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Abstract
We prove the existence of small-amplitude periodic travelling waves in dimer Fermi–Pasta–Ulam–Tsingou (FPUT)
lattices without assumptions of physical symmetry. Such lattices are infinite, one-dimensional chains of coupled
particles in which the particle masses and/or the potentials of the coupling springs can alternate. Previously, peri-
odic travelling waves were constructed in a variety of limiting regimes for the symmetric mass and spring dimers,
in which only one kind of material data alternates. The new results discussed here remove the symmetry assump-
tions by exploiting the gradient structure and translation invariance of the travelling wave problem. Together, these
features eliminate certain solvability conditions that symmetry would otherwise manage and facilitate a bifurcation
argument involving a two-dimensional kernel and cokernel.

1. Introduction

1.1. The travelling wave problem

A dimer Fermi–Pasta–Ulam–Tsingou (FPUT) lattice is a chain of infinitely many particles coupled
to their nearest neighbours by springs, with motion restricted to the horizontal direction, and with at
least one of the following material heterogeneities: either the particle masses alternate, or the spring
potentials alternate, or both alternate. A dimer with alternating particles and identical springs is called
a mass dimer; one with alternating springs and identical masses is a spring dimer. See Figure 1. Dimers
are among the simplest nontrivial generalizations of the classical monatomic FPUT lattice, in which
all of the particles have the same mass and all of the springs have the same potential [12, 21, 36, 39].
These lattices, and their many variants and generalizations, are prototypical models of wave dynamics
in granular media [9, 10].

Figure 1(a) and (b) suggests that the mass and spring dimers possess certain physical ‘symmetries’
that a ‘general’ dimer, in which both masses and springs alternate, does not. We sketch such a general
dimer, along with some notation for future use, in Figure 2. Physically, the mass dimer is the same
when ‘reflected’ about a particle, as is the spring dimer when reflected about a spring. Such symmetries
manifest themselves mathematically in a variety of useful ways, as we elaborate in Section 5, and these
manifestations have been key to multiple prior analyses of mass and spring dimer dynamics. Here we
consider the general dimer, and one of the main novelties of our techniques is that we do not rely at all
on symmetry.
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Figure 1. The symmetric mass and spring dimers. (a) A mass dimer with alternating masses m1 and
m2 and identical springs. (b) A spring dimer with alternating springs and identical masses m.
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Figure 2. A general dimer with alternating masses and springs.

Specifically, we construct nontrivial periodic travelling waves for general dimers with wave speed
greater than a certain critical threshold called the lattice’s ‘speed of sound’ – that is, supersonic periodic
travelling waves. We state our precise results below in Theorem 1.1 and discuss the connection of these
travelling waves to the long wave problem in dimers, and related problems, in Section 1.2.

Here is our problem. Index the particles by integers j ∈ Z and let uj be the displacement of the jth
particle from its equilibrium position, let mj be the mass of the jth particle, and let Vj be the potential
of the spring connecting the jth and (j + 1)st particles. To ensure a dimer structure, we assume

mj+2 = mj and Vj+2 = Vj

for all j. More precisely, after nondimensionalization [15, Sec. 1.3, App. F.5], we take

mj =
1, j is odd

m, j is even
and V ′

j (r) =
r + r2 +O(r3), j is odd

^r + Vr2 +O(r3), j is even.
(1.1)

The minimum regularity required for our proofs is that Vj ∈ C7(R) for precise technical reasons detailed
in Appendix A.5, but for broader applications to FPUT travelling wave problems, we may as well assume
Vj ∈ C∞(R). Our methods require that the heterogeneity appear at the linear level, so we will always
assume

1
m

> 1 or ^ > 1. (1.2)

We emphasize that m and ^, and indeed all of the material data, are fixed throughout our analysis
and that virtually all operators, quantities and thresholds depend on at least these quantities; we do not
indicate such dependence in our notation. Additionally, beyond the regularity requirements on Vj, the
nonlinear terms, even the quadratic ones, play no important role.
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Newton’s second law requires that the displacements uj satisfy

mj ¥uj = V ′
j (uj+1 − uj) − V ′

j−1(uj − uj−1). (1.3)

Under the travelling wave ansatz

uj (t) =
p1(j − ct), j is odd

p2(j − ct), j is even,
p(X) :=

(
p1(X)
p2(X)

)
, X = j − ct, (1.4)

these equations of motion become the advance-delay problem

c2p′′1 = V ′
1(S

1p2 − p1) − V ′
2(p1 − S−1p2)

c2mp′′2 = V ′
2(S

1p1 − p2) − V ′
1(p2 − S−1p1).

(1.5)

Here, for \ ∈ R, S\ is the shift operator

(S\p) (X) := p(X + \).

The following is our main result for (1.5). We use the notation for periodic Sobolev spaces developed
in Appendix A.2.

Theorem 1.1. Suppose that the lattice’s material data mj and Vj satisfy the dimer condition (1.1) and
the linear heterogeneity condition (1.2). Let the wave speed c in the ansatz (1.4) satisfy |c| > c★, where
the lattice’s ‘speed of sound’ c★ is defined in (2.8). Then there exists ac > 0 such that for |a| ≤ ac, there
is a travelling wave solution pa

c to (1.5) of the form

pa
c (X) = 5a

c (la
cX), 5a

c (x) = a.c
1(x) + a27a

c (x). (1.6)

The smooth, 2c-periodic profile term 5a
c and the frequency la

c ∈ R have the following properties.

(i) The leading order term .c
1 has an exact formula given below by (2.12).

(ii) The remainder term 7a
c is orthogonal to .c

1 and uniformly bounded in a in the sense that

〈.c
1,7a

c〉L2
per

= 0 and sup
|a | ≤ac

‖7a
c ‖Hr

per
< ∞, r ≥ 0,

where the periodic Sobolev spaces L2
per and Hr

per are defined in Appendix A.2.
(iii) The frequency la

c has the expansion

la
c = lc + aba

c ,

where lc > 0 is the lattice’s ‘critical frequency’, as developed in Theorem 2.1, and

sup
|a | ≤ac

|ba
c | < ∞.

These solutions are locally unique up to shifts and translations in the following sense. If p(X) = 5(lX)
solves (1.5) with ‖5‖H2

per
and |l − lc | both sufficiently small, then there exist U, \ ∈ R and |a| ≤ ac

such that 5(x) = U.0 + 5a
c (x + \), where .0 has the exact formula given by (2.11).
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We approach this theorem from multiple points of view. Specifically, Sections 3 and 4 give proofs
inspired by the techniques of Wright and Scheel [40] for constructing asymmetric solitary wave solu-
tions to a system of coupled KdV equations; the lack of symmetry in their problem manifests itself
mathematically in a complication very close to ours, as we discuss below in Remark 3.4. The proof of
local uniqueness up to translations follows from Corollary 3.3, and the proof of local uniqueness up
to shifts appears in Section 3.5. Section 5 gives proofs in the special cases of mass and spring dimers
when symmetry is present; this offers fresh perspectives on the prior results from [16, 20]. And Section
6 develops precise quantitative estimates for the solution components from Theorem 1.1 relative to the
wave speed c in the special case that |c| is close to the speed of sound c★ (rather than just greater than c★
as in the theorem); we have excluded these estimates from the theorem above, as they are extremely tech-
nical. In particular, the exact, but general, hypotheses of Theorem 6.2 subsume all prior constructions
of dimer periodics into one quantitative result. For brevity, Theorem 1.1 does not contain our results in
the long wave scaling, which we discuss instead in Section 6.2.

Remark 1.2. The majority of travelling wave results (periodic or not) for lattices are stated in relative
displacement coordinates: rj = uj+1 − uj. See Figure 2. We find it more convenient to work in the
original equilibrium displacement coordinates uj, from which relative displacement results can easily
be obtained (though the converse is not necessarily true).

We finally state the actual periodic travelling wave problem that we solve to prove Theorem 1.1; the
following notation was not strictly necessary above, but all of our subsequent work depends on it. Since
we are interested in periodic travelling waves, we adjust the original travelling wave ansatz (1.4) by
decoupling the profile and frequency via the additional ansatz

p(X) = 5(lX), 5 :=

(
q1

q2

)
.

The new profiles q1 and q2 are now 2c-periodic and l ∈ R. We emphasize that the parameter l
is now the wavenumber and does not denote a dispersion relation; this parameter l will serve as the
crucial bifurcation parameter in our analysis.

The travelling wave equations (1.5) then become

c2l2q′′1 = V ′
1(S

lq2 − q1) − V ′
2(q1 − S−lq2)

mc2l2q′′2 = V ′
2(S

lq1 − q2) − V ′
1 (q2 − S−lq1).

(1.7)

We compress (1.7) in the form

�c (5,l) = 0, (1.8)

where

�c (5,l) := c2l2M5′′ +
(
V ′

2(q1 − S−lq2) − V ′
1 (S

lq2 − q1)
V ′

1(q2 − S−lq1) − V ′
2 (S

lq1 − q2)

)
(1.9)

and

M :=

[
1 0
0 m

]
. (1.10)
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The primary challenge that we confront is that the linearization D5�c (0,lc) has a three-dimensional
kernel and cokernel. Translation invariance allows us to reduce both dimensions to two (and by restrict-
ing the domain to the right subspace, we could lower the dimension of the kernel even further), but, in the
absence of symmetry, we cannot get below that. Specifically, we must contend with a two-dimensional
cokernel, which adds two solvability conditions to our problem without giving us extra variables to help
meet them. We now discuss the broader relevance of this periodic travelling wave problem and, in the
process, why this dimension counting is so important.

1.2. Motivation, context and connections other FPUT travelling wave problems

Our primary motivation in constructing these particular periodics is the long wave problem for dimers.
This limit looks for travelling waves whose profiles are close to a suitably scaled sech2-type solution
of a KdV equation that acts as the ‘continuum limit’ for the lattice. More precisely, one posits p(X) =
n2h(nX) and c2 = c2

★ + n2, with c★ given by (2.8) and n > 0 small. The solutions from Theorem 1.1 are
not strictly long-wave solutions, as they lack this scaling and are valid for all wave speeds |c| > c★. We
discuss this further in Section 6.2. The relevance of this ansatz is that in a ‘polyatomic’ FPUT lattice,
for which the material data repeats with some arbitrary period, long wave-scaled solutions to certain
KdV equations (whose coefficients depend on the lattice’s material data) are very good approximations
to solutions to the equations of motion over very long time scales [8, 25, 38].

Faver and Wright constructed long wave solutions for the mass dimer [20] and Faver treated the spring
dimer [16]. Faver and Hupkes produced a different development of mass and spring dimer nanopterons
via spatial dynamics in [19] and obtained results for equilibrium displacement coordinates as we do;
Deng and Sun [13] performed a related spatial dynamics analysis to yield similar results. These dimer
travelling waves were not solitary waves, as Friesecke and Pego found for the monatomic lattice [23],
but rather nanopterons [7]: the superposition of a leading-order localized (here, sech2-type) term, a
higher-order localized remainder, and a high-frequency periodic ‘ripple’ of amplitude small beyond
all algebraic orders of the long wave parameter. Both constructions relied on lattice symmetries in two
critical steps to adapt functional analytic techniques from Beale’s work on capillary gravity water waves
[5] and its later deployment by Amick and Toland [3] for a model fourth-order KdV equation.

Firstly, as mentioned above, the periodics in [16, 20] were constructed with a modified ‘bifurcation
from a simple eigenvalue’ argument in the style of Crandall and Rabinowitz and Zeidler [11, 41]. We
adapt further this bifurcation analysis in our arguments, and our preferred reference is [31, Thm. 1.5.1].
Symmetry permitted the restriction of the travelling wave problem �c (5,l) = 0 from (1.8) and (1.9)
to function spaces on which the linearization D5�c (0,l) at 5 = 0 and l = lc, with lc as the ‘critical
frequency’ from Theorem 2.1, had a one-dimensional kernel and cokernel. This was the key to the
modified bifurcation from a simple eigenvalue argument.

Up to a useful linear change of coordinates that diagonalized the travelling wave problem and the
long wave scaling, the long wave periodics in [16, 20] have the same structure as ours from Theorem 1.1.
However, the main technical accomplishment of our results here is that we manage a two-dimensional
kernel and cokernel in the absence of symmetry via other inherent properties of the lattice – namely, the
special ‘orthogonality condition’ that 〈�c (5,l), 5′〉L2

per
= 0, proved in Corollary 3.2 and Lemma 4.1.

While there certainly exist other results on bifurcations with two-dimensional kernels, their hypotheses
are inappropriate for our problem. For example, [32] and [34] assume certain ‘nondegeneracy’ con-
ditions on what for us would be the second derivative D2

55�c (0,lc), over which we expect to have
no control (beyond its existence), while [1] and [4] assume some (non)resonance conditions among
their critical frequencies. Indeed, the two-dimensional kernel is far less of a problem than the two-
dimensional cokernel, as we cannot make the latter smaller by restricting the domain to a better-behaved
subspace.

The second use of symmetry in the full nanopteron constructions of [16, 20] was somewhat subtler
and involved the actual need for periodics in the first place. The obstacle was that attempting to solve
the travelling wave problem (1.5) by a merely localized perturbation from the sech2-type continuum
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limit – and thereby construct solitary travelling waves in dimers – resulted in an overdetermined system
with two unknowns (the two components of the localized perturbation) but four equations. These are
the expected two components from (1.5) and a surprising ‘solvability condition’: the vanishing of the
Fourier transform of a certain related operator at ±lc. Symmetry ensured that the vanishing at lc
implied the vanishing at −lc, reducing the overdetermined problem to only three equations, which
were managed by adding a third variable via the periodic amplitude – which is exactly why we seek
periodics in Theorem 1.1 that are parametrized in amplitude. While the full nanopteron problem in the
general dimer without symmetry remains challenging and beyond the scope of our work here to address,
the periodic solutions constructed here will be a fundamental component of the nanopteron ansatz for
the general dimer’s long wave problem.

Periodic travelling waves for lattices have been constructed in several other ‘material limit’ regimes
in addition to the long wave limit. These include the small mass limit for mass dimers by Hoffman
and Wright [27, Thm. 5.1], the equal mass limit for mass dimers by Faver and Hupkes [18, Prop. 3.3],
and the small mass limit for the mass-in-mass variant of monatomic FPUT by Faver [14, Thm. 2].
Each of these limits views the heterogeneous lattice as a small material perturbation of a monatomic
FPUT lattice, and the nanopteron is a small nonlocal perturbation of a monatomic solitary wave [23,
24]. While each limit has a nontrivially different solvability condition that makes the travelling wave
problem overdetermined, all of the periodic constructions are fundamentally alike and can be deduced
from Theorem 6.2.

In all of these nanopteron problems, it is not enough to have a family of periodic solutions
whose amplitude can serve as an extra variable to close the overdetermined travelling wave problem.
Additionally, one also needs exact, uniform, quantitative estimates on how these periodic solutions
behave with respect to the overall problem’s natural small parameter (the long wave problem n , the small
mass ratio, etc.) To that end, a result like Theorem 1.1, which does not uniformly depend on the wave
speed c, is not enough. This is the motivation for the results in Section 6, which are too cumbersome to
be included in Theorem 1.1.

These are not the only methods for producing periodic travelling waves for FPUT, and we give a brief,
selected overview of others here for both monatomic lattices and dimers, in various limiting regimes
and for various kinds of material data. Friesecke and Mikikits-Leitner [22] adapted the perturbative
approach for monatomic solitary waves from [23] to prove the existence of long wave periodics in the
monatomic lattice that were small perturbations of a KdV cnoidal profile. Pankov constructed periodics
in the monatomic lattice using variational methods [36], as did Qin for mass dimers [37] with spring
force given by the FPUT V-model, i.e., roughly of the form V ′ (r) = r + O(r3); while these proofs do
not give information on amplitude, the constructed periodics do exist for arbitrary wavenumbers and
frequencies. Herrmann constructed both solitary waves and periodic travelling waves in monatomic
FPUT with convex spring potentials via variational methods [26]; these periodics can be constructed
to have arbitrary mean value, which in turn determines the speed of the travelling wave. Iooss used
spatial dynamics and centre manifold theory to capture all small travelling waves in monatomic FPUT,
including solitary waves and periodics [29]. Betti and Pelinovsky used an implicit function theorem
argument to produce periodics in mass dimers with Hertzian spring potentials [6], and we note with
interest that their proofs also relied on symmetry to reduce the dimension of a key linearization’s kernel.
James also used implicit function theory to construct periodics parametrized by amplitude in monatomic
FPUT with Hertzian potential [30]. Finally, we mention that Lombardi’s spatial dynamics method for
nanopterons under very general hypotheses includes the full development of periodics from that point
of view [35], with the more stringent requirement that the spring potentials be real analytic.

1.3. Notation

We summarize several aspects of notation that we will use without further comment.

