) ∈ K. (3.3)

We now state some facts from [17, Theorem 2.1.4 and Lemma 4.2.2] which we need to
present our main result.
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Lemma 3.1. (a) Under Assumptions 3.1 and 3.2, the following facts hold for each ϕ ∈ �.

(i) The Markov chain defined by Qϕ(· | ·) is ν-irreducible and positive Harris recurrent;
hence, it admits a unique invariant probability measure, say µϕ .

(ii) µϕ(W) < ∞; thus, we have
ρϕ := µϕ(Cϕ) < ∞.

(iii) There exists a function h∗
ϕ in BW(X) such that the pair (ρϕ, h∗

ϕ) satisfies the PE

h∗
ϕ(x) = Cϕ(x)− ρϕ +

∫
X

h∗
ϕ(y)Qϕ(dy | x) for all x ∈ X. (3.4)

(b) Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Let ϕ ∈ � be arbitrary, and let h∗
ϕ be

as in (a)(iii). We define the function

�ϕ(x) :=
∫

X

h∗
ϕ

2
(y)Qϕ(dy | x)−

(∫
X

h∗
ϕ(y)Qϕ(dy | x)

)2

(3.5)

for each x ∈ X. Then the functions h∗
ϕ

2 and �ϕ belong to BW(X), and so σ 2
ϕ := µϕ(�ϕ) is

finite.

Proof. Part (a) is an adaptation to our present context of Theorem 2.1.4 of [17]. On the other
hand, under Assumptions 3.1(a) and 3.4, we have in particular that the cost function C isW 1/2

bounded. It follows that Assumptions 3.1 and 3.2 are satisfied when we replace W with W 1/2.
Therefore, part (b) follows from (a).

We can now state our main result, which is proved in Section 4.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Letϕ ∈ �be a randomized
stationary policy. Then, for every initial state x ∈ X,

Sn(ϕ, x)− nρϕ√
n

has asymptotically a normal distributionN(0, σ 2
ϕ )asn → ∞, withSn(ϕ, x)as in Definition 2.1,

and ρϕ and σ 2
ϕ as defined in Lemma 3.1(a) and (b), respectively.

Remark 3.2. Taking the action space A as a single-point set (or singleton), Theorem 3.1
becomes a central limit theorem for (noncontrolled) Markov chains.

4. Proof of Theorem 3.1

In this section we suppose thatAssumptions 3.1, 3.2, 3.3, and 3.4 hold. We need the following
definition.

Definition 4.1. Let Jn(ϕ, x) and Sn(ϕ, x) be as in Definition 2.1. For every ϕ ∈ � and initial
state x, we define the limiting average variance

V (ϕ, x) := lim sup
n→∞

1

n
var[Sn(ϕ, x)],

where (by the definition of the variance of a random variable)

var[Sn(ϕ, x)] = Eϕx [Sn(ϕ, x)− Jn(ϕ, x)]2.
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The following lemma is crucial to prove Theorem 3.1.

Lemma 4.1. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Let ϕ ∈ � be arbitrary,
and let h∗

ϕ and �ϕ be as in Lemma 3.1. Then the limiting average variance satisfies

V (ϕ, x) = lim
n→∞

1

n
Eϕx

n−1∑
k=0

�ϕ(xk) = σ 2
ϕ for all x ∈ X, (4.1)

with σ 2
ϕ = µϕ(�ϕ) as in Lemma 3.1(b).

Proof. The following proof is taken from [4, Theorem 11.2.4] adapted to our present context.
From (3.4), an iteration procedure yields

Jn(ϕ, x) = Eϕx

[n−1∑
k=0

Cϕ(xk)

]
= nρϕ + h∗

ϕ(x)− Eϕx h
∗
ϕ(xn).

Hence,
Sn(ϕ, x)− Jn(ϕ, x) = [Sn(ϕ, x)− nρϕ] − [h∗

ϕ(x)− Eϕx h
∗
ϕ(xn)]

and
var[Sn(ϕ, x)] = Eϕx [Sn(ϕ, x)− nρϕ]2 − Eϕx [h∗

ϕ(x)− Eϕx h
∗
ϕ(xn)]2.

