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ON QUADRATIC FUNCTIONALS

PETER SEMRL

In this note a general solution of the problem of the characterisation of quadratic func-
tionals posed by Vukman is given.

THEOREM. Let A be a complex * -algebra with identity e and let X be a vector
space which is also a unitary left A -module. Suppose there exists a mapping Q: X —>
A with the properties

(i) Q(x +y) + Q(x -y) = 2Q(x) + 2Q(y) for all pairs x,y £ X, and

(ii) Q{ax) = aQ(x)a* for all x £ X and all a £ A.

Under these conditions the mapping B(-, •): X x X —> A defined by the relation

B(x,y) = (l/4)(Q(x + y) - Q(x - y)) + {i/A){Q{x + iy) - Q(x - iy))

satisfies the following:

(1) B('i') JS additive in both arguments;

B{ax,y) = aB(x,y)
(2) , for all pairs x,y € X and all a £ A;

B(x,ay) = B(x,y)a*

(3) Q(x) = B(x,x) for all x eX.

REMARK: A functional Q: X > A which satisfies (i) and (ii) is called an bi-
quadratic functional and a mapping B : X x X > A for which conditions (1) and (2)

are fulfilled is called an A-sesquilinear functional. If A is the complex number field
then this result reduces to Kurepa's extension of the Jordan-Neumann theorem which
characterises pre-Hilbert space among all normed spaces.([3])

PROOF: AS in the proof of Kurepa's result (see [3], [5] and also [6]) one can prove
that the function W(-,-) defined by relation W(x,y) — Q(x + y) — Q(x — y) is additive
in both variables. Therefore the same is true for the functional B. A short computation
shows that Q(x) = B(x,x) for all x £ X. Hence it remains to prove (2). For this
purpose we define a new functional S: Ax A—» A by S(a,b) = aB(x,y)b* — B(ax,by)
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where x and y are fixed vectors. From the fact that B is biadditive it follows that the
functional 5 is also biadditive. Using (ii) one can easily obtain

S(ca, cb) = cS(a, b)c*, a,b,ceA.

A short computation yields S(ia,b) = iS(a,b) and S(a,ib) = —iS(a,b). For any
four elements a,b,c,d £ A we have that S(ab,ac) + S(ab,dc) + S(db,ac) + S(db,dc)
= S((a+ d)b, (a + d)c) = (a + d)S(b, c)(a* + d*) = aS(b, c)a" + dS{b, c)a* + aS(b, c)d*
+ dS(b,c)d* . This yields S(ab,dc) + S(db,ac) = dS{b,c)a* + aS(b,c)d* . Replacing d
and c by e we get

(4) S(ab, e) + S{b, a) = S{b, e)a* + aS{b, e).

Let us put the element ia instead of a. We obtain

(5) iS(ab, e) - iS(b, a) = -iS{b, e)a* + iaS(b, e).

Comparing (4) and (5) we see that S(ab, e) = aS(b, e) and 5(6, a) = 5(6, e)a* . Re-
placing 6 by e by using the relation 5(e, e) = 0 we complete the proof. |

This result was proved in [4] and [8] under the stronger assumption that A is a
Banach *-algebra (see also [6] and [7]) using the fact that such algebras have enough
invertible elements. It should be mentioned that in the proof of the present general
result an idea similar to those of Davison [1] was used.
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