• If X is a vector space, then IX is the identity operator on X .
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• If X , Y , and Z are normed spaces and f : U ⊆ X × Y → Z is differentiable at some
(x0, y0) ∈ U , then we denote its partial derivative at (x0, y0) with respect to x by Dxf (x0, y0).
Likewise, Dyf (x0, y0) is the partial derivative with respect to y. We reserve the notation f ′ = mxf
for a function f : I ⊆ R→ R.

• If X and Y are sets and f : U ⊆ X → Y is a function, then for any U0 ⊆ U we denote by f
��
U0

the
restriction of f to U0.

• If X and Y are Hilbert spaces with inner products 〈·, ·〉X and 〈·, ·〉Y , respectively, then the adjoint
of a bounded linear operator T : X → Y is the bounded linear operator T ∗ : Y → X satisfying
〈T x, y〉Y = 〈x, T ∗y〉X for all x ∈ X and y ∈ Y . If the range T (X ) of T is closed, then T (X ) =
ker(T ∗)⊥, where U⊥ is the orthogonal complement of U ⊆ Y .

• If X is a normed space, x ∈ X , and r > 0, then B(x; r) is the open ball

B(x; r) :=
{
y ∈ X

�� ‖x − y‖X < r
}
.

• If X and Y are normed spaces, then B(X ,Y) is the space of bounded linear operators from X to
Y with operator norm ‖T ‖X→Y .

2. Linear analysis

We assume familiarity here with the notation and conventions of Appendix A.2 on periodic Sobolev
spaces and Fourier coefficients. Briefly, 5̂(k) is the kth Fourier coefficient of 5 ∈ L2

per (R2), and 〈·, ·〉 is
the L2

per-inner product (we no longer retain the subscript here).
Our bifurcation analysis naturally hinges on a careful understanding of the linearization

Lc [l] := D5�c (0,l) (2.1)

of the problem �c (5,l) = 0 at 5 = 0, where �c was defined in (1.9). Using that definition of �c and
recalling from the hypotheses (1.1) that the spring potentials satisfy

V ′
1(r) = r +O(r2) and V ′

2(r) = ^r +O(r2),

we have

Lc [l]5 = c2l2M5′′ +D[l]5,

where

D[l] :=

[
(1 + ^) −(Sl + ^S−l)

−(^Sl + S−l) (1 + ^).

]
. (2.2)

We follow the strategy of the existing bifurcation arguments [20, App. C], [16, Sec. 3], [27, Sec. 5],
[18, Sec. 3], [14, Sec. 3] and begin by considering the kernel of Lc [l]. We have Lc [l]5 = 0 if and
only if

L̃c (lk)5̂(k) = 0 (2.3)

for all k ∈ Z, where

L̃c (K) := −c2K2M + D̃(K) (2.4)
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and

D̃(K) :=

[
(1 + ^) −(eiK + ^e−iK )

−(^eiK + e−iK ) (1 + ^)

]
. (2.5)

Then (2.3) is equivalent to

c2(lk)25̂(k) = M−1D̃(lk)5̂(k),

and so, if 5̂(k) ≠ 0, then c2(lk)2 must be an eigenvalue of M−1D̃(lk). Any eigenvalue _ of M−1D̃(K)
must satisfy the characteristic equation

_2 − (1 + ^) (1 + w)_ + 4^w(1 − cos2(K)) = 0,

and so the eigenvalues are

_̃±(K) :=
(1 + ^) (1 + w)

2
± r̃(K)

2
, (2.6)

where

r̃(K) :=
√
(1 + w)2(1 − ^)2 + 4^((1 − w)2 + 4w cos2(K)) and w :=

1
m
. (2.7)

The following is proved in [15, Prop. 2.2.1] about these eigenvalues.

Theorem 2.1. Suppose that at least one of the inequalities ^ > 1 or w> 1 holds and define the ‘speed
of sound’ to be

c★ :=

√
4^w

(1 + ^) (1 + w) . (2.8)

(i) If |c| > c★, then c2K2 = _̃− (K) if and only if K= 0.
(ii) If |c| > c★, then there exists lc > 0 such that c2K2 = _̃+(K) if and only if K = ±lc.
(iii) This ‘critical frequency’ lc satisfies the estimates√

_̃+(c/2)
c

≤ lc ≤
√
(1 + ^) (1 + w)

c
(2.9)

and

inf
|c |>c★

2c2lc − _̃′+(lc) > 0. (2.10)

We sketch in Figure 3 graphs of the eigenvalues _̃±(K) against parabolas c2K2 for |c| < c★ and
|c| > c★. In the case that |c| > c★, we see that the only intersections of c2K2 and _̃±(K) are those
promised by parts (i) and (ii) of Theorem 2.1. Additionally, we can view the inequality (2.10) as a
quantitative condition on the angle of intersection of c2K2 and _̃+(K). However, for |c| < c★, there can be
more intersections, which breaks the utility of the one ‘critical frequency’ for the subsequent bifurcation
arguments. These bifurcation arguments retain the style of the Classical Crandall–Rabinowitz–Zeidler
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K

˜λ−(K)

˜λ+(K)

ωc−ωc

c2K2, |c| < c� c2K2, |c| > c�

Figure 3. Graphs of the two branches _̃±(K) of the dispersion relation against c2K2 for |c| < c★ and
|c| > c★. Solid black circles indicate intersections of c2K2 and _̃− (K) at K= 0 for all c and of c2K2

and _̃+(K) only at K = ±lc when |c| > c★. Solid red circles indicate potential intersections of c2K2

and _̃+(K) for K ≠ 0 when |c| < c★. While not graphed, c2K2 and _̃+(K) could also have intersections
in addition to K = ±lc when |c| < c★.

‘bifurcation from a simple eigenvalue’ argument but now take into account the presence of the two-
dimensional cokernel of Lc [lc].

We will need a good understanding of the kernel and cokernel of Lc [lc], and so we carefully
compute the following in Appendix A.1.

Corollary 2.2. The kernels of both

Lc [lc] : H2
per (R2) → L2

per (R2) and Lc [lc]∗ : L2
per (R2) → H2

per (R2)

are spanned by the orthonormal vectors .0, .c
1 and .c

2 defined by

.0 :=
1
√

2

(
1
1

)
, (2.11)

.c
1(x) :=

e−ix

Nc

(
e−ilc + ^eilc

1 + ^ − c2l2
c

)
+ eix

Nc

(
eilc + ^e−ilc

1 + ^ − c2l2
c

)
(2.12)

and

.c
2(x) :=

e−ix

Nc

(
i(e−ilc + ^eilc )
i(1 + ^ − c2l2

c)

)
+ eix

Nc

(
−i(eilc + ^e−ilc )
−i(1 + ^ − c2l2

c)

)
, (2.13)
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where

Nc :=
√

2

( [
(1 − ^)2 + 4^ cos(lc)

]2 +
[
(1 + ^) (1 − w) + r̃(lc)

2

]2
)1/2

. (2.14)

The eigenfunctions .c
1 and .c

2 satisfy the derivative identities

mx.
c
1 = −.c

2 and mx.
c
2 = .c

1 (2.15)

and the shift identity

.c
2 = S−c/2.c

1. (2.16)

A function 5 ∈ L2
per (R2) satisfies

〈5, .c
1〉 = 〈5, .c

2〉 = 0 if and only if 5̂(1) · .̂c
1(1) = 0. (2.17)

Thus the kernel and the cokernel of the linearization of the travelling wave problem (1.8) are osten-
sibly three-dimensional. Translation invariance (Corollary 3.3) will allow us to rule out .0 from both
kernel and cokernel, and so we are down to two dimensions in each. We can and will simplify the kernel
further: there are vc

1, vc
2 ∈ C2 such that any function f in the span of .c

1 and .c
2 can be written in the

form f(x) = sin(x)vc
1 + cos(x)vc

2. In the case of a mass or spring dimer, symmetry effectively causes the
problem (1.8) to preserve function parity, and so we could consider the kernel as one-dimensional and
spanned by either sin(·)vc

1 or cos(·)vc
2. We discuss this in much more precise detail in Section 5.

Without symmetry, we could still use trigonometric addition formulas to rewrite

sin(x)vc
1 + cos(x)vc

2 = a sin(x + \)wc
1

for some a, \ ∈ R and wc
1 ∈ C2. Then shift invariance of (1.8) allows us to consider the kernel as one-

dimensional and spanned by sin(·)wc
1. We discuss this in much more precise detail in Lemma 3.8, where

we employ those trigonometric identities to do this rewriting. For this reason, it suffices to assume that
any solution 5 to the travelling wave problem �c (5,l) = 0 has the form 5 = a sin(x)wc

1 + 7, where
7̂(0) = 0 (which encodes translation invariance) and 〈sin(·)wc

1,7〉L2
per

= 0. This is effectively the
structure that we select in Section 3.4. Unfortunately, none of these reductions help with the cokernel, as
without symmetry (as discussed in Section 5) �c does not possess any other helpful mapping properties
to winnow down the remaining two dimensions of the cokernel.

We also need to understand the interaction of the mixed partial derivative L′
c [lc] := D5l�c (0,lc)

with the eigenfunction .1. It follows from Appendix A.4, specifically the identity (A.6), that L′
c [lc] is

the Fourier multiplier given by

�L′
c [lc]5(k) = kL̃′

c (lck)5̂(k) (2.18)

with L̃′
c as the componentwise derivative of the matrix L̃c from (2.4). We prove the following estimate in

Appendix A.2. This is the direct analogue of the classical Crandall–Rabinowitz–Zeidler transversality
condition [31, Eqn. (I.5.3)] for our approach.

Corollary 2.3. inf
|c |>c★

|〈L′
c [lc].c

1, .c
1〉| > 0.

Last, we will need the following estimate on Lc [lc], proved in Appendix A.3.
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Corollary 2.4. There is C> 0 such that the following holds for all c with |c| > c★ and all r ≥ 0. If
Lc [lc]7 = ( for 7 ∈ Hr+2

per (R2) and ( ∈ Hr
per (R2) with

〈7, .0〉 = 〈7, .c
1〉 = 〈7, .c

2〉 = 0 and 〈(, .0〉 = 〈(, .c
1〉 = 〈(, .c

2〉 = 0,

then

‖7‖Hr+2
per

≤ C‖(‖Hr
per

.

3. The gradient formulation

3.1. The gradient structure of the travelling wave problem

We rewrite the travelling wave operator �c from (1.9) as the L2
per-gradient of a certain ‘kinetic + poten-

tial energy’ functional on H2
per (R2). This formulation yields transparent proofs of certain properties of

�c from shift invariance, and from these properties follow our first existence proof in Sections 3.3 and
3.4.

Firstly, we need some new notation; all of the consequences below of this notation are straightforward
calculations, which we omit. For l ∈ R, put

Δ+(l) :=

[
−1 Sl

1 −S−l

]
and Δ− (l) =

[
1 −1

−S−l Sl

]
. (3.1)

We then have the adjoint relationship

〈Δ+(l)5, (〉 = −〈5,Δ− (l)(〉 (3.2)

for any 5, ( ∈ L2
per (R2).

Next, let

V (p) :=

(
V1(p1)
V2(p2)

)
and V ′ (p) :=

(
V ′

1 (p1)
V ′

2 (p2)

)
,

where V1 and V2 are the spring potentials from (1.1), and p = (p1, p2) ∈ L2
per (R2). For v = (v1, v2),

w = (v1, v2) ∈ R2, define componentwise multiplication as

v.w :=

(
v1v1

v2v2

)
.

We then have the derivative formula

DpV (p)p̀ = V ′ (p).p̀ (3.3)

for any p̀ ∈ L2
per (R2). Define 1(x) := (1, 1); then since v, w ∈ R2 have real entries, the useful identity

〈v.w, 1〉 = 〈v, w〉 (3.4)

is true.
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Last, we have

Δ− (l)V ′ (Δ+(l)5) =
(
V ′

1(S
lq2 − q1) − V ′

2(q1 − S−lq2)
V ′

2(S
lq1 − q2) − V ′

1(q2 − S−lq1)

)
.

Comparing this to the second term in �c from (1.9), we conclude

�c (5,l) = c2l2M5′′ − Δ− (l)V ′ (Δ+(l)5). (3.5)

This version of �c allows us to recognize it as a gradient; similar calculations for the monatomic lattice
appear in [36, Prop. 3.2] and for mass dimers with the FPUT V-model in [37, Lem. 3.1].

Theorem 3.1. Let c ∈ R. Define

T : H2
per (R2) × R→ R : (5,l) ↦→ l2

2
〈M5′′, 5〉 (3.6)

and, with 1(x) := (1, 1),

P : H2
per (R2) × R→ R : (5,l) ↦→ 〈V (Δ+(l)5), 1〉 (3.7)

Put

Gc := c2T + P . (3.8)

Then

�c (5,l) = ∇Gc (5,l)

in the sense that

D5Gc (5,l)( = 〈�c (5,l), (〉 (3.9)

for all 5, ( ∈ H2
per (R2) and l ∈ R.

Proof. The proof is just a careful calculation using the definition of the derivative and the inner product
〈·, ·〉 and the various identities stated above. More precisely, we compute the following.

Firstly, for 5, ( ∈ H2
per (R2) and l, h ∈ R, we use the definition of T in (3.6) to compute

T (5 + h(,l) − T (5,l) = h〈l2M5′′, (〉 + h2l
2〈M(′′, (〉

2
.

This uses two applications of the integration by parts identity (A.3) to compute 〈5′′, (〉 = 〈5, (′′〉, the
symmetry of M, and the assumption that 5 and ( are R2-valued. It follows that

D5T (5,l)( = 〈l2M5′′, (〉.

Next, we use the definition of P in (3.7) to compute

D5P (5,l)( = 〈D5V (Δ+(l)5)Δ+(l)(, 1〉 by the chain rule
= 〈V ′ (Δ+(l)5).Δ+(l)(, 1〉 by (3.3)
= 〈V ′ (Δ+(l)5,Δ+(l)(〉 by (3.4)
= −〈Δ− (l)V ′ (Δ+(l)5), (〉 by (3.2).
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All together, we have

D5Gc (5,l)( = D5T (5,l)( + D5P (5,l)( = 〈c2l2M5′′, (〉 − 〈Δ− (l)V ′ (Δ+(l)5), (〉.

By our rewritten formula for �c in (3.5), this proves (3.9). �

We collect two families of properties of Gc and �c. The proofs for Gc are easy consequences of
its definition in Theorem 3.1, while those for �c are also straightforward and could in fact be done
(somewhat more laboriously) using just the definition of �c in (1.9). However, we present proofs for
�c here as a consequence of the gradient formulation to emphasize the utility and efficiency of this
formulation.

Corollary 3.2 (Shift invariance). The following hold for all 5 ∈ H2
per (R2) and l ∈ R.

(i) The functional Gc is shift-invariant:

Gc (S\5,l) = Gc (5,l) (3.10)

for all \ ∈ R.
(ii) The operator �c is also shift-invariant:

�c (S\5,l) = S\�c (5,l) (3.11)

for all \ ∈ R.
(iii) The operator �c has the ‘derivative orthogonality property’

〈�c (5,l), 5′〉 = 0. (3.12)

Proof.

(i) We use the identities

〈5′′, .0〉 = 0 and Δ+(l).0 = 0

to obtain T (5+U.0,l) = T (5,l) andP (5+U.0,l) = P (5,l), respectively. SinceGc = c2T +P ,
the identity (3.13) follows.

(ii) The chain rule and the identity (3.10) imply

D5Gc (5,l)( = D5Gc (S\5,l)S\(

for all ( ∈ H2
per (R2). At the level of gradients, this reads

〈�c (5,l), (〉 = 〈�c (S\5,l), S\(〉.

On the right, we use the adjoint relation (A.2) for shifts to rewrite

〈�c (S\5,l), S\(〉 = 〈S−\�c (S\5,l), (〉.

It follows that

〈�c (5,l), (〉 = 〈S−\�c (S\5,l), (〉

for all ( ∈ H2
per (R2), and so �c (5,l) = S−\�c (S\5,l). Applying S\ to both sides yields (3.11).
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(iii) Now we differentiate the identityGc (S\5,l) = Gc (5,l) from (3.10) with respect to \ and evaluate
the result at \ = 0. This yields

D5Gc (S05,l)
(
m

m\
[S\5]

����
\=0

)
= 0.

Differentiating the shift operator yields the identity

m

m\
[S\5]

����
\=0

= 5′,

which is valid in the L2
per-norm since 5 ∈ H2

per.
Thus

D5Gc (5,l)5′ = 0,

and in the language of the gradient formulation, this says

〈�c (5,l), 5′〉 = 0.
�

Corollary 3.3 (Translation invariance). The following hold for all 5 ∈ H2
per (R2) and l ∈ R.

(i) The functional Gc is translation-invariant in the sense that

Gc (5 + U.0,l) = Gc (5,l) (3.13)

for all U ∈ R, where .0 is defined in (2.11).
(ii) The operator �c is also translation-invariant:

�c (5 + U.0,l) = �c (5,l) (3.14)

for all U ∈ R.
(iii) The range of �c is orthogonal to .0:

〈�c (5,l), .0〉 = 0. (3.15)

Proof.