Thus,
var[Sn(ϕ, x)] = Eϕx [Sn(ϕ, x)− nρϕ]2 + o1(x, n) (4.2)

with
o1(x, n) := − Eϕx [h∗

ϕ(x)− Eϕx h
∗
ϕ(xn)]2. (4.3)

We claim that
o1(x, n)

n
→ 0 for all x ∈ X (4.4)

as n → ∞. Indeed,
|o1(x, n)| ≤ 2[h∗

ϕ
2
(x)+ Eϕx h

∗
ϕ

2
(xn)].

Hence, since h∗
ϕ

2 ∈ BW(X) and by (3.2) in Remark 3.1, limit (4.4) holds.
On the other hand, define

Yk := h∗
ϕ(xk)− Eϕx [h∗

ϕ(xk) | xk−1], k = 1, 2, . . . . (4.5)

From (4.5) we obtain

Y 2
k = h∗

ϕ
2
(xk)− 2h∗

ϕ(xk)Eϕx [h∗
ϕ(xk) | xk−1] + (Eϕx [h∗

ϕ(xk) | xk−1])2.
Therefore,

Eϕx (Y
2
k ) = Eϕx h

∗
ϕ

2
(xk)− Eϕx (E

ϕ
x [h∗

ϕ(xk) | xk−1])2
= Eϕx Eϕx [h∗

ϕ
2
(xk) | xk−1] − Eϕx (E

ϕ
x [h∗

ϕ(xk) | xk−1])2

= Eϕx

[∫
X

h∗
ϕ

2
(y)Qϕ(dy | xk−1)−

(∫
X

h∗
ϕ(y)Qϕ(dy | xk−1)

)2]
= Eϕx [�ϕ(xk−1)],
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that is,
Eϕx (Y

2
k ) = Eϕx [�ϕ(xk−1)]. (4.6)

Moreover, we have

var[Sn(ϕ, x)] = Eϕx

[n−1∑
k=1

Y 2
k

]
+ o2(x, n) (4.7)

with
o2(x, n)

n
→ 0 when n → ∞. (4.8)

To prove (4.7)–(4.8), note that the random variables Yt satisfy

Eϕx [YtYs] = 0 for all 1 ≤ t < s. (4.9)

We define the σ -algebras

Ft := σ {x0, . . . , xt } for t = 0, 1, . . . .

Then
Eϕx [Ys | Fs−1] = Eϕx [h∗

ϕ(xs) | xs−1] − Eϕx [h∗
ϕ(xs) | xs−1] = 0 for all s,

which implies that

Eϕx [YtYs] = Eϕx [Eϕx [YtYs | Fs−1]] = Eϕx [Yt Eϕx [Ys | Fs−1]] = 0.

On the other hand, since h∗
ϕ satisfies the Poisson equation (3.4), we also have

Cϕ(x)− ρϕ = h∗
ϕ(x)−

∫
X

h∗
ϕ(y)Qϕ(dy | x) for all x ∈ X.

Consequently, by (4.5),

Cϕ(xk)− ρϕ = h∗
ϕ(xk)−

∫
X

h∗
ϕ(y)Qϕ(dy | xk)

= Yk +
∫

X

h∗
ϕ(y)Qϕ(dy | xk−1)−

∫
X

h∗
ϕ(y)Qϕ(dy | xk) (4.10)

= Yk − [Ph∗
ϕ(xk)− Ph∗

ϕ(xk−1)] for all k = 1, 2 . . . ,

with

Pu(x) :=
∫

X

u(y)Qϕ(dy | x) for all x ∈ X and u ∈ BW(X).
From (4.10) we obtain

Sn(ϕ, x)− nρϕ = Mn−1 + [h∗
ϕ(x)− Ph∗

ϕ(xn−1)] for all n ≥ 2 (4.11)

with

Mn :=
n∑
k=1

Yk for all n ≥ 1.