(i) This follows from the integral structure of Gc = c2T +P from Theorem 3.1, the 2c-periodicity of
5 and the identity ∫ c

−c

f (x + \) dx =

∫ c

−c

f (x) dx,

which is valid for all \ ∈ R and all integrable, 2c-periodic f : [−c, c] → C.
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(ii) We differentiate the identity Gc (5 + U.0,l) = Gc (5,l) from (3.13) with respect to 5 to find

D5Gc (5 + U.0,l)( = D5Gc (5,l)(

for all ( ∈ H2
per (R2) and thus

〈�c (5 + U.0,l), (〉 = 〈�c (5,l), (〉.

Since this holds for all (, we obtain (3.14).
(iii) Now we differentiate the identity Gc (5 + U.0,l) = Gc (5,l) with respect to U and evaluate the

result at U = 0. This yields

0 = D5Gc (5 + (0 · .0),l)
(
m

mU
[5 + U.0]

����
U=0

)
= 〈�c (5,l), .0〉.

�

An immediate consequence of the translation invariance of �c from (3.14) is that solutions 5 to
�c (5,l) = 0 are only unique up to translation by .0, as claimed in Theorem 1.1.

Remark 3.4. The derivative orthogonality property (3.12) of �c is the key to resolving the overdeter-
mined periodic problem. While this property follows quickly from the shift invariance of Gc, as proved
above, it is not quite as easy to prove directly from the definition of �c as are all the other consequences
of shift and translation invariance. We discuss that direction of proof further in Lemma 4.1. A sim-
ilar derivative orthogonality property, deployed in somewhat different language, enabled Wright and
Scheel [40, Sec. 4, p. 548] to complete a Lyapunov–Schmidt analysis in which the linearization also
had a two-dimensional kernel that, in the absence of symmetry, could not be reduced in dimension.

3.2. Function spaces and projection operators

The translation invariance identities (3.14) and (3.15) mean that we can effectively ignore the contribu-
tions of .0 to the problem �c (5,l) = 0. So, we put

Y :=
{
( ∈ L2

per (R2)
�� 〈(, .0〉 = 0

}
, (3.16)

X := H2
per (R2) ∩ Y , (3.17)

and

Zc := span(.c
1, .c

2). (3.18)

It follows that �c (5,l) ∈ Y for all 5 ∈ X and l ∈ R, and also

Zc = ker(Lc [lc]) ∩ X = ker(Lc [lc]∗) ∩ Y .

Define

Πc : Y → Zc : 5 ↦→ 〈5, .c
1〉.

c
1 + 〈5, .c

2〉.
c
2. (3.19)

Since .c
1 and .c

2 are orthogonal, per Corollary 2.2, the operator Πc is the orthogonal projection of Y
(and X ) onto Zc. In particular,

〈Πc5, (〉 = 〈5,Πc(〉 (3.20)
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for all 5, 7 ∈ Y .
It turns out to be quite useful for us that the projection Πc and the first derivative mx commute.

Lemma 3.5. Let 5 ∈ H1
per (R2). Then

Πcmx5 = mxΠc5. (3.21)

Proof. We use the integration by parts identity 〈5′, (〉 = −〈5, (′〉 from (A.3) and the derivative
identities (2.15) to compute

Πcmx5 = 〈5′, .c
1〉.

c
1 + 〈5′, .c

2〉.
c
2

= −〈5, mx.
c
1〉.

c
1 − 〈5, mx.

c
2〉.

c
2

= 〈5, .c
2〉.

c
1 − 〈5, .c

1〉.
c
2

= 〈5, .c
2〉mx.

c
2 + 〈5, .c

1〉mx.
c
1

= mxΠc5.

�

Last, we state precisely the regularity of �c and some of its derivatives on periodic Sobolev spaces.
The technical challenge here is that �c is infinitely differentiable from H2

per (R2) to L2
per (R2) with

respect to 5, but any order derivative with respect to 5 is only once continuously differentiable with
respect to l. This is ultimately a consequence of the limited differentiability of shift operators between
periodic Sobolev spaces, as we discuss in Appendix A.4. We prove the next lemma in Appendix A.4.

Lemma 3.6. �c ∈ C1(H2
per (R2) × R, L2

per (R2)) and D5�c ∈ C1(H2
per (R2) × R, L2

per (R2)).

3.3. The Lyapunov–Schmidt decomposition: infinite-dimensional analysis

The approach here is classical and follows, for example, the proof of the Crandall–Rabinowitz–Zeidler
theorem in [31, Thm. 1.5.1]. The difference appears in the following section, when we manage the
two-dimensional kernel.

We use the projection operator Πc from (3.19) to make a Lyapunov–Schmidt decomposition for our
problem �c (5,l) = 0. Firstly, with the spaces X and Y defined in (3.17) and (3.16), let

X∞
c := (IX − Πc) (X ) and Y∞

c := (IY − Πc) (Y), (3.22)

where IX and IY are the identity operators on X and Y , respectively. Consequently,

Zc ∩ X∞
c = Zc ∩ Y∞

c = {0}. (3.23)

Next, write 5 = . + 7, where . ∈ Zc and 7 ∈ X∞
c . Then �c (5,l) = 0 if and only if

(IY − Πc)�c (. + 7,l) = 0 (3.24a)
Πc�c (. + 7,l) = 0. (3.24b)

(3.24)
We solve (3.24a) quickly with a direct application of the implicit function theorem [31, Thm. I.1.1].
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Define

F∞
c : X∞

c × Zc × R→ Y∞
c : (7, .,l) ↦→ (IY − Πc)�c (. + 7,l). (3.25)

Certainly F∞
c (0, 0,l) = 0 for all l, and we have

D7F∞
c (0, 0,lc) = (IY − Πc)Lc [lc]

��
X∞

c
.

This operator has trivial kernel in X∞
c and trivial cokernel in Y∞

c by (3.23), and so it is invertible.
(More precisely, the closure of its range is the orthogonal complement of its cokernel, which is all of
Y∞

c . But the range is closed by the estimate in Corollary 2.4.) Since �c ∈ C1(H2
per (R2), L2

per (R2)) by
Lemma 3.6, with �c (0,l) = 0 for all l, the implicit function theorem yields Xc, nc > 0 and a map
	c ∈ C1 (BZc×R((0,lc); Xc),BX∞

c (0; nc)
)

such that

F∞
c (	c (.,l), .,l) = 0. (3.26)

Moreover, if F∞
c (7, .,l) = 0 for some 7 ∈ BX∞

c (0; nc) and (.,l) ∈ BZc×R((0,lc); Xc), then 7 =

	c (.,l). (Recall that BX (x0; r) =
{
x ∈ X

�� ‖x − x0‖X < r
}

for x0 ∈ X and r > 0.) We pause to collect
some useful properties of this map 	c.

Lemma 3.7. Let . ∈ Zc and l ∈ R with ‖.‖H2
per

+ |l − lc | < Xc. Then the following identities hold.

(i) 〈�c (. + 	c (.,l),l), mx.〉 = 0 for (.,l) ∈ BZc×R((0,lc); Xc).
(ii) 	c (0,l) = 0 for (0,l) ∈ BZc×R((0,lc); Xc).
(iii) D.	c (0,lc) = 0.
(iv) D.	c ∈ C1(BZc×R((0,lc); Xc), B(Zc,X∞

c )).

Proof.

(i) The derivative orthogonality property of �c from (3.12) implies

〈�c (. + 	c (.,l),l), mx [. + 	c (.,l)]〉 = 0, (3.27)

and by (3.26), we have

(IY − Πc)�c (. + 	c (.,l),l) = 0. (3.28)

Then we compute

0 = 〈Πc�c (. + 	c (.,l),l), mx [. + 	c (.,l)]〉 using (3.28) in (3.27)
= 〈�c (. + 	c (.,l),l),Πcmx [. + 	c (.,l)]〉 by (3.20)
= 〈�c (. + 	c (.,l),l), mxΠc [. + 	c (.,l)]〉 since mx and Πc commute
= 〈�c (. + 	c (.,l),l), mx.〉 since Πc. = . and Πc	c (.,l) = 0.

(3.29)

(ii) By definition of F∞
c in (3.25), we have

Fc (0, 0,l) = (IY − Πc)�c (0,l) = 0

for all l. By the uniqueness property of 	c, we have 	(0,l) = 0 for all l.
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(iii) We differentiate (3.28) with respect to . ∈ Zc to find the operator-valued identity

(IY − Πc)D5�c (. + 	c (.,l),l)
(
IZc + D.	c (.,l)

)
= 0. (3.30)

Here IZc is the identity operator on Zc = ker(Lc [lc]). Taking . = 0 and l = lc collapses (3.30)
to

(IY − Πc)Lc [lc]
(
IZc + D.	c (0,lc)

)
= 0,

recalling Lc [lc] = D5�c (0,lc) from (2.1). Since Lc [lc]
��
Zc

= 0, this further reduces to

Lc [lc]D.	c (0,lc) − ΠcLc [lc]D.	c (0,lc) = 0.

Because ker(Lc [lc]) = ker(Lc [lc]∗), it follows from the definition of Πc in (3.19) that
ΠcLc [lc] = 0. Thus

Lc [lc]D.	c (0,lc) = 0,

and so the range of D.	c (0,lc) is contained in ker(Lc [lc]) = Zc. But the range of D.	c (0,lc)
is also contained in Y∞

c , and Y∞
c ∩ Zc = {0} by (3.23). Thus the range of D.	c (0,lc) is trivial.

(iv) This follows from the implicit function theorem, which guarantees that 	c is as regular as
�c. Since D5�c ∈ C1(H2

per (R2), L2
per (R2)) by Lemma 3.6, D.	c inherits this regularity on

BZc×R((0,lc); Xc).
�

3.4. The Lyapunov–Schmidt decomposition: finite-dimensional analysis

Now we solve the second equation (3.24) in the Lyapunov–Schmidt decomposition with 7 = 	c (.,l).
This amounts to solving the pair of equations

〈�c (. + 	c (.,l),l), .c
1〉 = 0

〈�c (. + 	c (.,l),l), .c
2〉 = 0,

(3.31)

where . is a linear combination of the two linearly independent eigenfunctions .c
1 and .c

2. The apparent
quandary is that we want solutions parametrized in amplitude, so formally this suggests . +	c (.,l) =
O(a). This leads to our taking . = a.c

1 below, which may appear to remove a degree of freedom from
the ansatz. In turn, this could appear to be problematic, given that we have two equations to solve above
in (3.31). Ostensibly, we could have stayed with . as a combination of .c

1 and .c
2. None of this, however,

is a problem, and we discuss at length in Section 3.5 why.
With the choice of

. = a.c
1 (3.32)

for a ∈ R sufficiently small, we convert (3.31) to

〈�c (a.c
1 + 	c (a.c

1,l),l), .c
1〉 = 0 (3.33a)

〈�c (a.c
1 + 	c (a.c

1,l),l), .c
2〉 = 0. (3.33b)

(3.33)

https://doi.org/10.1017/jnw.2025.10007 Published online by Cambridge University Press

https://doi.org/10.1017/jnw.2025.10007


Journal of Nonlinear Waves 19

We claim that (3.33b) always holds. Indeed, for a= 0, it is trivially true, since �c (0,l) = 0, while for
a ≠ 0 we have

〈�c (a.c
1 + 	c (a.c

1,l),l), .c
2〉 = a−1〈�c (a.c

1 + 	c (a.c
1,l),l), a.c

2〉
= −a−1〈�c (a.c

1 + 	c (a.c
1,l),l), mx [a.c

1]〉 by (2.15)
= 0 by part (i) of Lemma 3.7.

We emphasize that our success here traces back to the derivative orthogonality property (3.12).
We conclude by solving (3.33a) with another application of the implicit function theorem, and this,

again, is effectively the remainder of the proof of the Crandall–Rabinowitz–Zeidler theorem [31, Thm.
1.5.1]. Define

F0
c : BR2 ((lc, 0); Xc/2) → R : (l, a) ↦→ 〈�c (a.c

1 + 	c (a.c
1,l),l), .c

1〉.

The threshold Xc arose from the infinite-dimensional implicit function theorem argument in Section 3.3.
Since F0

c (l, 0) = 0 for all l, we have

F0
c (l, a) = aHc (l, a), Hc (l, a) :=

∫ 1

0
DaF0

c (l, aU) dU.

It therefore suffices to solve Hc (l, a) = 0 by selecting l as a function of a, and we do this by checking
Hc (lc, 0) = 0 and DlHc (lc, 0) ≠ 0.

Toward this end, we first differentiate

DaF0
c (l, a) = 〈D5�c (a.c

1 + 	c (a.c
1,l))

(
.c

1 + D.	c (a.c
1,l).c

1
)
, .c

1〉.

We put a= 0 and use 	c (0,l) = 0 to find for any l that

Hc (l, 0) =
∫ 1

0
DaF0

c (l, 0) dU = DaFc (l, 0) = 〈Lc [l]
(
.c

1 + D.	c (0,l).c
1
)
, .c

1〉. (3.34)

In the special case of l = lc, we can use either D.	c (0,l) = 0 from part (iii) of Lemma 3.7 or the
condition Lc [lc]∗.c

1 = 0 to reduce (3.34) to

Hc (lc, 0) = 〈Lc [lc].c
1, .c

1〉 = 0.

Next, with l arbitrary, we differentiate (3.34) with respect to l and use the product rule to find

DlHc (l, 0) = 〈L′
c [l].c

1, .c
1〉 + 〈L′

c [l]D.	c (0,l).c
1, .c

1〉 + 〈Lc [l]D.l	c (0,l).c
1, .c

1〉.

Here we are using the shorter notation from (2.18) of L′
c [l] = D5l�c (0,l). Taking l = lc, we use

D.	c (0,lc) = 0 to find that the second term is 0. At lc, the third term is 0 since Lc [lc]∗.c
1 = 0. And

so

DlHc (lc, 0) = 〈L′
c [lc].c

1, .c
1〉 ≠ 0,

by Corollary 2.3.
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We are now in position to invoke the implicit function theorem once more, and we find ac, bc > 0
and a map Ωc : (−ac, ac) → R such that

Hc (Ωc (a), a) = 0

for |a| < ac, while if |l − lc | < bc and |a| < ac and Hc (l, a) = 0, then l = Ωc (a). In particular,
Ωc (0) = lc.

In short, taking

5a
c := a.1 + 	c (a.1,Ωc (a)) and la

c := Ωc (a)

solves our original problem �c (5a
c ,la

c) = 0. We can expose uniformly the ‘amplitude’ parameter of a
in 5a

c by setting

7c (a) := 	c (a.1,Ωc (a)),

and computing

7c (0) = 	c (0,lc) = 0, 7c (a) = a
∫ 1

0
Da7c (aU) dU, and 5 = a

(
.1 +

∫ 1

0
Da7c (aU) dU

)
.

Likewise, we can write

la
c = lc + aba

c and ba
c :=

∫ 1

0
DaΩc (aU) dU.

This concludes our first proof of Theorem 1.1.

3.5. Proof of local uniqueness up to shifts and translations

We discuss our decision at the start of Section 3.4 to specialize the finite-dimensional component .
to . = a.c

1. We consider two aspects of this choice to allay any concerns about its peculiarity or
restrictiveness.

Firstly, up to a shift, any solution 5 to �c (5,l) = 0 has this form 5 = a.c
1 + 7, with a ∈ R and 7

orthogonal to .0, .c
1, and .c

2.

Lemma 3.8. Let l ∈ R. If 5 ∈ X solves �c (5,l) = 0, then there exist a, \ ∈ R and 7 ∈ X∞
c such

that

5 = S\ (a.c
1 + 7). (3.35)

In particular, �c (a.c
1 + 7,l) = 0, as well.

Proof. We prove the last sentence first. If a solution 5 to �c (5,l) = 0 has the form (3.35), then the
shift invariance of �c from (3.11) implies

�c (a.c
1 + 7,l) = S−\�c (S\ (a.c

1 + 7),l) = S−\�c (5,l) = 0.

It remains to prove the decomposition (3.35). We can always write

5 = a1.
c
1 + a2.

c
2 + 7̃ (3.36)
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for some a1, a2 ∈ R and 7̃ ∈ X∞
c . Write

a1 − ia2 = aei\

in polar coordinates, where a, \ ∈ R. (If a1 = a2 = 0, just take a= 0 and 7 = 7̃.) The identities
.c

1(x) = 2Re[eix .̂c
1(1)] from (2.12) and .c

2 = S−c/2.c
1 from (2.16) then imply

a1.
c
1(x) + a2.

c
2(x) = a1.

c
1(x) + a2S−c/2.c

1(x) = 2Re[(a1 − ia2)eix .̂c
1 (1)] = a(S\.c

1) (x).

Returning to (3.36), we have

5 = S\ (a.c
1 + 7), 7 := S−\ 7̃.

We conclude by checking that if 7̃ ∈ X∞
c , then 7 = S−\ 7̃ ∈ X∞

c . That is, we assume

〈7̃, .c
1〉 = 〈7̃, .c

2〉 = 0, (3.37)

and we want to show

〈S−\ 7̃, .c
1〉 = 〈S−\ 7̃, .c

2〉 = 0. (3.38)

By the orthogonality condition (2.17), our assumption (3.37) is equivalent to

̂̃7(1) · .̂c
1(1) = 0, (3.39)

and our desired conclusion (3.38) is equivalent to

(e−i\ ̂̃7(1)) · .̂c
1(1) = 0. (3.40)

Certainly (3.39) implies (3.40). �

This lemma provides the local uniqueness of our solutions up to shifts, which combines with the local
uniqueness up to translations (as discussed after the proof of Corollary 3.3) to give the statement at the
end of Theorem 1.1. Specifically, let 5 and l solve �c (5,l) = 0 with ‖5‖H2

per
and |l−lc | sufficiently

small. Then 5 = S\ (a.c
1 + 7) for some a ∈ R and 7 ∈ X∞

c , and ‖a.c
1 + 7‖H2

per
= ‖S\ (a.c

1 + 7)‖.
By orthogonality, this ensures that |a| and ‖7‖H2

per
are sufficiently small. The uniqueness result from

Section 3.3 implies7 = 	c (a.c
1,l), and then the uniqueness result from Section 3.4 impliesl = Ωc (a).

Another consequence of this lemma is that it shows why trying an ansatz of the form 5 = a.c
1+b.c

2+7
in the hope that a and b would be enough to manage the two equations in (3.31) will not be effective.
Informally, the problem simply does not ‘see’ the two unknowns a and b simultaneously. And such an
ansatz would not expose the single uniform amplitude parameter that we desire, anyway.

Additionally, there is nothing special about .c
1 here, and we could just as easily show that any solution

to �c (5,l) is a shifted version of a solution of the form a.c
2 + 7. In fact, we could have run the bifur-

cation argument above using .c
2 throughout in place of .c

1. This hinges on expressing the transversality
inequality of Corollary 2.3 in terms of .c

2, which is possible because of the calculation
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〈L′
c [lc].c

2, .c
2〉 = 〈L′

c [lc]mx.
c
1, mx.

c
1〉 = 〈mxL′

c [lc].c
1, mx.

c
1〉 = −〈L′

c [lc].c
1, m2

x .
c
1〉 = 〈L′

c [lc].c
1, .c

1〉.
(3.41)

The second equality relies on the commutativity of the Fourier multipliers mx and L′
c [lc] on H3

per (R2).
However, since we can write any solution in the form

S\ (a.c
1 + 7) = S\ (aSc/2.c

2 + 7) = S\+c/2(a.c
2 + S−c/27)

with 7, and thus (by the end of the proof of Lemma 3.8) S−c/27, orthogonal to .c
1 and .c

2, there is not
much point to this line of inquiry.

Next, we consider further the special form of solutions to �c (5,l) = 0 as given in Theorem 1.1:
they are 5 = a(.c

1 + 7) with 7 again orthogonal to .c
1 and .c

2. This may appear to be less general
than the result of Lemma 3.8, which says that, up to a shift, any solution has the form a.c

1 + 7̃, with
7̃ satisfying the perennial orthogonality conditions. Of course, if a ≠ 0, then this solution factors as
a(.c

1+a−17̃), and that has the form given by Theorem 1.1. It turns out that all small nontrivial solutions
to �c (5,l) = 0 have this special factored form (again, up to a shift from Lemma 3.8).

We prove a negative version of this result, which says that if the shifted solution from Lemma 3.8
has the form 5 = 7̃ alone, i.e., if a= 0, and if this solution is sufficiently small, then it is trivial.

Lemma 3.9. There exists X∞c > 0 such that if 7 ∈ X∞
c and l ∈ R with ‖7‖H2

per
+ |l − lc | < X∞c , and

if �c (7,l) = 0, then 7 = 0.

Proof. Define

F̃∞
c : X∞

c × R→ Y∞
c : (7,l) ↦→ (IY − Πc)�c (7,l).

The notation and structure of this map are intentionally similar to those of F∞
c in (3.25), and the spaces

X∞
c and Y∞

c are defined in (3.22). Then F̃∞
c (0,l) = 0 for all l and

D7F̃∞
c (0,lc) = (IY − Πc)Lc [lc]

��
X∞

c

As with the analogous linearization in Section 3.3, this operator has trivial kernel and cokernel and
therefore is invertible. The implicit function theorem gives X∞c , n∞c > 0 and a map

	∞
c : (lc − X∞c ,lc + X∞c ) → X∞

c

such that F̃∞
c (	∞

c (l),l) = 0 for |l−lc | < X∞c . Moreover, if |l−lc | < X∞c and ‖7‖H2
per

< n∞c , and if
F̃∞

c (7,l) = 0, then 7 = 	∞
c (l). But F̃∞

c (0,l) = 0 for all l, and so we must have 	∞
c (l) = 0 for all

l. Conversely, if �c (7,l) = 0 then F̃∞
c (7,l) = 0, too, and so if |l − lc | < X∞c and ‖7‖H2

per
< n∞c ,

then 7 = 	∞
c (l) = 0. �

Lemmas 3.8 and 3.9 together effectively tell us that the only worthwhile form of solutions to
�c (5,l) = 0 is 5 = a(.c

1 + 7). When we study this problem quantitatively in Section 6.1, we will
start directly with an ansatz of this form.
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4. The Lyapunov centre formulation

We solve the problem

�c (5,l) + W5′ = 0 (4.1)

for 5 ∈ H2
per (R2) and l, W ∈ R. The extra unknown W closes the overdetermined system that results

from the two solvability conditions induced by the two-dimensional cokernel; we show momentarily that
any solution to (4.1) necessarily has W = 0, and so solving (4.1) really returns solutions to our original
problem �c (5,l) = 0. This strategy is based on the work of Wright and Scheel in [40, Sec. 8]; in their
words, ‘[t]he idea is to augment the Hamiltonian equation with a dissipation term, for instance W∇H,
so that for W ≠ 0, the system is gradient-like and does not possess any small non-equilibrium solutions’.
In turn, the proof there was motivated by a proof of the Lyapunov centre theorem [2, Thm. 3.2].

Some (though not all) of the implicit function theorem arguments are quite similar to those in
Sections 3.3 and 3.4, so we move rather more briskly here. We emphasize that while the existence
proof developed in this section is not strictly necessary for logical completeness of our argument, we
see it as a potentially useful alternative to the first proof in that it is completely independent of the
gradient structure.

First we show that any nonconstant solution to (4.1) has W = 0; the following calculation is similar to
[2, Lem. 3.1], which was done in preparation for their proof of the Lyapunov centre theorem. If (4.1)
holds, then

0 = 〈�c (5,l) + W5′, 5′〉 = 〈�c (5,l), 5′〉 + W‖5′‖2 = W‖5′‖2. (4.2)

Since 5 is nonconstant, we must have W = 0.
In (4.2) we used the derivative orthogonality property

〈�c (5,l), 5′〉 = 0,

as established in Corollary 3.2 using the gradient formulation. However, with some more work, this can
be checked directly from the definition of �c.

Lemma 4.1. Let 5 ∈ H1
per (R2) and define

Jc (5,l) := c2l2 (q
′
1)

2

2
+ c2l2 (q

′
2)

2

2w
+ V1(q2 − S−lq1) + V2(q1 − S−lq2) + I (5,l), (4.3)

where

I (5,l) (x) :=
∫ x−l

x
V ′

1(S
lq2 − q1)q′1 +

∫ x−l

x
V ′

2(S
lq1 − q2)q′2.

Then

〈�c (5,l), 5′〉 =
∫ c

−c

mxJc (5,l). (4.4)

In particular, since Jc (5,l) is 2c-periodic,

〈�c (5,l), 5′〉 = 0.

Proof. The proof of (4.4) is a direct calculation using the definition of Jc above and the definition of
�c in (1.9), but, for clarity, we provide some details as to how Jc naturally arises. Firstly, computing
the dot product yields
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�c (5,l) · 5′ = c2l2q′′1 q
′
1 +

c2

w
l2q′′2 q

′
2 + V ′

1(q2 − S−lq1)q′2 − V ′
1(S

lq2 − q1)q′1
+ V ′

2(q1 − S−lq2)q′1 − V ′
2(S

lq1 − q2)q′2.

The first two terms are perfect derivatives, but the others involving V ′
1 and V ′

2 need some modification.
We work with just the V ′

1 terms to show the origin of the first of the two integrals in I. Adding zero, we
have

V ′
1(q2 − S−lq1)q′2 − V ′

1(S
lq2 − q1)q′1 = V ′

1(q2 − S−lq1)q′2 − V ′
1 (q2 − S−lq1)S−lq′1

+ V ′
1(q2 − S−lq1)S−lq′1 − V ′

1(S
lq2 − q1)q′1

= V ′
1(q2 − S−lq1) (q′2 − S−lq′1)

+ (S−l − 1) [V ′
1(S

lq2 − q1)q′1] .

Here we have factored

V ′
1(q2 − S−lq1)S−lq′1 = S−l [V ′

1(S
lq2 − q1)q′1] .

to get the second term in the second equality above. In the first term of that second equality, we
immediately recognize the perfect derivative

V ′
1(q2 − S−lq1) (q′2 − S−lq′1) = mx [V1(q2 − S−lq1)] .

Finally, we use the identity

mx

[∫ x−l

x
f
]
= f (x − l) − f (x) = [(S−l − 1)f ] (x)

to rewrite

(S−l − 1) [V ′
1(S

lq2 − q1)q′1] = mx

[∫ x−l

x
V ′

1(S
lq2 − q1)q′1

]
.

Repeating these calculations on the V ′
2 terms shows �c (5,l) · 5′ = mxJc (5,l), and that is (4.4). �

Remark 4.2. The structure of the operator Jc in (4.3) bears some resemblance to the first integral
in [19, Prop. 3.10] for the spatial dynamics formulation of the travelling wave problem. Indeed, the
existence of that conserved quantity from the spatial dynamics viewpoint inspired us to search for a
related conserved quantity in this travelling wave framework, and Jc naturally emerged. Moreover, Jc
is constant on solutions to �c (5,l) = 0 in the sense that if 5 and l satisfy this equation, it can be
checked that mxJc (5,l) = 0. This leads to another (related) proof that the existence of a nonconstant
solution to (4.1) forces W = 0: if 5 and l meet (4.1), it follows that

mxJc (5,l) = −W
(
(q′1)

2 +
(q′2)

2

w

)
.

If W > 0, then mxJc (5,l) is nonpositive and not identically zero; since Jc (5,l) is periodic, this is
impossible. A similar contradiction results if W < 0.
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Now we study the problem (4.1) with a Lyapunov–Schmidt decomposition as in Sections 3.3 and
3.4. Using the projection operator Πc and the function spaces X∞

c , Y∞
c , and Zc from Section 3.2, we

split (4.1) into the pair of equations

(IY − Πc)�c (. + 7,l) + W(IX − Πc) (.′ + 7′) = 0

Πc�c (. + 7,l) + WΠc (.′ + 7′) = 0,

where 5 = . + 7 and . ∈ Zc, 7 ∈ X∞
c . We can simplify the terms involving W:

Πc.
′ = mxΠc. = .′ and Πc7

′ = mxΠc7 = 0,

since Πc and mx commute by Lemma 3.5 and since Πc. = . while Πc7 = 0. Then the decomposition
reads

(IX − Πc)�c (. + 7,l) + W7′ = 0 (4.5a)
Πc�c (. + 7,l) + W.′ = 0, (4.5b)

and this is the problem that we will solve here.
First we address the infinite-dimensional equation (4.5a). Using the same notation as in Section 3.3,

define

F∞
c : X∞

c × Zc × R2 → Y∞
c : (7, .,l, W) ↦→ (IX − Πc)�c (. + 7,l) + W7′.

Since Πc7
′ = 0 as computed above, and since

〈7′, .0〉 = −〈7, .′0〉 = 0

by integration by parts and the identity .′0 = 0 from (2.11), we do indeed have 7′ ∈ Y∞
c for 7 ∈ X∞

c .
That is,F∞

c does indeed map intoY∞
c . Next,F∞

c (0, 0,l, W) = 0 for alll and W, and D7F∞
c (0,lc, 0, 0) =

(IX − Πc)Lc [lc]
��
X∞

c
is invertible. Consequently, by the implicit function theorem, all suitably small

solutions to F∞
c (7, .,l, W) = 0 have the form 7 = 	c (.,l, W) with 	c (0,l, W) = 0 for all l and W.

Before proceeding, we note that the same proof as for part (iii) of Lemma 3.7 (which did not rely on the
gradient structure at all) yields

D.	(0,lc, 0) = 0. (4.6)

Now we specialize to . = a.c
1 and solve the finite-dimensional equation (4.5b) by studying

F0
c (l, W, a) := Πc�c (a.1 + 	c (a.c

1,l, W),l) − Wa.c
2 = 0.

Here we have used mx.
c
1 = −.c

2. Since F0
c (l, W, 0) = 0, as in Section 3.4 we have the factorization

F0
c (l, W, a) = aHc (l, W, a), Hc (l, W, a) :=

∫ 1

0
DaF0

c (l, W, aU) dU.

We solve Hc (l, W, a) = 0.
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Firstly, we compute

DaF0
c (l, W, a) = ΠcD5�c (a.1 + 	c (a.c

1,l, W),l)
(
.c

1 + D.	c (a.c
1,l, W).c

1
)
− W.c

2.

This, together with (4.6) and ΠcLc [lc] = 0, implies Hc (lc, 0, 0) = 0. Next, differentiate with respect
to (l, W) ∈ R2 and write this derivative as a linear combination of partial derivatives:

D(l,W)Hc (lc, 0, 0) (l, W) = lDlHc (lc, 0, 0) + WDWHc (lc, 0, 0). (4.7)

We compute each of these partial derivatives separately.
For DlHc, we calculate

Hc (l, 0, 0) = ΠcD5�c (0,l)
(
.c

1 + D.	c (0,l, 0).c
1
)
,

and use the product rule and the identities ΠcLc [lc] = 0 and D.	c (0,lc, 0) = 0 to obtain

DlHc (lc, 0, 0) = ΠcL′
c [lc].c

1 = 〈L′
c [lc].c

1, .c
1〉.

c
1. (4.8)

Above we used the following lemma to simplify the projection calculation.

Lemma 4.3. 〈L′
c [lc].c

1, .c
2〉 = 0.

We give two proofs of this lemma in Appendix A.5, one using the gradient formulation, and one
using directly the definitions of L′

c [lc], .c
1, and .c

2.
Next, we work on DWHc. Since 	c (0,l, W) = 0 for all l and W, we have

Hc (lc, W, 0) = ΠcLc [lc]
(
.c

1 + D.	c (0,lc, W).c
1
)
− W.2 = −W.2,

thanks to ΠcLc [lc] = 0 once again. Thus

DWHc (lc, 0, 0) = −.c
2. (4.9)

We combine (4.7), (4.8) and (4.9) to find

D(l,W)Hc (lc, 0, 0) (l, W) = l〈L′
c [lc].c

1, .c
1〉.

c
1 − W.c

2.

Since 〈L′
c [lc].c

1, .c
1〉 ≠ 0 by Corollary 2.3, and since .c

1 and .c
2 form a basis for Zc, we conclude that

D(l,W)Hc (lc, 0, 0) is an invertible linear operator from R2 to Zc. By the implicit function theorem, for
suitably small l, W and a, we can solve Hc (l, W, a) = 0 with l = Ωc (a) and W = Γc (a) for some maps
Ωc and Γc with Ωc (0) = lc and Γc (0) = 0.

It follows that taking

5a
c := a.c

1 + 	c (a.c
1,Ωc (a), Γc (a)) and la

c := Ωc (a)

solves�c (5a
c ,la

c)+Γc (a)5′ = 0. Since 5̂a
c (±1) ≠ 0, 5a

c is nonconstant, and so by the calculation in (4.2)
we really have Γc (a) = 0 for all a. Additionally, if we put 7c (a) = 	c (a.c

1,Ωc (a), 0), then 7c (0) = 0,
and so

5a
c = a

(
.c

1 +
∫ 1

0
Da7c (aU) dU

)
,

which is the representation that we want. This concludes our second proof of Theorem 1.1.
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5. Periodic solutions with symmetry

We first work out an abstract notion of symmetry in Section 5.1 and quickly show in Section 5.2 how
bifurcation unfolds in its presence. Then we prove in Section 5.3 that mass and spring dimers actually
possess such symmetries. The point of this analysis is that when the lattice has a symmetry, the periodic
travelling wave solutions can be chosen to respect that symmetry. This proves Theorem 1.1 for mass
and spring dimers, which recovers the results of [16, 20].

5.1. Symmetry operators and their properties

Definition 5.1. A bounded linear operator S : L2
per (R2) → L2

per (R2) is a symmetry if the following
hold.

(i) Gc (S5,l) = Gc (5,l) for all 5 ∈ H2
per (R2) and any c ∈ R, where Gc is defined in (3.8).

(ii) S25 = 5 for all 5 ∈ L2
per (R2).