Observe that (4.9) implies that

Eϕx [M2
n] = Eϕx

[ n∑
k=1

Y 2
k

]
. (4.12)
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By (4.11),

Eϕx [Sn(ϕ, x)− nρϕ]2 = Eϕx [M2
n−1] + 2 Eϕx [(h∗

ϕ(x)− Ph∗
ϕ(xn−1))Mn−1]

+ Eϕx [h∗
ϕ(x)− Ph∗

ϕ(xn−1)]2.

Substituting this relation into (4.2), together with (4.12), we obtain (4.7) as we wanted to prove,
with

o2(x, n) := o1(x, n)+ A(x, n)+ 2B(x, n),

where o1(x, n) is as in (4.3), and

A(x, n) := Eϕx [h∗
ϕ(x)− Ph∗

ϕ(xn−1)]2,

B(x, n) := Eϕx [(h∗
ϕ(x)− Ph∗

ϕ(xn−1))Mn−1].
To complete the proof of (4.7)–(4.8), we only need to show that, for every initial state x, as
n → ∞,

A(x, n)

n
→ 0 (4.13)

and
B(x, n)

n
→ 0. (4.14)

To prove (4.13), it suffices to note that

A(x, n) ≤ 2[h∗
ϕ

2
(x)+ Eϕx h

∗
ϕ

2
(xn)].

This yields (4.13).
Now, to obtain (4.14), we use the Cauchy–Schwartz inequality to see that

B(x, n)2 ≤ Eϕx [h∗
ϕ(x)− Ph∗

ϕ(xn−1)]2 Eϕx [M2
n] = A(x, n)Eϕx

[ n∑
k=1

Y 2
k

]
.

Hence, by (4.6),

B(x, n)

n
≤

√
A(x, n)

n

√√√√1

n

n−1∑
k=0

Eϕx �ϕ(xk).

This inequality implies the limit in (4.14). This completes the proof of (4.7)–(4.8).
Combining (4.6), (4.7), and (4.8), we obtain

var[Sn(ϕ, x)] = Eϕx

[n−1∑
k=1

Y 2
k

]
+ o2(x, n)

= Eϕx

[ n∑
k=1

Y 2
k

]
+ o2(x, n)− Eϕx Y

2
n

=
n−1∑
k=0

Eϕx [�ϕ(xk)] + o2(x, n)− Eϕx �ϕ(xn−1).
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Hence,

V (ϕ, x) = lim sup
n→∞

1

n
var[Sn(ϕ, x)] = lim

n→∞
1

n

n−1∑
k=0

Eϕx [�ϕ(xk)] = σ 2
ϕ ,

which proves (4.1).

Lemma 4.2. Under Assumptions 3.1, 3.2, 3.3, and 3.4, the following statements, for each
ϕ ∈ �, hold.

(a) The function h∗
ϕ in Lemma 3.1(a) is W 1/4 bounded.

(b) The function �ϕ in Lemma 3.1(b) is W 1/2 bounded. Moreover, there exists a W 1/2-
bounded function ĥ∗

ϕ such that

ĥ∗
ϕ(x) = �ϕ(x)− σ 2

ϕ +
∫

X

ĥ∗
ϕ(y)Qϕ(dy | x) for all x ∈ X, (4.15)

with σ 2
ϕ as in (4.1).

Proof. (a) This part follows from Lemma 3.1 if we prove that Assumptions 3.1 and 3.2 are
satisfied when we replace W by W 1/4.

Indeed, under Assumption 3.4, Assumptions 3.1 and 3.2(a)–(b) obviously hold when we
replaceW byW 1/4. It only remains to prove that Assumption 3.2(c) holds. To this end, define

Q̂(B | x, a) := Q(B | x, a)− ν(B)l(x, a) (4.16)

for each B ∈ B(X) and (x, a) ∈ K. Under Assumption 3.2(b), Q̂ is a nonnegative kernel on X

given K. By the Cauchy–Schwartz inequality,∫
X

√
W(y)Q̂(dy | x, a) ≤

√∫
X

W(y)Q̂(dy | x, a)
√
Q̂(X | x, a) ≤ √

λ
√
W(x) (4.17)

because 0 ≤ Q̂(X | x, a) ≤ 1. Hence, by the Cauchy–Schwartz inequality again, and from
(4.17), we obtain∫

X

W(y)1/4Q̂(dy | x, a) ≤
√∫

X

√
W(y)Q̂(dy | x, a)

√
Q̂(X | x, a) ≤ λ1/4W(x)1/4.

From the definition of the kernel Q̂ in (4.16), we obtain∫
X

W(y)1/4Q(dy | x, a) ≤ λ1/4W(x)1/4 + l(x, a)ν(W 1/4) for all (x, a) ∈ K.

This implies that Assumption 3.2(c) holds when we replace W by W 1/4.
(b) Consider the cost function C(x, a) := �ϕ(x) for all (x, a) ∈ K. From part (a), �ϕ

is W 1/2 bounded. Applying Lemma 3.1 to this particular cost function we obtain the desired
result.

We are finally ready to prove Theorem 3.1.

Proof of Theorem 3.1. From Lemmas 3.1(a)(iii) and 4.2(i), there exists a W 1/4-bounded
function h∗

ϕ satisfying (3.4). Similarly, from Lemma 4.2(ii), there exists a W 1/2-bounded
function ĥ∗

ϕ satisfying (4.15). Let h1 := h∗
ϕ and h2 = ĥ∗

ϕ . Thus, h1 is W 1/4 bounded and h2 is
W 1/2 bounded.
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We also define

τ1(x) :=
∫

X

h1(y)Qϕ(dy | x)− h1(x)+ Cϕ(x)− ρϕ

and

τ2(x) :=
∫

X

h2(y)Qϕ(dy | x)− h2(x)+�ϕ(x)− σ 2
ϕ

for all x ∈ X.
For l = 1, 2 and x ∈ X, let

ψl(x) :=
∫

X

hl(y)Qϕ(dy | x)− hl(x).

Observe that
τ1(x) = ψ1(x)+ Cϕ(x)− ρϕ (4.18)

and
τ2(x) = ψ2(x)+�ϕ(x)− σ 2

ϕ (4.19)

for all (x, a) ∈ K.
Consider the characteristic functions Eϕx χn(u) with

χn(u) := exp{iu(Sn(ϕ, x)− nρϕ)} for n = 1, 2, . . . , u ∈ R,

and χ0(u) := 1. Let
e1(z) := exp{iz} − iz− 1, (4.20)

e2(z) := exp{iz} + z2

2
− iz− 1, (4.21)

for all z in R.
To prove the theorem, we have to verify that

lim
n→∞ Eϕx χn

(
u√
n

)
= exp

{
−1

2
σ 2
ϕu

2
}

for all u ∈ R. (4.22)

To this end, fix an arbitrary u ∈ R. First note that ψl(xm) for l = 1, 2 is the conditional
expectation of hl(xm+1)− hl(xm) given xm, that is,

ψl(xm) = Eϕx [hl(xm+1)− hl(xm) | xm].
This yields, for l = 1, 2, with χm := χm(u), the equations

0 = iuEϕx

[n−1∑
m=0

χmψ1(xm)−
n−1∑
m=0

χm(h1(xm+1)− h1(xm))

]
(4.23)

and

0 = u2

2
Eϕx

[n−1∑
m=0

χm(h2(xm+1)− h2(xm))−
n−1∑
m=0

χmψ2(xm)

]
. (4.24)
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To simplify the notation, let e1 := e1(u(Cϕ(xm) − ρϕ)) and e2 := e2(u(Cϕ(xm) − ρϕ)).
Moreover, note that