(iii) 〈S5, (〉 = 〈5,S(〉 for all 5, ( ∈ L2
per (R2).

(iv) mxS5 = −S5′ for all 5 ∈ H2
per (R2).

We point out that while shift operators Sd do satisfy the invariance property (i) above, and while S±c

also satisfies (ii), shifts in general do not meet (iii) and (iv). The symmetries that we construct will not
rely on shift operators.

Here are some useful properties of symmetries for our problem.

Lemma 5.2. Let S be a symmetry.

(i) �c (S5,l) = S�c (5,l) for all 5 ∈ H2
per (R2) and l ∈ R.

(ii) Lc [l]S = SLc [l] and L′
c [l]S = SL′

c [l] for all l.
(iii) S.c

1 = ±.c
1 if and only if S.c

2 = ∓.c
2.

Proof.

(i) Since Gc (S5,l) = Gc (5,l) for all 5 ∈ H2
per (R2) and l ∈ R, we differentiate with respect to 5

and use the chain rule (much as we did in the proof of part (ii) of Corollary 3.2) to find

D5Gc (5,l)( = D5Gc (S5,l)S(

for all ( ∈ H2
per (R2). Using the gradient formulation, this reads

〈�c (5,l), (〉 = 〈�c (S5,l),S(〉 = 〈S�c (S5,l), (〉,

where the second equality is the adjoint property of S. Since this is true for all ( ∈ H2
per (R2), we

have S�c (S5,l) = �c (5,l).
(ii) This follows from part (i) and the chain rule.
(iii) We use the relations mx.

c
1 = −.c

2 and mx.
c
2 = .c

1 from Corollary 2.2. If S.c
1 = ±.c

1, then

S.c
2 = −Smx.

c
1 = mxS.c

1 = ±mx.
c
1 = ∓mx.

c
2.

Conversely, if S.c
2 = ∓.c

2, then
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S.c
1 = Smx.

c
2 = −mxS.c

2 = −(∓mx.
c
2) = ±mx.

c
2 = ±.c

1.

�

Now we adapt the nonconstant eigenfunctions .c
1 and .c

2 from Corollary 2.2 so that they respect
symmetry.

Lemma 5.3. Let S be a symmetry and define

.c
+ :=


.c

1, S.c
1 = .c

1

.c
2, S.c

1 = −.c
1

(.c
1 + S.c

1)/‖.
c
1 + S.c

1‖L2
per

, S.c
1 ≠ ±.c

1

and

.c
− :=


.c

2, S.c
1 = .c

1

.c
1, S.c

1 = −.c
1

(.c
2 − S.c

2)/‖.
c
2 − S.c

2‖L2
per

, S.c
1 ≠ ±.c

1.

(i) S.c
+ = .c

+ and S.c
− = .c

− .
(ii) The vectors .c

+ and .c
− form an orthonormal basis for Zc as defined in (3.18).

(iii) inf
|c |>c★

〈L′
c [lc].c

+, .c
+〉 > 0.

Proof. We first remark that part (iii) of Lemma 5.2 ensures that .c
± is defined in the third case of S.c

1 ≠

±.c
1: if S.c

1 ≠ ±.c
1, then also S.c

2 ≠ ±.c
2, and so both .c

1 + S.c
1 and .c

2 − S.c
2 are nonzero.

(i) This is a direct calculation.
(ii) This is obvious in the cases S.c

1 = ±.c
1. In the third case, we use part (ii) of Lemma 5.2 to compute

Lc [lc]S.c
1 = SLc [lc].c

1 = 0

and likewise Lc [lc]S.c
2 = 0. This shows .c

± ∈ ker(Lc [lc]). Next,

〈S.c
1, .0〉 = 〈Smx.

c
2, .0〉 = −〈mxS.c

2, .0〉 = 〈S.c
2, mx.0〉 = 0

and likewise 〈S.c
2, .0〉 = 0. This shows .c

± ∈ Zc.
For orthogonality, we compute

〈.c
1 + S.c

1, .c
2 − S.c

2〉 = 〈.c
1, .c

2〉 − 〈.c
1,S.c

2〉 + 〈S.c
1, .c

2〉 − 〈S.c
1,S.c

2〉. (5.1)

Now we use properties of S to rewrite

〈.c
1,S.c

2〉 = 〈S.c
1, .c

2〉 and 〈S.c
1,S.c

2〉 = 〈S2.c
1, .c

2〉 = 〈.c
1, .c

2〉.

From this and (5.1), we obtain 〈.c
1 + S.c

1, .c
2 − S.c

2〉 = 0. Since Zc is already two-dimensional, it
follows from orthogonality and linear independence that .c

+ and .c
− are a basis.

(iii) The first case that S.c
1 = .c

1 is Corollary 2.3. The second case that S.c
1 = −.c

1 is equivalent to
S.c

2 = .c
2 by part (iii) of Lemma 5.2, and then we can use the calculation in (3.41). For the third
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case that S.c
1 ≠ ±.c

1, we start by taking . ∈ Zc = span(.c
1, .c

2) and then computing via the
orthonormality of .c

1 and .c
2, (3.41), and Lemma 4.3 that

〈L′
c [lc]., .〉 = ‖.‖2

L2
per

〈L′
c [lc].c

1, .c
1〉.

With . = .c
+, we have .c

+ ∈ span(.c
1, .c

2) and ‖.c
+‖L2

per
= 1, so

〈L′
c [lc].c

+, .c
+〉 = 〈L′

c [lc].c
1, .c

1〉,

from which the positive infimum follows.
�

5.2. Bifurcation in the presence of symmetry

Let S be a symmetry and define

YS :=
{
5 ∈ L2

per (R2)
�� 〈5, .0〉 = 0 and S5 = 5

}
and XS := H2

per (R2) ∩ YS .

Part (i) of Lemma 5.2 shows that �c (5,l) ∈ YS for each 5 ∈ XS and l ∈ R. The effect of restricting
�c to map from XS × R to YS is that the restriction Lc [lc]

��
XS

now has a one-dimensional kernel and
cokernel. This, along with the transversality condition from part (iii) of Lemma 5.3, puts us in a position
to use the classical Crandall–Rabinowitz–Zeidler theorem directly, without the work in Sections 3.4 or
4 to manage the extra finite-dimensional equation.

Remark 5.4. While the Crandall–Rabinowitz–Zeidler theorem is often used to solve a problem of the
form F (x,_) = 0 with F twice continuously differentiable, this regularity is not strictly necessary;
the proof in [31, Thm. 1.5.1] really hinges on having F and Fx once continuously differentiable. This
allows us to avoid the annoying insufficient regularity in the frequency parameter l in our problem;
recall Lemma 3.6.

More precisely, we know that the three vectors .0, .c
+, and .c

− form an orthonormal basis for
ker(Lc [lc]) and ker(Lc [lc]∗); now suppose that 5 ∈ YS ∩ span(.0, .c

+, .c
−). Then by orthonormality

5 = 〈5, .0〉.0 + 〈5, .c
+〉.c

+ + 〈5, .c
−〉.c

− .

By definition of YS , we already have 〈5, .0〉 = 0, and now we compute

〈5, .c
−〉 = 〈S5, .c

−〉 = 〈5,S.c
−〉 = −〈5, .c

−〉. (5.2)

Thus 〈5, .c
−〉 = 0, and so 5 ∈ span(.c

+). This proves our claim above that .c
+ spans both the kernel and

cokernel of Lc [lc].
Alternatively, we could follow the bifurcation argument in Sections 3.3 and 3.4 and replace .c

1 with
.c
+ and .c

2 with .c
− . The only change would be the new version of the finite-dimensional problem (3.31)

〈�c (5,l), .c
+〉 = 0 (5.3a)

〈�c (5,l), .c
−〉 = 0. (5.3b)

By a calculation similar to (5.2), we always have (5.3b). Specifically, for 5 ∈ XS , we have

〈�c (5,l), .c
−〉 = 〈�c (S5,l), .c

−〉 = 〈S�c (5,l), .c
−〉 = 〈�c (5,l),S.c

−〉 = −〈�c (5,l), .c
−〉,
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thus 〈�c (5,l), .c
−〉 = 0 regardless of the form of 5 ∈ XS . (This is actually a stronger result than

our managing of the second finite-dimensional equation (3.33a) in Section 3.4, as here there are no
restrictions on the form of 5.) Last, we can solve (5.3a) using the transversality condition from part (iii)
of Lemma 5.3, exactly as we did (3.33a) in Section 3.4. The major difference in the results here is that
the solutions 5 now respect the symmetry.

5.3. Existence of symmetries for the mass and spring dimers

We will build the symmetries primarily on a ‘reflection’ operator and a ‘flip’ operator.

Lemma 5.5. The operator

(R5) (x) := 5(−x) (5.4)

has the following properties.

(i) Rmx = −mxR.
(ii) RS\ = S−\R for all \ ∈ R.
(iii) 〈R(, R5〉 = 〈5, (〉 for all 5, ( ∈ L2

per (R2).

Proof.

(i) This follows from the chain rule.
(ii) We compute

(RS\5) (x) = (S\5) (−x) = 5(−x + \) = 5(−(x − \)) = (R5) (x − \) = (S−\R5) (x).

(iii) This follows from substitution.
�

We will also use the ‘flip’ operator

J :=

[
0 1
1 0

]
, (5.5)

which commutes with R. These reflection and flip operators also appeared in the manifestation of
symmetries for spatial dynamics coordinates [19 Sec. 3.2].

5.3.1. Symmetry in the mass dimer

The mass dimer symmetry is

SM5 := −R5.

The subscript here is meant to emphasize the role of the mass ratio m = w−1 in the mass dimer analysis.
We show that SM satisfies property (i) of Definition 5.1; all of the other properties of symmetries

are quick and direct calculations. That is, we show

Gc (SM5,l) = Gc (5,l)

with Gc = c2T + P as defined in (3.8). The operator T is defined in (3.6) and P in (3.7), and it is
important here that in (3.7) we are assuming V1 = V2 =: V . In particular, we take ^ = 1.
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First we compute

2
l2 T (SM5,l) = 〈−M (R5)′′,−R5〉 = 〈RM5′′, R5〉 = 〈M5′′, 5〉 = 2

l2 T (5,l).

Here we have used m2
x R = Rm2

x , which follows from part (i) of Lemma 5.5, and also part (iii) of that
lemma to get the penultimate equality.

Next,

P (SM5,l) = 〈V (Δ+(l)SM5), 1〉,

where V (p) = (V (p1),V (p2)) for p = (p1, p2), 1 = (1, 1) and Δ+(l) is defined in (3.1). Since S±lR =

RS∓l by part (ii) of Lemma 5.5, we have

Δ+(l)SM5 = −Δ+(l)R5 = −RΔ+(−l)5 = RJΔ+(l)5. (5.6)

Here we used the property that

−Δ+(−l) = JΔ+(l) (5.7)

with J from (5.5).
Thus

P (SM5,l) = 〈V (RJΔ+(l)5), 1〉 = 〈RV (JΔ+(l)5), 1〉.

Since 1 is constant, 1 = R1, and so part (iii) of Lemma 5.5 implies

P (SM5,l) = 〈RV (JΔ+(l)5), R1〉 = 〈V (JΔ+(l)5), 1〉.

Last, since V (p) = (V (p1),V (p2)) for p = (p1, p2), we have

〈V (Jp), 1〉 =
∫ c

−c

(
V (p2) + V (p1)

)
= 〈V (p), 1〉.

We conclude

P (SM5,l) = 〈V (Δ+(l)5), 1〉 = P (5,l).

Last, we use the definitions of .c
1 and .c

2 from (2.12) and (2.13) to compute, assuming ^ = 1,

.c
1(x) =

2 cos(x)
Nc

(
2 cos(lc)
2 − c2l2

c

)
and .c

2(x) =
2 sin(x)
Nc

(
2 cos(lc)
2 − c2l2

c

)
.

This shows SM.c
1 = .c

1 and SM.c
2 = .c

2 directly. Consequently, when we run the symmetric bifurcation
argument for the mass dimer, we can just use the first case for .c

± in Lemma 5.3.

5.3.2. Symmetry in the spring dimer

The spring dimer symmetry is

SK := −RJ = −JR (5.8)

with R defined in (5.4) and J defined in (5.5). The subscript is meant to emphasize the role of the linear
spring coefficient ratio ^ in the spring dimer analysis.

https://doi.org/10.1017/jnw.2025.10007 Published online by Cambridge University Press

https://doi.org/10.1017/jnw.2025.10007


32 Faver et al.

Again, we just check that Gc (SK5,l) = Gc (5,l) in the case w = m−1 = 1, as the other symmetry
properties from Definition 5.1 are evident. With Gc = c2T + P and T defined in (3.6) and P in (3.7),
we have

2
l2 T (SK5,l) = 〈−(RJ5)′′,−RJ5〉 = 〈RJ5′′, RJ5〉 = 〈J5′′, J5〉 = 〈J25′′, 5〉 = 〈5′′, 5〉

=
2
l2 T (5,l).

Here we have again used properties of R from Lemma 5.5 and also J∗ = J−1 = J.
Next,

P (SK5,l) = 〈V (Δ+(l)SK5), 1〉,

with V (p) = (V1(p1),V2(p2)) for p = (p1, p2), 1 = (1, 1), and Δ+(l) defined in (3.1). We have

Δ+(l)SK5 = −Δ+(l)RJ = RJΔ+(l)J

by (5.6) and (5.7), and so

P (SK5,l) = 〈V (RJΔ+(l)J5), 1〉 = 〈V (JΔ+(l)J5), 1〉.

We compute

JΔ+(l)J = Λ(l)Δ+(l), Λ(l) :=

[
Sl 0
0 S−l

]
,

and, for p = (p1, p2) ∈ L2
per (R2),

〈V (Λ(l)p), 1〉 =
∫ c

−c

V1(Slp1) +
∫ c

−c

V2(S−lp2) =
∫ c

−c

(
V1(p1) + V2(p2)

)
= 〈V (p), 1〉.

We conclude

P (SK5,l) = 〈V (Λ(l)Δ+(l)5), 1〉 = 〈V (Δ+(l)5), 1〉 = P (5,l).

Unlike in the mass dimer, it is not always the case that SK.
c
1 = .c

1 for the spring dimer. Indeed, the
situation is rather more complicated here, as we outline below. It is for this reason that we developed
Lemma 5.3, which is unnecessarily elaborate for the mass dimer.

Lemma 5.6. Assume w= 1.

(i) SK.
c
1 = .c

1 if and only if lc = jc for some even j ∈ Z.
(ii) SK.

c
1 = −.c

1 if and only if lc = jc for some odd j ∈ Z.

We prove this lemma in Appendix B.6. A consequence is that outside the isolated situations lc = jc
for some j ∈ Z, we must use the third, more complicated case of Lemma 5.3 to obtain symmetric
eigenfunctions for the spring dimer.

We conclude this discussion of symmetry by noting that not all solutions to the travelling wave
problem are symmetric. Indeed, since the travelling wave problem is shift invariant (part (ii) of

https://doi.org/10.1017/jnw.2025.10007 Published online by Cambridge University Press

https://doi.org/10.1017/jnw.2025.10007


Journal of Nonlinear Waves 33

Corollary 3.2), any solution 5 to �c (5,l) = 0 generates other solutions S\5 for \ ∈ R. Still working
in the spring dimer, suppose that 5 is symmetric with respect to SK, so SK5 = 5. We compute

SKS\5 = −JRS\5 = −JS−\R5 = S−\ (−JR)5 = S−\SK5 = S−\5.

Typically S−\5 ≠ 5 unless \ is an even integer multiple of c. Thus the shifted solution need not be
symmetric.

6. Quantitative results

Our previous proofs have fixed the wave speed c to be greater than the speed of sound and yielded
families of periodic solutions parametrized in ‘amplitude’, where the range of the amplitude has been
allowed to depend on c. In Section 6.1, we develop tools to track dependence on c and its variation from
the speed of sound. Such quantitative results have been essential to all of the existing nanopteron proofs
that incorporate periodic solutions, and we expect the same to be necessary in any future constructions.
We illustrate such an application in Section 6.2 for the long wave limit in dimer FPUT.

6.1. An abstract quantitative bifurcation theorem

We first prove a very abstract bifurcation result from which our quantitative result for lattice periodics
follows easily. This result subsumes all of the existing quantitative periodic constructions for lattices –
all of which, we emphasize, relied on symmetry to control (co)kernel dimensionality – and does not
strictly depend on the long wave structure of the problem considered more broadly here. That is, we
claim that any of the prior quantitative periodic proofs follows from Theorem 6.2 below.

We rely on the following fixed-point theorem, which was proved as [20, Lem. C.1].