χm+1 − χm = [exp{iu(Cϕ(xm)− ρϕ)} − 1]χm. (4.25)

From (4.20), (4.21), and (4.25), we have

Eϕx χn − 1 = Eϕx

n−1∑
m=0

(χm+1 − χm)

= Eϕx

n−1∑
m=0

[
iu(Cϕ(xm)− ρϕ)− 1

2
u2(Cϕ(xm)− ρϕ)

2 + e2

]
χm (4.26)

and

− iuEϕx

n−1∑
m=0

χm(h1(xm+1)− h1(xm))

= iuEϕx

[
h1(x0)− χnh1(xn)+

n−1∑
m=0

h1(xm+1)(χm+1 − χm)

]

= iuEϕx

[
h1(x0)− χnh1(xn)+

n−1∑
m=0

h1(xm+1)(iu(Cϕ(xm)− ρϕ)+ e1)χm

]
. (4.27)

Similarly,

u2

2
Eϕx

n−1∑
m=0

χm(h2(xm+1)− h2(xm))

= −u
2

2
Eϕx

[
h2(x0)− χnh2(xn)+

n−1∑
m=0

h2(xm+1)(χm+1 − χm)

]

= −u
2

2
Eϕx

[
h2(x0)− χnh2(xn)+

n−1∑
m=0

h2(xm+1)(exp{iu(Cϕ(xm)− ρϕ)} − 1)χm

]
.

(4.28)

Adding (4.23), (4.24), (4.26)–(4.28), and using (4.18),

Eϕx χn − 1

= iuEϕx

[
h1(x0)− χnh1(xn)+

n−1∑
m=0

χmτ1(xm)+
n−1∑
m=0

e1h1(xm+1)χm

]

− u2

2
Eϕx

n−1∑
m=0

χm{ψ2(xm)+ 2h1(xm+1)(Cϕ(xm)− ρϕ)+ (Cϕ(xm)− ρϕ)
2}

− u2

2
Eϕx

[
h2(x0)− χnh2(xn)+

n−1∑
m=0

h2(xm+1)(exp{iu(Cϕ(xm)− ρϕ)} − 1)χm

]

+ Eϕx

n−1∑
m=0

e2χm.
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Hence,

Eϕx χn − 1 = κ ′′(n, u)

− u2

2
Eϕx

n−1∑
m=0

χm{ψ2(xm)+ 2h1(xm+1)(Cϕ(xm)− ρϕ)+ (Cϕ(xm)− ρϕ)
2}

(4.29)

with

κ ′′(n, u) := iuEϕx

[
h1(x0)− χnh1(xn)+

n−1∑
m=0

χmτ1(xm)+
n−1∑
m=0

e1h1(xm+1)χm

]

− u2

2
Eϕx

[
h2(x0)− χnh2(xn)+

n−1∑
m=0

h2(xm+1)(exp{iu(Cϕ(xm)− ρϕ)} − 1)χm

]

+ Eϕx

n−1∑
m=0

e2χm. (4.30)

From (3.5) we observe that

�ϕ(xm) = Eϕx [h2
1(xm+1) | xm] − (Eϕx [h1(xm+1) | xm])2,

and in view of (4.19), we can express (4.29) as

Eϕx χn − 1

= κ ′′(n, u)

− u2

2
Eϕx

n−1∑
m=0

χm{σ 2
ϕ + τ2(xm)− h2

1(xm+1)(E
ϕ
x [h1(xm+1) | xm] + Cϕ(xm)− ρϕ)

2}

= κ ′′(n, u)

− u2

2
Eϕx

n−1∑
m=0

χm

{
σ 2
ϕ + τ2(xm)− h2

1(xm+1)

+
(∫

X

h1(y)Qϕ(dy | xm)+ Cϕ(xm)− ρϕ

)2}
.

Since h1 = h∗
ϕ satisfies (3.4), we obtain

h1(xm) =
∫

X

h1(y)Qϕ(dy | xm)+ Cϕ(xm)− ρϕ.

Then, from (4.25), we have

Eϕx χn − 1 = κ ′′(n, u)− u2

2
Eϕx

n−1∑
m=0

χm{σ 2
ϕ + τ2(xm)− h2

1(xm+1)+ h2
1(xm)}

= κ ′′(n, u)− u2σ 2
ϕ

2

n−1∑
m=0

Eϕx χm

− u2

2
Eϕx

[
h2

1(x0)− χnh
2
1(xn)+

n−1∑
m=0

χmτ2(xm)+
n−1∑
m=0

h2
1(xm+1)(χm+1 − χm)

]
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= κ ′′(n, u)− u2σ 2
ϕ

2

n−1∑
m=0

Eϕx χm

− u2

2
Eϕx

[
h2

1(x0)− χnh
2
1(xn)+

n−1∑
m=0

χmτ2(xm)

+
n−1∑
m=0

h2
1(xm+1)(exp{iu(Cϕ(xm)− ρϕ)} − 1)χm

]
.

Hence,

Eϕx χn = 1 − u2σ 2
ϕ

2

n−1∑
m=0

Eϕx χm + κ ′(n, u) (4.31)

with

κ ′(n, u) :=κ ′′(n, u)− u2

2
Eϕx

[
h2

1(x0)− χnh
2
1(xn)+

n−1∑
m=0

χmτ2(xm)

+
n−1∑
m=0

h2
1(xm+1)(exp{iu(Cϕ(xm)− ρϕ)} − 1)χm

]
. (4.32)

Let us rewrite (4.31) as

Eϕx χn = 1 +
(

exp

{
−u

2σ 2
ϕ

2

}
− 1

) n−1∑
m=0

Eϕx χm + κ(n, u) (4.33)

with

κ(n, u) := κ ′(n, u)+
[

1 − u2σ 2
ϕ

2
− exp

{
−u

2σ 2
ϕ

2

}] n−1∑
m=0

Eϕx χm. (4.34)

Defining κ(0, u) := 0, from (4.33), an induction argument gives

Eϕx χn(u) = exp

{
−nσ

2
ϕu

2

2

}
+

[
exp

{
−σ

2
ϕu

2

2

}
− 1

] n−1∑
m=0

exp

{
−σ

2
ϕu

2

2
(n− 1 −m)

}
κ(m, u)+ κ(n, u).

(4.35)

Observe that the proof of limit (4.22) and, consequently, of Theorem 3.1 follows from (4.35) if
we show that

max
1≤m≤n

∣∣∣∣κ(m, u√
n

)∣∣∣∣ → 0 as n → ∞. (4.36)

This relation is obtained by an inspection of the different terms of κ(m, u/
√
n). We will do this

in the following six steps.
Step 1. From the definition of h1 = h∗

ϕ and h2 = ĥ∗
ϕ satisfying (3.4) and (4.15), we have

τ1(xm) = 0 in (4.30) and τ2(xm) = 0 in (4.32) for m = 0, 1, . . ..
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Step 2. By (3.1) we obtain

lim
n→∞

1√
n

Eϕx h(xn) = 0 and lim
n→∞

1

n
Eϕx h(xn) = 0

for every h in BW(X). This limit appears in (4.30) and (4.32) when we replace u by u/
√
n.

Step 3. In this part we prove the limit (see (4.30))

lim
n→∞

1√
n

Eϕx

n−1∑
m=0

e1h1(xm+1)χm = 0.

Indeed, since |e1(z)| ≤ z2/2 for all z in R, we obtain∣∣∣∣ 1√
n

Eϕx

n−1∑
m=0

e1h1(xm+1)χm

∣∣∣∣ ≤ 1

2
√
n

Eϕx

n−1∑
m=0

u2

n
|h1(xm+1)|(Cϕ(xm)− ρϕ)

2

= u2

2n3/2 Eϕx

n−1∑
m=0

∣∣∣∣ ∫
X

h1(y)Qϕ(dy | xm)
∣∣∣∣(Cϕ(xm)− ρϕ)

2.