Lemma 6.1. For 0 < n < n0, let X d be a Banach space and let Fn : X d × R → X d be a family of
maps. Suppose that for some C0, a0, b0 > 0, if x, x̀ ∈ X d and a ∈ R with ‖x‖X d , ‖x̀‖X d ≤ b0 and
|a| ≤ a0, then

‖Fn (x, a)‖X d ≤ C0
(
|a| + ‖x‖2

X d

)
(6.1)

and

‖Fn (x, a) − Fn (x̀, a)‖X d ≤ C0
(
‖x‖X d + ‖x̀‖X d + |a|

)
‖x − x̀‖X d (6.2)

for all 0 < n < n0. Then there exist a1, r1 > 0 such that for each |a| ≤ a1 and 0 < n < n0, there is a
unique xa

n ∈ X d with xa
n = Fn (xa

n , a) and ‖xa
n ‖X d ≤ r1.

Moreover, suppose that there is L0 > 0 such that

‖Fn (x, a) − Fn (x, à)‖X d ≤ L0 |a − à| (6.3)

for all x ∈ X d with ‖x‖X d ≤ b0, a, à ∈ R with |a|, |à| ≤ a0, and 0 < n < n0. Then there is L1 > 0 such
that

‖xa
n − xà

n ‖X d ≤ L1 |a − à| (6.4)

for all 0 < n < n0 and a, à ∈ R with |a|, |à| ≤ a1.

Here is our primary abstract result. It is very technical. We discuss the application of this result
to our long wave problem in Section 6.2 below, but for now we encourage the reader to think of the
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map �n in the theorem as �cn from (1.9) with c2
n = c2

★ + n2 and to think of the spaces X r below
as

{
5 ∈ Hr

per (R2)
�� 〈5, .0〉 = 0

}
with the special case of d = 2. The conclusions of this theorem are a

quantitative version of the results of Theorem 1.1 in a much more abstract context.

Theorem 6.2. Let {X r}r≥0 be a family of Hilbert spaces such that X r+s is continuously embedded in
X r for each s ≥ 0. Denote the inner product on X r by 〈·, ·〉r and, for simplicity, let 〈·, ·〉 := 〈·, ·〉0; denote
the norm on X r by ‖ · ‖r . Suppose that for 0 < n < n0 and some d > 0, there is a map

�n : X d × R→ X 0 : (5,l) ↦→ �n (5,l)

with the following properties.

(i) [Branch of trivial solutions] �n (0,l) = 0 for all l ∈ R.
(ii) [Regularity] The partial derivatives D5�n and D2

55�n exist and are continuous from X d ×R to
X 0, and the partial derivative D2

5l�n (0, ·) exists and is continuous on R.
(iii) [(Co)kernel dimensionality] There is ln ∈ R such that

ker(D5�n (0,ln )) = span(.n ) and ker(D5�n (0,ln )∗) = span(-n
1 , -n

2 )

for some vectors .n , -n
1 , -n

2 ∈ X 0 with ‖.n ‖0 = ‖-n
1 ‖0 = 1 (the case -n

2 = 0 is allowed).
(iv) [Uniform transversality] inf0<n <n0 |〈D2

5l�n (0,ln ).n , -n
1 〉| > 0.

(v) [Uniform coercivity] For each r ≥ 0, there is Cr > 0 such that if 7 ∈ X r+d and ( ∈ X r with

D5�n (0,ln )7 = (, 〈7, .n 〉 = 〈7, -n
1 〉 = 〈7, -n

2 〉 = 0, and
〈(, .n 〉 = 〈(, -n

1 〉 = 〈(, -n
2 〉 = 0,

then ‖7‖r+d ≤ Cr ‖(‖r .
(vi) [Bootstrapping] If 5 ∈ X d such that D5�n (0,ln )5 ∈ X r for some r ≥ 0, then 5 ∈ X r+d.
(vii) [Uniform mapping and Lipschitz estimates] There is b0 > 0 such that the following estimates

hold for each r ≥ 0 (not necessarily uniformly in r):

sup
0<n <n0

‖D2
5l�n (0,ln )‖X r+d→X r < ∞,

sup
0<n <n0

|l−ln |<b0, | l̀−ln |<b0
l≠l̀

‖D2
5l�n (0,l) − D2

5l�n (0, l̀)‖X r+d→X r

|l − l̀ | < ∞,

sup
0<n <n0

‖5‖r+d+|l−ln |<b0

‖D2
55�n (5,l)‖X r+d×X r+d→X r < ∞

and

sup
0<n <n0

‖5‖r+d+|l−ln |<b0, ‖5̀‖r+d+| l̀−ln |<b0
(5,l)≠(5̀,l̀)

‖D2
55�n (5,l) − D2

55�n (5̀, l̀)‖X r+d×X r+d→X r

‖5 − 5̀‖r+d + |l − l̀ |
< ∞.

(viii) If -n
2 ≠ 0, then there are a Banach space Wn with X d ⊆ Wn ⊆ X 0 and a nonzero linear

operator Tn : Wn → X 0 with the following properties.
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• 〈�n (5,l), Tn 5〉 = 0 for all 5 ∈ X d and l ∈ R.
• Tn .

n = -n
1 .

• There is gn ∈ R \ {0} such that Tn -
n
1 = ±gn -n

2 and Tn -
n
2 = ∓gn -n

1 .

Then there is a★ > 0 such that for |a| < a★ and 0 < n < n0, there exist 5a
n ∈ ∩∞

r=0X
r and la

n ∈ R such
that �n (5a

n ,la
n ) = 0 with

5a
n = a(.n + 7a

n ), 〈7a
n , .n 〉 = 0, 70

n = 0 and la
n = ln + ba

n , b0
n = 0.

The following mapping and Lipschitz estimates also hold for each r (not necessarily uniformly in r):

sup
0<n <n0
|a |<a★

‖7a
n ‖r + |ba

n | < ∞ and sup
0<n <n0

|a |<a★, |à |<a★
a≠à

‖7a
n − 7à

n ‖r

|a − à| + |ba
n − b à

n |
|a − à| < ∞. (6.5)

Proof. We break the proof into several steps.

(1) The Lyapunov–Schmidt reduction. Since �n (0,l) = 0 for all l by Hypothesis (i) and D2
55�n

exists and is continuous on X d×R by Hypothesis (ii), the fundamental theorem of calculus implies

�n (5,l) = D5 (0,l)5 +
∫ 1

0

∫ 1

0
tD2

55�n (st5,l) [5, 5] ds dt

for all 5 ∈ X d and l ∈ R. Next, since D2
5l�n (0, ·) exists and is continuous on R by Hypothesis

(ii) again, another application of the fundamental theorem of calculus yieldsm

D5�n (0,l + b) = D5�n (0,l) + bD2
5l�n (0,l) +

∫ 1

0
b
(
D2
5l�n (0,l + tb) −D2

5l�n (0,l)
)

dt

for all l, b ∈ R. Together with D5�n (0,ln ).n = 0 from Hypothesis (iii), these two expansions
give

�n (a(.n + 7),ln + b) = aD5�n (0,ln )7 + abD2
5l�n (0,ln ).n − aRn (7, b, a) (6.6)

for all 7 ∈ X d with 〈7, .n 〉 = 0 and b, a ∈ R, where

Rn (7, b, a) := −bD2
5l�n (0,ln )7

− a
∫ 1

0

∫ 1

0
tD2

55�n (sta(.n + 7),ln + b) [.n + 7, .n + 7] ds dt

− b

∫ 1

0

(
D2
5l�n (0,ln + tb) − D2

5l�n (0,ln )
)
(.n + 7) dt.

(6.7)

We will use the expansion (6.6) to obtain a pair of fixed-point equations for 7 and b. Put

Πn 5 := 〈5, -n
1 〉-

n
1 + 〈5, -n

2 〉-
n
2 . (6.8)

Then �n (a(.n + 7),ln + b) = 0 if and only if(IX 0 − Πn )�n (a(.n + 7),ln + b) = 0 (6.9a)
Πn�n (a(.n + 7),ln + b) = 0. (6.9b)

(6.9)
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(2) The preliminary equation for 7. It follows from the expansion (6.6) that (6.9a) is equivalent to

(IX 0 − Πn )D5�n (0,ln )7 = (IX 0 − Πn )
(
Rn (7, b, a) − bD2

5l�n (0,ln )7
)
. (6.10)

Put

X∞
n :=

{
7 ∈ X d

�� 〈7, .n 〉 = 0
}

and Y∞
n := (IX 0 − Πn ) (X 0). (6.11)

Since, by Hypothesis (iii), D5�n (0,ln ) has trivial kernel on X∞
n and trivial cokernel in Y∞

n , for
each ( ∈ Y∞

n , there is a unique 7 ∈ X∞
n such that D5 (0,ln )7 = (. We write 7 := D5 (0,ln )−1(.

With this notation, (6.10) is equivalent to

7 = D5�n (0,ln )−1(IX 0 − Πn )
(
Rn (7, b, a) − bD2

5l�n (0,ln ).n
)
. (6.12)

This is our preliminary fixed-point equation for 7, but it will need some subsequent modification,
as the term bD2

5l�n (0,ln ).n is formally O(1) in b and thus not suitably small for contractive
purposes.

(3) The preliminary equation for b. We now turn our attention to the second, finite-dimensional
equation (6.9). From Hypothesis (iii), we have

〈D5�n (0,ln )7, -n
j 〉 = 〈D5�n (0,ln )7, -n

j 〉0 = 〈7, D5�n (0,ln )∗-n
j 〉d = 0, j = 1, 2, (6.13)

If -n
2 ≠ 0, the argument in Appendix B.5.1 that proved Lemma 4.3 can be adapted (take Tn = mx)

using the properties of Tn in Hypothesis (viii) to show

〈D2
5l�n (0,ln ).n , -n

2 〉 = 0. (6.14)

The calculations (6.13) and (6.14) then imply that (6.9) is equivalent to the two equations
b〈D2

5l�n (0,ln ).n , -n
1 〉 = 〈Rn (7, b, a), -n

1 〉 (6.15a)
〈Rn (7, b, a), -n

2 〉 = 0. (6.15b)
( )

Hypothesis (iv) implies that (6.15) is equivalent to

b = PnRn (7, b, a), Pn ( :=
〈(, -n

1 〉
〈D2

5l�n (0,ln ).n , -n
1 〉

(6.16)

This is our preliminary fixed-point equation for b, but, like the preliminary equation for 7, it too
needs some adjustment. The problem here is that estimates on Rn (7, b, a) in ‖ · ‖r will depend on
estimates in 7 in ‖ · ‖r+d, and so we will not get estimates within the same norm for contractive
purposes.

(4) The final fixed-point system. Put

	n (7, b, a) := D5�n (0,ln )−1(IX 0 − Πn )
[
Rn (7, b, a) −

(
PnRn (7, b, a)

)
D2
5l�n (0,ln ).n

]
(6.17)

and

Ξn (7, b, a) := PnRn (	n (7, b, a), b, a). (6.18)
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Then the preliminary fixed-fixed point equations (6.12) and (6.16) for 7 ∈ X∞
n and b ∈ R are

equivalent to

7 = 	n (7, b, a)
b = Ξn (7, b, a),

(6.19)

and this system will turn out to have the right contraction estimates.
(5) Solving the third equation (6.15). Before we solve (6.19) with a quantitative contraction mapping

argument that is uniform in n and a, we need to be sure that solutions 7 and b to (6.19) really do
yield solutions to our original problem �n (a(.n + 7),ln + b) = 0. That is, we need to show that
solutions to (6.19) also meet the third equation (6.15). Certainly this third equation is met if -n

2 = 0,
so assume -n

2 ≠ 0 and invoke Hypothesis (viii).
We first redo the proof of Lemma 3.5 with mx replaced by Tn to show that Tn and Πn commute.

Next, we use the equivalence of (6.17) and (6.10) to replicate the calculation in (3.29) and conclude
that if 7 = 	n (7, b, a), then

±agn 〈�n (a(.n + 7),ln + b), -n
2 〉 = 0.

Since gn ≠ 0, we have

〈�n (a(.n + 7),ln + b), -n
2 〉 = 0 (6.20)

for all 7, b, and a ≠ 0 with 7 = 	n (7, b, a). Finally, for a ≠ 0, by (6.6) we have

Rn (7, b, a) = D5�n (0,ln )7 + bD2
5l�n (0,ln ).n − a−1�n (a(.n + 7),ln + b).

Combining (6.13), (6.14) and (6.20) yields 〈Rn
2 (7, b, a), -n

2 〉 = 0. This is (6.15).
(6) Applying Lemma 6.1. To solve the fixed-point problem (6.19) and consequently our original

problem, we will apply this lemma to the family of maps

Fn : (X∞
n × R) × R→ X∞

n × R : (7, b, a) ↦→
(
	n (7, b, a),Ξn (7, b, a)

)
with X∞

n defined in (6.11). We put ‖(7, b)‖r := ‖7‖r + |b |.
All of our estimates forFn are ultimately based on estimates forRn from (6.7). We provide these

estimates in the arbitrary norm ‖ · ‖r for the sake of ‘bootstrapping’ later. Let b0 be as in Hypothesis
(vii) and r ≥ 0. The estimates from that hypothesis provide Cr > 0 such that, if 0 < n < n0, ‖7‖r+d,
‖7̀‖r+d, |a|, |à| ≤ b0/2 and |b |, |b̀ | ≤ b0, the following mapping and Lipschitz estimates hold:

‖Rn (7, b, a)‖r ≤ Cr
(
‖7‖2

r+d + |b |2 + |a|
)
,

‖Rn (7, b, a) −Rn (7̀, b̀, a)‖r ≤ Cr
(
‖7‖r+d + ‖7̀‖r+d + |b | + |b̀ | + |a|

) (
‖7 − 7̀‖r+d + |b − b̀ |

)
,

and

‖Rn (7, b, a) −Rn (7, b, à)‖r ≤ Cr |a − à|.

With r = 0, the transversality estimate from Hypothesis (iv) and the ‘smoothing’ estimate from
Hypothesis (v) then imply

‖	n (7, b, a)‖d ≤ C
(
‖7‖2

d + |b |2 + |a|
)
, (6.21)
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‖	n (7, b, a) − 	n (7̀, b̀, a)‖d ≤ C
(
‖7‖d + ‖7̀‖d + |b | + |b̀ | + |a|

) (
‖7 − 7̀‖d + |b − b̀ |

)
(6.22)

and

‖	n (7, b, a) − 	n (7, b, à)‖d ≤ C |a − à|. (6.23)

Since

|Ξn (7, b, a) | ≤ C‖Rn (	n (7, b, a))‖0

and

|Ξn (7, b, a) − Ξn (7̀, b̀, à) | ≤ C‖Rn (	n (7, b, a)) −Rn (	n (7̀, b̀, à)‖0,

the estimates (6.21), (6.22) and (6.23) hold with 	n replaced by Ξn (and the norm ‖ · ‖d on the
left replaced by absolute value). It follows that on the space X∞

n × R, the map Fn meets the esti-
mates (6.1), (6.2) and (6.3) from Lemma 6.1. By that lemma, there are solutions (7a

n , ba
n ) meeting

(7a
n , ba

n ) = Fn (7a
n , ba

n , a) and the mapping and Lipschitz estimates in (6.5) for r = d.
We then ‘bootstrap’ on 7 using the equation 7 = 	n (7, b, a), the definition of 	n in (6.17), and

Hypothesis (vi) to conclude that 7 ∈ X nd for any integer n ≥ 1. Using the estimates on Rn above,
which are valid for any r, and inducting, we obtain the estimates in (6.5) for r = nd. Interpolating,
we conclude that 7 ∈ X r for all r and obtain the estimates in (6.5) for r arbitrary.

�

6.2. Application to periodic travelling waves in dimer FPUT

For long wave solutions, we are interested in rescaling the profiles as 5(x) = n2>(nx), where n > 0
measures the distance between the speed of sound c★ from (2.8) and the chosen wave speed c via
c2 = c2

★ + n2. In [16, 20], the travelling wave problem was solved under this rescaling with the help of
symmetry; here we obtain those long wave solutions as a consequence of Theorem 6.2 by introducing
a rescaling of the amplitude parameter.

Specifically, let n0 = 1 and let cn satisfy c2
n = c2

★ + n2. Let

X r :=
{
5 ∈ Hr

per (R2)
�� 〈5, .0〉 = 0

}
and set

.n := .cn
1 , -n

1 := .cn
1 , and -n

2 := .cn
2 .

Assume now that the spring potentials satisfyV1,V2 ∈ C∞(R). Then the map�cn from (1.9) meets all of
the hypotheses of Theorem 6.2. More precisely, Hypothesis (ii) follows from Lemma 3.6, Hypothesis
(iii) from Corollary 2.2, Hypothesis (iv) from Corollary 2.3 and Hypothesis (v) from Corollary 2.4.
The mapping and Lipschitz estimates in Hypothesis (vii) follow from the regularity properties of shift
operators in Appendix A.4 and composition operators in Appendix A.5 and the uniform bounds on lc
in c from (2.9).

We thus obtain solutions 5 = 5a
cn and l = la

cn to �cn (5a
cn ,la

cn ) = 0 for 0 < n < n0 and |a| ≤ aper
for some aper > 0. Returning to our original position coordinates, we see that

pa
n (x) := a5a

cn (l
a
cn x)

solves the original travelling wave problem (1.5).
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Now we expose the long wave scaling. Write a in the form a = Un2 for |U | ≤ aper and 0 < n < 1;
this ensures |a| < aper and 0 < n < n0. Put

>U
n := 5Un 2

n and ΩU
n :=

lUn 2
cn
n

.