By Lemma 4.2(i), h1(·) is W 1/4 bounded, in particular h1(·) is W 1/2 bounded. Hence, the
function

∫
X
h1(y)Qϕ(dy | ·) isW 1/2 bounded. On the other hand, byAssumption 3.4, (Cϕ(x)−

ρϕ)
2 is also W 1/2 bounded. Therefore,∣∣∣∣ 1√

n
Eϕx

n−1∑
m=0

e1h1(xm+1)χm

∣∣∣∣ ≤ ζu2

2n3/2 Eϕx

n−1∑
m=0

W(xm),

where ζ is a constant depending on h1 and C. By Assumptions 3.1(a) and 3.2(c), and (3.1),∣∣∣∣ 1√
n

Eϕx

n−1∑
m=0

e1h1(xm+1)χm

∣∣∣∣ ≤ ζu2

2n3/2 n

[
1 + ν(W)

(1 − λ)θν(X)

]
W(x),

which converges to 0 as n → ∞.
Step 4. We will next prove that

lim
n→∞

1

n
Eϕx

n−1∑
m=0

e2χm = 0.

This limit appears in (4.30) when we replace u by u/
√
n.

Observe that |e2(z)| ≤ |z|3/6 for all z in R. So, by Assumptions 3.1(a), 3.2(c), and 3.4,
together with (3.1),∣∣∣∣1

n
Eϕx

n−1∑
m=0

e2χm

∣∣∣∣ ≤ |u|3
6n5/2

Eϕx

n−1∑
m=0

|Cϕ(xm)− ρϕ |3

≤ k3|u|3
6n5/2

Eϕx

n−1∑
m=0

W(xm)
3/4
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≤ k3|u|3
6n5/2θ1/4

Eϕx

n−1∑
m=0

W(xm)

≤ k3|u|3
6n3/2

(
1 + ν(W)

(1 − λ)θν(X)

)
W(x),

which converges to 0 as n → ∞, with k a constant.
Step 5. Let h be a W 1/2-bounded function on X. Then

lim
n→∞

1

n
Eϕx

n−1∑
m=0

h(xm+1)

(
exp

{
i
u√
n
(C − ρϕ)

}
− 1

)
χm = 0.

This limit appears in (4.30) and (4.32) when u is replaced by u/
√
n.

From (4.20), e1(z) = exp{iz} − iz− 1 and so

exp

{
i
u√
n
(C − ρϕ)

}
− 1 = i

u√
n
(C − ρϕ)+ e1

u√
n
(C − ρϕ).

Hence, ∣∣∣∣1

n
Eϕx

n−1∑
m=0

h(xm+1)

(
exp

{
i
u√
n
(C − ρϕ)

}
− 1

)
χm

∣∣∣∣
≤ |u|
n3/2 Eϕx

n−1∑
m=0

|h(xm+1)||(Cϕ(xm)− ρϕ)| + 1

n
Eϕx

n−1∑
m=0

|h(xm+1)||e1|.

This gives the desired conclusion by similar arguments to those in step 3.
Step 6. The absolute value of the expression within the brackets in (4.34) is majorized by

σ 4
ϕu

4/8, and so the corresponding term in κ(n, u/
√
n) is majorized by σ 4

ϕu
4/8n2.

Steps 1–6 imply (4.36), and consequently prove Theorem 3.1.

5. Example: an LQ system

In this section we consider a linear-quadratic (or LQ) system consisting of the linear system

xt+1 = k1xt + k2at + zt , t = 0, 1, . . . ,

with state space X := R, and positive coefficients k1 and k2. The control set is A := R, and
the set of admisible controls in each state x is the interval

A(x) :=
[
−k1|x|

k2
,
k1|x|
k2

]
.