Then the solutions to (1.5) have the form

pa
n (x) = Un2>U

n (nΩU
n x),

which reveals the long wave scaling. Moreover, these solutions have the same mapping and Lipschitz
estimates previously established in [20, Thm. 4.1] and [16, Thm. 3.1]. For the frequency, the mapping
and Lipschitz estimates from (6.5) and the bounds on lcn from (2.9) give

sup
0<n <n0
|U |<aper

|nΩU
n | = sup

0<n <n0
|U |<aper

|lUn 2

cn | < ∞

and, for 0 < n < n0 and |U |, |Ù | < aper

|ΩU
n −ΩÙ

n | =
|lUn 2

cn − l Ùn 2
cn |

n
≤ C |U − Ù |n2

n
= Cn |U − Ù |,

where C > 0 is independent of n , U, and Ù. This Lipschitz estimate is an improvement on the original
O(1) Lipschitz estimates from [20, Thm. 4.1] and [16, Thm. 3.1].

For the profile, we first introduce the norm

‖5‖Cr
per

:= ‖5‖L∞ + ‖mr
x [5] ‖L∞

for r-times continuously differentiable, 2c-periodic functions 5. The mapping and Lipschitz estimates

sup
0<n <n0
|U |<aper

‖>U
n ‖Cr

per
< ∞ and sup

0<n <n0

‖>U
n − > Ù

n ‖Cr
per

< Cr |U − Ù |

follow again from (6.5) and the Sobolev embedding.
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Appendix A. Fourier analysis

A.1. Vectors and matrices

The following is wholly standard, but we include it in the hopes of completeness and clarity. For v,
w ∈ Cn, we set

v · w :=
n∑

k=1
vkwk and |v|2 :=

(
v · v

)1/2
.

Also, we define v ∈ Cn to be the vector whose entries are the conjugates of those in v ∈ Cn, and likewise
if A ∈ Cm×n (where Cm×n is the space of all m × n matrices with entries in C), then A ∈ Cm×n is the
matrix whose entries are the conjugates of those in A. We denote by A∗ ∈ Cn×m the conjugate transpose
of A.

For a matrix A ∈ Cm×n, we put

|A|2 = max
v∈Cn

|v |2=1

|Av|2 and |A|∞ = max
1≤i≤m
1≤j≤n

|Aij |

with Aij as the entries of A. Then we have the inequalities

|Av|2 ≤ |A|2 |v|2, v ∈ Cn, and |A|2 ≤
√

mn|A|∞. (A.1)

Let In ∈ Cn×n be the identity matrix. If |A|2 < 1, then In −A is invertible by the Neumann series, and

| (I2 − A)−1 |2 ≤ 1
1 − |A|2

.

A.2. Periodic Sobolev spaces

This material is developed in [33, Sec. 8.1], [28] and [15, App. C.2]. Let L2
per (Cn) be the completion of

C∞
per (Cn) :=

{
q ∈ C∞( [−c, c],Cn)

�� q(−c) = q(c)
}

under the norm

‖5‖L2
per (Cn ) :=

(
〈5, 5〉L2

per

)1/2, 〈5, (〉L2
per (Cn ) :=

1
2c

∫ c

−c

5(x) · ((x) dx.

For k ∈ Z, the kth Fourier coefficient of 5 ∈ L2
per (Cn) is

5̂(k) :=
1

√
2c

∫ c

−c

e−ikx5(x) dx.

For r ∈ R and 5, ( ∈ L2
per (Cn), let

〈5, (〉Hr
per (Cn ) :=

∞∑
k=−∞

(1 + k2)r (5̂(k) · (̂(k)) , and ‖5‖Hr
per (Cn ) :=

(
〈5, 5〉Hr

per

)1/2
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Finally, we put

Hr
per (Cn) :=

{
5 ∈ L2

per (Cn)
�� ‖5‖Hr

per (Cn ) < ∞
}
.

Since we will primarily use the L2
per-inner product, we abbreviate it as

〈5, (〉 := 〈5, (〉L2
per (Cn ) =

∫ c

−c

5(x) · ((x) dx.

We will employ two elementary identities involving this inner product.
First, with 5, ( ∈ L2

per (Cn), we substitute to obtain

〈S\5, (〉 = 〈5, S−\(〉. (A.2)

Secondly, with 5, ( ∈ H1
per (Cn), we integrate by parts to find

〈5′, (〉 = −〈5, (′〉. (A.3)

A.3. Fourier multipliers

Let M̃ : R→ Cm×n be measurable. A bounded linear operator M : Hr
per (Cn) → Hs

per (Cm) is a Fourier
multiplier with symbol M̃ if the identity

M̂5(k) = M̃(k)5̂(k)

holds for all 5 ∈ Hr
per (Cn) and k ∈ Z. In this case, the operator norm of M is

‖M‖Hr
per (Cn )→Hs

per (Cm ) = sup
k∈Z

(1 + k2) (s−r)/2 |M̃(k) |2. (A.4)

Conversely, if M̃ : R→ Cm×n is such that the supremum in (A.4) is finite, then defining

(M5) (x) :=
∞∑

k=−∞
eikxM̃(k)5̂(k)

gives a Fourier multiplier M ∈ B(Hr
per (Cn), Hs

per (Cm)) with symbol M̃. This and (A.4) are proved in
[15, Lem. D.2.1].

The adjoint of M is the bounded linear operator M∗ : Hs
per (Cm) → Hr

per (Cn) satisfying

〈M5, (〉Hs
per (Cm ) = 〈5,M∗(〉Hr

per (Cn )

for all 5 ∈ Hr
per (Cn) and ( ∈ Hs

per (Cm). We can calculate M∗ explicitly via the formula

�M∗((k) := (1 + k2)s−rM̃(k)∗(̂(k), (A.5)

where M̃(k)∗ is the conjugate transpose of M̃(k).
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A.4. Differentiating the shift operator

We prove that the map

R→ B(Hr+2
per (Cn), Hr

per (Cn)) : l ↦→ Sl

is differentiable and that its derivative is Lipschitz continuous on R. This is proved more generally in
[15, Thm. D.3.1] for a ‘scaled’ Fourier multiplier, but we include the calculation here for completeness
and because all Fourier multipliers that we consider ultimately boil down to shifts. The derivative at
l ∈ R is the operator (Sl)′ given by

�(Sl)′5(k) := k(ieilk)5̂(k). (A.6)

For 5 ∈ Hr+2
per (Cn), l ∈ R, and h ≠ 0, we compute



(Sl+h − Sl − h(Sl)′

h

)
5





2

Hr
per (Cn )

=

∞∑
k=−∞

(1 + k2)−2
����eihk − 1 − ihk

h

����2 (1 + k2)r+2 |5̂(k) |22.

Two applications of the fundamental theorem of calculus yield

eihk − 1 − ihk = (ihk)2
∫ 1

0

∫ 1

0
teihkts ds dt, (A.7)

from which we bound

(1 + k2)−2
����eihk − 1 − ihk

h

����2 ≤ (1 + k2)−2h4k4

h2

∫ 1

0
t dt = h2

(
k4

2(1 + k2)2

)
. (A.8)

It follows that 



(Sl+h − Sl − h(Sl)′
h

)
5





2

Hr
per (Cn )

≤ Ch2‖5‖2
Hr+2

per (Cn ) ,

from which we have differentiability. The mismatch in regularity between the domain and codomain
(Hr+2

per (Cn) vs. Hr
per (Cn)) arises because of the factor of k2 in (A.7); squaring that k2 in (A.8) requires

us to introduce the factor of (1 + k2)−2 to compensate. This agrees with the regularity requirements in
[15, Thm. D.3.1].

Now we check Lipschitz continuity for the derivative and calculate

‖
(
(Sl)′ − (S l̀)′

)
5‖2

Hr
per (Cn ) =

∞∑
k=−∞

(1 + k2)−2��k(ieilk) − k(ieil̀k)
��2(1 + k2)r+2 |5̂(k) |22.

Since

eilk − eil̀k = ik(l − l̀)
∫ 1

0
eil̀k+ik (l− l̀)t dt, (A.9)

we bound

(1 + k2)−2��k(ieilk) − k(ieil̀k)
��2 ≤ |l − l̀ |2

(
k2

(1 + k2)2

)
,
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and this yields

‖
(
(Sl)′ − (S l̀)′

)
5‖2

Hr
per (Cn ) ≤ C |l − l̀ |2‖5‖2

Hr+2
per (Cn ) .

This is the Lipschitz continuity for the derivative. Here we did not strictly need the domain to be
Hr+2

per (Cn) and could have viewed Sl as an operator from Hr+1
per (Cn) to Hr

per (Cn), as we only have one
power of k emerging from (A.9). This too agrees with the regularity requirements in [15, Thm. D.3.1].

A.5. Composition operators in periodic Sobolev spaces

Let V ∈ C7(R) with V ′ (0) = 0. We briefly sketch the argument that the composition operator

N : H2
per (R) → H2

per (R) : q ↦→ V ′ ◦ q

is well-defined and twice-differentiable, and its second derivative is (locally) Lipschitz continuous. First,
since V ′ (0) = 0, we have

V ′ (r) = r
∫ 1

0
V ′′ (tr) dt and therefore (N (q)) (x) = q(x)

∫ 1

0
V ′′ (tq(x)) dt.

Next, differentiating under the integral, we can express m2
x [N (q)] as a sum of products of derivatives of

q up to second order and, by the periodic Sobolev embedding [28, Thm. 7.9], continuous and periodic
functions (involving integrals of the form

∫ 1
0V

(k) (tq) dt for k = 2, 3, 4). It follows from [33, Cor. 8.8]
that N (q) ∈ H2

per (R). Last, differentiability of N is straightforward to establish using the fundamental
theorem of calculus; the proof is similar to the composition operator work in [17, Lem. A.2]. We obtain
DqN (q)[ = (V ′′ ◦ q)[ and D2

qq
N (q) [[, [̀] = (V ′′′ ◦ q)[[̀, and (local) Lipschitz continuity follows

from the fundamental theorem again. For that, using (V ′′′ ◦ q)[[̀ = q[[̀
∫ 1

0V
(4) (tq) dt and estimating

in the H2
per (R)-norm, we need up to seven continuous derivatives on V .

If we assume V ∈ C∞(R), then the composition operator N is also infinitely differentiable on
H2

per (R) and so (more importantly, for the purposes of Theorem 6.2) by the Sobolev embedding all
of its derivatives are locally bounded and locally Lipschitz. This can be proved using the composition
operator techniques in [16, App. B], and we omit the details.

Appendix B. Proofs for linear analysis

B.1. The proof of Corollary 2.2

If Lc [lc]5 = 0 and 5̂(k) ≠ 0, then by the arguments preceding the statement of Theorem 2.1, the scalar
c2(lck)2 must be an eigenvalue of M−1D̃(lck), and so c2(lck)2 = _̃±(lck). By Theorem 2.1, this can
happen only if k = 0 or k ± 1, and so

5(x) = e−ix 5̂(−1) + 5̂(0) + eix 5̂(1).

We study each of these Fourier modes separately. Throughout, we are assuming that at least one of
w = m−1 or ^ is greater than 1.

B.1.1. The eigenfunction at k= 0

We solve M−1D̃(0)v = 0 for v = (v1, v2). By definition of D̃ in (2.5), we have

M−1D̃(0) =
[

(1 + ^) −(1 + ^)
−w(^ + 1) w(1 + ^)

]
,
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and so the vector v must be a scalar multiple of

.0 :=
1
√

2

(
1
1

)
.

Then 5̂(0) = a0.0 for some a0 ∈ R (since 5 is real-valued, 5̂(0) must be real, too).

B.1.2. The eigenfunction at k= 1

We solve M−1D̃(lc)v = c2l2
cv for v = (v1, v2). Then, using again the definition of D̃ in (2.5), we need[
(1 + ^) −(eilc + ^e−ilc )

−w(^eilc + e−ilc ) w(1 + ^)

] (
v1

v2

)
= c2l2

c

(
v1

v2

)
.

The first component here reads

(1 + ^ − c2l2
c)v1 − (eilc + ^e−ilc )v2 = 0.

Assume for the moment that 1 + ^ − c2l2
c ≠ 0; we prove this below in Appendix B.1.3.

v1 =
eilc + ^e−ilc

1 + ^ − c2l2
c

v1,

so v must be a scalar multiple of

-c :=

(
eilc + ^e−ilc

1 + ^ − c2l2
c

)
. (B.1)

Then 5̂(1) = a1-c for some a1 ∈ C. (Here we are not guaranteed a1 ∈ R.)

B.1.3. The proof that 1 + ^ − c2l2
c ≠ 0

We use the identity c2l2
c = _̃+(lc) and the definition of _̃+ in (2.6) to compute

1 + ^ − c2l2
c = 1 + ^ − _̃+(lc) = −

(
(1 + ^) (w − 1) + r̃(lc)

2

)
, (B.2)

where r̃ is defined in (2.7). In particular, r̃(lc) ≥ 0. Thus for w> 1, we have 1 + ^ − c2l2
c < 0. When

w= 1, and consequently ^ > 1, (B.2) simplifies to

1 + ^ − c2l2
c −

r̃(lc)
2

−
√
(1 − ^)2 + 4^ cos2(lc) < 1 − ^.

The resulting estimate

|1 + ^ − c2l2
c | ≥

(1 + ^) (w − 1)/2, w > 1

^ − 1, w = 1
(B.3)

will be useful in subsequent proofs, since it is uniform in c.
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B.1.4. A basis for the kernel of Lc [lc]

We are assuming Lc [lc]5 = 0 and so far know that

5(x) = e−ix 5̂(−1) + 5̂(0) + eix 5̂(1).

Since we always assume that 5 is real-valued, we have

5̂(−1) = 5̂(1),

and then

5(x) = 5̂(0) + 2Re[eix 5̂(1)] .

Write 5̂(1) = a1-c with -c defined in (B.1) and suppose a1 = ar + iai for ar, ai ∈ R. Then

Re
[
eix 5̂(1)

]
= Re

[
(ar + iai)

(
Re[eix-c] + i Im[eix-c]

) ]
= ar Re[eix-c] − ai Im[eix-c] .

Thus

5(x) = 5̂(0) + 2Re[eix 5̂(1)] = a0.0 + ar Re[eix-c] − ai Im[eix-c] .

It follows that the vectors

.0, .c
1(x) :=

1
Nc

Re[eix-c], and .c
2(x) :=

1
Nc

Im[eix-c], Nc := |-c |, (B.4)

span the kernel of Lc [lc]. We check orthonormality as follows and obtain linear independence, so they
are a basis for the kernel. First, that〈.0, .c

1〉 = 〈.0, .c
2〉 = 0 follows directly from the formulas above and

the identity ∫ c

−c

e±ix dx = 0.

Next, for any 5 ∈ L2
per (R2), we compute

〈5, .c
1〉 = 2Re

[
5̂(1) · .̂c

1(1)
]
, (B.5)

(S−c/2.c
1) (x) =

1
Nc

Re[−ieix-c] =
1
Nc

Im[eix-c] = .c
2(x)

and

〈5, .c
2〉 = 〈5, S−c/2.c

1〉 = 2Re
[
5̂(1) · (−i.̂c

1(1))
]
= 2 Im[5̂(1) · .̂c

1 (1)
]
. (B.6)

Combining (B.5) and (B.6), incidentally, proves the orthogonality equivalence condition (2.17). From
(B.6), we have

〈.c
1, .c

2〉 = 2 Im[.̂c
1(1) · .̂

c
1(1)] = 2 Im[|.c

1 |
2
2] = 0.

This concludes the orthonormality proof. Last, the derivative identities (2.15) follow directly from the
formulas (B.4).
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B.1.5. The kernel of Lc [lc]∗

As discussed in Appendix A.3, the adjoint operator Lc [lc]∗ : L2
per (R2) → H2

per (R2) satisfies

�Lc [lc]∗((k) = (1 + k2)−2 (−c2(lck)2M + D̃(lck)∗)(̂(k).

Here D̃(K)∗ is the conjugate transpose of the matrix D̃(K) defined in (2.5). Happily, D̃(K) is a
symmetric matrix, so D̃(K)∗ = D̃(K), and therefore

�Lc [lc]∗((k) = (1 + k2)−2(−c2(lck)2M + D̃(lck))(̂(k) = (1 + k2)−2 �Lc [lc]((k). (B.7)

Thus if Lc [lc]( = 0, then �Lc [lc]((k) = 0 for all k, and so Lc [lc]( = 0. Consequently, the kernel
of Lc [lc]∗ is contained in the span of .0, .c

1 and .c
2, and the reverse containment is also obvious from

(B.7).