The disturbances zt are independent and identically distributed (i.i.d.) random variables with
values in Z := R, zero mean, and finite variance, that is,

E[zt ] = 0, σ 2 := E[z2
t ] < ∞. (5.1)

To complete the description of our control model, we introduce the quadratic cost-per-stage
function

C(x, a) := c1x
2 + c2a

2 for all (x, a) ∈ K,
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with positive coefficients c1 and c2. We also define

W(x) := exp{γ |x|} for all x ∈ X,

with γ ≥ 4. Clearly, Assumption 3.4 holds. Now let ŝ > 0 be such that

γ ŝ < log

(
γ

2
+ 1

)
,

which implies that

λ := 2

γ
(exp{γ ŝ} − 1) < 1.

Throughout the rest of this section, we suppose that the following assumptions taken from
[7, Section 5] hold.

Assumption 5.1. We have 0 < k1 <
1
2 .

Assumption 5.2. The i.i.d. disturbances zt have a common density g, which is a continuous
bounded function supported on the interval S := [−ŝ, ŝ]. Moreover, there exists a positive
number ε such that g(s) ≥ ε for all s ∈ S.

Assumptions 5.1 and 5.2 imply that Assumptions 3.1, 3.2, and 3.3 hold (see, for instance,
[7, Propositions 6, 23, and 24]).

Now consider the stationary policy defined by the stochastic kernel:

ϕ(da | x) :=

⎧⎪⎨⎪⎩
k2

2k1|x| 1A(x)(a) da if x �= 0,

δ0(a) da if x = 0,

where 1 is the usual indicator function. The corresponding cost function Cϕ can be obtained
from (2.1). Indeed, a direct calculation gives, for every x,

Cϕ(x) = ĉx2 with ĉ := c1 + c2k
2
1

3k2
2

(5.2)

for all x ∈ X. In this case, the pair h∗
ϕ and ρϕ satisfying the PE (3.4) becomes

ρϕ = v0σ
2 and h∗

ϕ(x) = v0x
2, (5.3)

with σ 2 as in (5.1) and

v0 = ĉ

1 − 4/3k2
1

. (5.4)

Moreover, �ϕ in (3.5) becomes

�ϕ(x) = v2
0

( 64
45k

4
1x

4 + 16
3 σ

2k2
1x

2 + 4Bk1x +D − σ 4), (5.5)

with

B :=
∫
z3g(z) dz, and D :=

∫
z4g(z) dz.
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On the other hand, for every t = 1, 2, . . ., we have

Eϕx xt+1 = k1 Eϕx xt , (5.6)

Eϕx x
2
t+1 = 4

3k
2
1 Eϕx x

2
t + σ 2, (5.7)

and
Eϕx x

4
t+1 = 16

5 k
4
1 Eϕx x

4
t + 8σ 2k2

1 Eϕx x
2
t + 4Bk1 Eϕx xt +D. (5.8)

From (5.5) and (5.6)–(5.8), it follows that σ 2
ϕ , defined in Lemma 3.1(b), is given by

σ 2
ϕ = v2

0(45 − 80k4
1)

9(5 − 16k4
1)

(
D − 3(448k6

1 − 144k4
1 − 300k2

1 + 45)

(3 − 4k2
1)(45 − 80k4

1)
σ 4

)
. (5.9)

To conclude, by Theorem 3.1 and considering (5.3), it follows that, for every initial state
x ∈ X, as n → ∞, the distribution of the cost∑n−1

t=0 Cϕ(xt )− nv0σ
2

√
n

has an asymptotic normal distribution N(0, σ 2
ϕ ) with σ 2

ϕ as in (5.9).
Finally, by (5.2) and (5.4), it follows that, for every initial state x, as n → ∞,∑n−1

t=0 x
2
t − 3nσ 2/(3 − 4k2

1)√
n

has an asymptotic normal distribution N(0, s2), where

s2 = 45 − 80k4
1

(3 − 4k2
1)(5 − 16k4

1)

(
D − 3(448k6

1 − 144k4
1 − 300k2

1 + 45)

(3 − 4k2
1)(45 − 80k4

1)
σ 4

)
.
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