B.2. The proof of Corollary 2.3

We compute the exact value of 〈L′
c [lc].c

1, .c
1〉, where, from the definitions of M in (1.10) and D̃ in

(2.5), the symbol of L′
c [lc] is

L̃′
c (lck) = −2c2lckM + D̃′ (lck) =

[
−2c2lck −i(eilck − ^e−ilck)

−i(^eilck − e−ilck) −2c2w−1lck

]
.

Our goal is to use the inequality

inf
|c |>c★

2c2lc − _̃′+(lc) > 0 (B.8)

from Theorem 2.1 and recognize 〈L′
c [lc].c

1, .c
1〉 as the product of 2c2lc − _̃′+(lc) and a quantity that

is uniformly bounded in c away from 0.
By (B.5), we have

〈L′
c [lc].c

1, .c
1〉 = 2Re

[ �L′
c [lc].c

11 · .̂c
1(1)

]
= 2Re

[
L̃c (lc).̂c

1(1) · .̂
c
1(1)

]
. (B.9)

The formula (2.12) for .c
1 gives

L̃′
c (lc).̂c

1(1) · .̂
c
1(1) =

1
N2

c

[
−2c2lc −i(eilc − ^e−ilc )

−i(^eilc − e−ilc ) −2c2w−1lc

] (
eilc + ^e−ilc

1 + ^ − c2l2
c

)
·
(
eilc + ^e−ilc

1 + ^ − c2l2
c

)
.

(B.10)

Some preparation and attention to detail will simplify what would otherwise be a burdensome
calculation into a slightly less burdensome calculation. Suppressing dependence on c, we put

z1 = −2c2lc, z2 = eilc − ^e−ilc , v1 = eilc + ^e−ilc and v2 = 1 + ^ − c2l2
c . (B.11)

In particular,

z2 = e−ilc − ^eilc and so − i(^eilc − e−ilc ) = i(e−ilc − ^eilc ) = i(z2).
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Then (B.10) is equivalent to

N2
c L̃′

c (lc).̂c
1(1) · .̂

c
1(1) =

[
z1 −iz2

i(z2) w−1z1

] (
v1

v2

)
·
(
v1

v2

)
= (z1v1 − iz2v2)v1 + (i(z2)v1 + w−1z1v2)v2

= z1 |v1 |2 − iz2v1v2 + i(z2)v1v2 + w−1z1v2
2

= z1
(
|v1 |2 + w−1v2

2) + i(z2)v1v2 + i(z2)v1v2

= z1
(
|v1 |2 + w−1v2

2) + 2Re
[
i(z2)v1v2

]
.

(B.12)

This immediately shows that L̃′
c (lc).̂c

1(1) · .̂
c
1(1) is real, and so, after (re)introducing what turns out to

be a helpful factor of w, (B.9) reads

wN2
c 〈L′

c [lc].c
1, .c

1〉
2

= wRe
[
L̃′

c (lc).̂c
1(1)·.̂

c
1(1)

]
= −2c2lc

(
w|v1 |2+v2

2)+2wRe
[
i(z2)v1v2

]
. (B.13)

The first term on the right in (B.13) contains a factor of 2c2lc, which appears in our favourite estimate
(B.8). Now we work on the second term in (B.13) to expose a factor of _̃′+(lc), which also appears in
that estimate. We have

z2v1 = (e−ilc − ^eilc ) (eilc + ^e−ilc )
= 1 + ^e−2ilc − ^e2ilc − ^2

= 1 − ^2 − 2i^ sin(2lc),

and so

i(z2)v1v2 = i(1 − ^2 − 2i^ sin(2lc))v2 = i(1 − ^2)v2 + 2^ sin(2lc)v2.

Thus

2Re
[
i(z2)v1v2

]
= 2Re

[
i(1 − ^2)v2 + 2^ sin(2lc)v2

]
= 4^ sin(2lc)v2

since v2 ∈ R. By definition of _̃+ in (2.6), we compute

_̃′+(lc) = −4^w sin(2lc)
r̃(lc)

,

where r̃ is defined in (2.7). Thus

4^w sin(2lc)v2 = − r̃(lc)v2_̃
′
+(lc),

and so (B.13) becomes

N2
c w〈L′

c [lc].c
1, .c

1〉
2

= −2c2lc
(
w|v1 |2 + v2

2) − r̃(lc)v2_̃
′
+(lc). (B.14)

The first term in (B.14) now needs our attention. We compute

|v1 |2 = |eilc + ^e−ilc |2 = (1 − ^)2 + 4^ cos2(lc). (B.15)
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Next, in (B.2), we calculated

v2 = 1 + ^ − c2l2
c =

(1 + ^) (1 − w) − r̃(lc)
2

. (B.16)

We use these expansions for |v1 |2 and v2 as well as the expansion

r̃(lc)2 = (1 + w)2(1 − ^)2 + 4^(1 − w)2 + 16^w cos2(lc)

from the definition of r̃ in (2.7) to compute, laboriously,

w|v1 |2 + v2
2 = w(1 − ^)2 + 4^w cos2 (lc) +

(
(1 + ^) (1 − w) − r̃(lc)

2

)2
(B.17)

= −
r̃(lc)

[
(1 + ^) (1 − w) − r̃(lc)

]
2

= − r̃(lc)v2.

Back to (B.14), we now see that

wN2
c 〈L′

c [lc].c
1, .c

1〉
2

= −2c2lc
(
− r̃(lc)v2

)
− r̃(lc)v2_̃

′
+(lc) = r̃(lc)v2

(
2c2lc − _′+(lc)

)
.

That is,

〈L′
c [lc].c

1, .c
1〉 =

2 r̃(lc)v2

wN2
c

(
2c2lc − _′+(lc)

)
All that remains is to check that the product d(lc)v2/Nc is uniformly bounded in c away from 0.

First, the definition of r̃ in (2.7) implies

| r̃(lc) | ≥
√
(1 + w)2(1 − ^)2 + 4^(1 − w)2.

Since at least one of ^ or w is greater than 1, this quantity is positive. Next, the estimate (B.3) gives a
positive lower bound on v2 that is independent of c. Finally, the definition (2.14) of Nc gives

|Nc | ≥

√

2(^ − 1), ^ > 1
√

2(w − 1), w > 1.

We conclude that r̃(lc)v2/Nc is uniformly bounded in c away from 0.

B.3. The proof of Corollary 2.4

Assume that Lc [lc]7 = (, where 7 = (k1,k2) ∈ Hr+2
per (R2) and ( = ([1, [2) ∈ Hr

per (R2) with

〈7, .0〉 = 〈7, .c
1〉 = 〈7, .c

2〉 = 0 and 〈(, .0〉 = 〈(, .c
1〉 = 〈(, .c

2〉 = 0.

We will solve for 7 in terms of ( and uniformly estimate ‖7‖Hr+2
per

in terms of c and ‖(‖Hr
per

. Since
Lc [lc]7 = (, we have L̃c (lck)7̂(k) = (̂(k) for each k ∈ Z, and so we really need to solve(

− c2l2
ck2M + D̃(lck)

)
5̂(k) = (̂(k) (B.18)
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for each k ∈ Z, where D̃ is defined in (2.5). We treat the cases k = 0, k = ±1, and |k | ≥ 2 separately.
This is the same strategy as the proofs of [27, Lem. B.1] for the mass dimer small mass limit, [18, Lem.
C.2] for the mass dimer equal mass limit and [14, Prop. 5] for the MiM small mass limit.

Before proceeding, we point out some consequences of the orthogonality conditions above for k = 0
and k = 1 that make the entire argument possible. (This is essentially an exercise in solving 2 × 2 linear
systems, but we need to be careful with our material parameters w and ^ and our wave speed c.) Suppose
that 5 = (q1, q2) ∈ L2

per (R2) with

〈5, .0〉 = 〈5, .c
1〉 = 〈5, .c

2〉 = 0.

We use these orthogonality conditions to derive formulas for q̂2 (k) in terms of q̂1 (k) for k = 0 and k = 1.
First, the condition 〈5, .0〉 = 0 immediately implies

q̂2(0) = −q̂1 (0). (B.19)

Next, the orthogonality condition (2.17) implies

5̂(1) · .̂c
1(1) = 0,

and from the definition of .c
1 in (2.12), this reads

q̂1(1) (e−ilc + ^eilc ) + (1 + ^ − c2l2
c)q̂2(1) = 0.

Since 1 + ^ − c2l2
c ≠ 0 by the work in Appendix B.1.3, we have

q̂2(1) = −e−ilc + ^eilc

1 + ^ − c2l2
c
q̂1(1). (B.20)

B.3.1. The case k= 0

Here the first component of (B.18) reads

k̂1(0) − k̂2(0) =
[̂1(0)
1 + ^

,

and from (B.19) this is

2k̂1(0) = [̂1 (0).

Thus

k̂1(0) =
[̂1(0)

2(1 + ^) .

It follows from this equality and (B.19) that

|7̂(0) |2 ≤ |(̂(0) |2
2(1 + ^) .
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B.3.2. The case k = ±1

We only need to estimate |7̂(1) |, as |7̂(1) | = |7̂(−1) | since 7 is R2-valued. At k = 1 the first component
of (B.18) reads

(1 + ^ − c2l2
c)k̂1(1) − (eilc + ^e−ilc )k̂2(1) = [̂1(1).

We use the identity (B.20) to remove k̂2(1) from this equation and write it in terms of k̂1(1) alone. We
find (

1 + ^ − c2l2
c +

|eilc + ^e−ilc |2

1 + ^ − c2l2
c

)
k̂1(1) = [̂1(1).

We use (B.15) and rearrange this into(
(1 + ^ − c2l2

c)2 + (1 − ^)2 + 4^ cos2(lc)
)
k̂1(1) = (1 + ^ − c2l2

c)[̂1(1). (B.21)

Since

(1 + ^ − c2l2
c)2 + (1 − ^)2 + 4^ cos2(lc) ≥ (1 + ^ − c2l2

c)2,

the uniform lower bound on 1 + ^ − c2l2
c from (B.3) and the upper bound

|1 + ^ − c2l2
c | ≤ 1 + ^ + (1 + ^) (1 + w)

from (2.9), we can derive from (B.21) the estimate

|k̂1(1) |2f ≤ C |[̂1(1) |2,

where C depends on ^ and w but not on c, 7, or (. The identity (B.20) and the uniform lower bound on
1 + ^ − c2l2

c imply

|k̂2(1) |2 ≤ C |[̂1(1) |2

as well. A final invocation of (B.20) allows us to estimate |[̂1(1) |2 ≤ C |(̂(1) |2.

B.3.3. The case |k | ≥ 2

Since k ≠ 0, we may rewrite (B.18) as(
I2 −

1
c2l2

ck2
M−1D̃(lck)

)
7̂(k) = − 1

c2l2
ck2

M−1(̂(k). (B.22)

Here I2 is the 2 × 2 identity matrix. We will use the Neumann series to solve (B.22) for 7̂(k) in terms
of (̂(k) with uniform estimates in c.
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The following estimates use our conventions for matrix norms from Appendix A.1. First, the
definition of D̃ in (2.5) yields the estimate

|M−1D̃(lck) |∞ ≤ (1 + ^)w.

Since |k | ≥ 2, we have

1
c2l2

ck2
|M−1D̃(lck) |2 ≤ 2

c2l2
ck2

|M−1D̃(lck) |∞ ≤ 2(1 + ^)w
4c2l2

c
.

Next, the inequality (2.9) on lc and the definition of _̃+ in (2.6) imply

1
c2l2

c
≤ 1

_̃+(c/2)
≤ 2

(1 + ^) (1 + w) . (B.23)

Thus

1
c2l2

ck2
|M−1D̃(lck) |2 ≤ 4(1 + ^)w

4(1 + ^)(1 + w) =
w

1 + w
< 1.

We may therefore use the Neumann series to solve (B.22) for 7̂(k) in terms of (̂(k), and we obtain

|7̂(k) |2 ≤ 1
1 − w/(1 + w)

(
|M−1 |2
c2l2

ck2

)
|(̂(k) |2 ≤ 1

1 − w/(1 + w)

(
4w

(1 + ^) (1 + w)

)
|(̂(k) |2

k2 .

The second inequality follows from (B.23) and the estimate |M−1 |2 ≤ 2|M−1 |∞ = 2w from (A.1).
This, along with the uniform estimates in c on |7̂(k) |2 for k = 0, 1 from the previous sections, gives the
coercive estimate ‖7‖Hr+2

per
≤ C‖(‖Hr

per
. The constant C depends on ^ and w but is independent of r.

B.4. The proof of Lemma 3.6

Continuity and differentiability of �c in 5 follow from the composition operator calculus in Appendix
A.5 and in l from the shift operator calculus in Appendix A.4. A second appeal to these appendices
gives the same results for D5�c. In each case, we are only taking one derivative with respect to l, and
that is all that Appendix A.4 guarantees when we consider Sl as a map from H2

per (R) to H0
per = L2

per.

B.5. The proof of Lemma 4.3

B.5.1. A proof using the gradient formulation

We claim that

〈Lc [l]5, 5′〉 = 0 (B.24)

for all 5 ∈ H2
per (R2) and l ∈ R and prove this claim below. Assuming this to be true, we differentiate

(B.24) with respect to l and obtain

〈L′
c [l]5, 5′〉 = 0

for all 5 ∈ H2
per (R2) and l ∈ R. In particular,

〈L′
c [lc].c

1, .c
2〉 = −〈L′

c [lc].c
1, mx.

c
1〉 = 0.
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Now we prove the claim (B.24). The proofs of the derivative orthogonality condition
〈�c (5,l), 5′〉 = 0 in both part (iii) of Corollary 3.2 and in Lemma 4.1 did not rely on the precise struc-
ture of the spring potentials V1 and V2, provided that they were continuously differentiable. So, assume
here that both are linear with V1(r) = V ′

1(0)r and V2(r) = V ′
2(0)r. Then �c (5,l) = D5�c (0,l)5 =

Lc [l]5, and (B.24) follows from the original derivative orthogonality condition.

B.5.2. A proof via direct calculation

The same reasoning that led to (B.9) implies

〈L′
c [lc].c

1, .c
2〉 = 2Re

[
L̃′

c (lc).̂c
1(1) · .̂

c
2(1)

]
.

Now, from the definitions of .c
1 in (2.12) and .c

2 in (2.13), we have

.̂c
2(1) = −i.̂c

1(1),

and so

L̃′
c (lc).̂c

1(1) · .̂
c
2(1) = L̃′

c (lc).̂c
1 (1) ·

(
− i.̂c

1(1)
)
= i

(
L̃′

c (lc).̂c
1(1) · .̂

c
1(1)

)
,

thus

〈L′
c [lc].c

1, .c
2〉 = 2Re

[
i
(
L̃′

c (lc).̂c
1(1) · .̂

c
1(1)

) ]
.

But in (B.12), we calculated that L̃′
c (lc).̂c

1(1) · .̂
c
1(1) is real, and so 〈L′

c [lc].c
1, .c

2〉 = 0.

B.6. The proof of Lemma 5.6

Recall that SK was defined in (5.8). We have SK.
c
1 = ±.c

1 if and only if �SK.
c
1 (1) = ±.̂c

1(1) and�SK.
c
1(−1) = ±.̂c

1 (−1). Since SK.
c
1 and .c

1 are real-valued, the second equality automatically holds
if the first does. Thus SK.

c
1 = ±.c

1 if and only if �SK.
c
1(1) = ±.̂c

1(1). We compute

�SK.
c
1(1) = −JR̂.c

1(1) = −J .̂c
1(−1).

From the definition of .c
1 in (2.12), where it is not at this time at all apparent that taking w= 1 matters,

we have

−Nc J .̂c
1(−1) = −J

(
e−ilc + ^eilc

1 + ^ − c2l2
c

)
= −

(
1 + ^ − c2l2

c
e−ilc + ^eilc

)
Thus �SK.

c
1(1) = ±.̂c

1(1) if and only if

−
(
1 + ^ − c2l2

c
e−ilc + ^eilc

)
= ±

(
eilc + ^e−ilc

1 + ^ − c2l2
c

)
,

from which it follows that �SK.
c
1(1) = ±.̂c

1(1) is equivalent to

eilc + ^e−ilc = ±(1 + ^ − c2l2
c).
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Taking real and imaginary parts, we have �SK.
c
1(1) = ±.̂c

1 (1) if and only if

(1 + ^) cos(lc) = ±(1 + ^ − c2l2
c) (B.25a)

(1 − ^) sin(lc) = 0. (B.25b)
(B.25)

Since we are working with a spring dimer and ^ ≠ 1, (B.25b) is equivalent to lc = jc for some j ∈ Z.
We use (B.2) with w= 1 and lc = jc, j ∈ Z, and the definition of r̃ in (2.7) to compute

1 + ^ − c2l2
c = − r̃(lc)

2
= 1 + ^,

and so (B.25a) is equivalent to

(1 + ^) (−1)j = ±(1 + ^).

Thus �SK.
c
1 (1) = ±.̂c

1 (1) if and only if (−1)j = ±1, so �SK.
c
1(1) = .̂c

1 (1) if and only if j is even, while�SK.
c
1(1) = −.̂c

1(1) if and only if j is odd.
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