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Abstract
In Einstein’s special theory of relativity, all observers measure the speed of light, c, to be the same. However, this refers to the round-trip
speed, where a clock at the origin times the outward and return trip of light reflecting off a distant mirror. Measuring the one-way speed
of light is fraught with issues of clock synchronisation, and, as long as the average speed of light remains c, the speeds on the outward
and return legs could be different. One objection to this anisotropic speed of light is that views of the distant universe would be different
in different directions, especially with regard to the ages of observed objects and the smoothness of the Cosmic Microwave Background.
In this paper, we explore this in the Milne universe, the limiting case of a Friedmann–Robertson–Walker universe containing no matter,
radiation, or dark energy. Given that this universe is empty, it can be mapped onto flat Minkowski space-time and so can be explored in
terms of the one-way speed of light. The conclusion is that the presence of an anisotropic speed of light leads to anisotropic time dilation
effects, and hence observers in the Milne universe would be presented with an isotropic view of the distant cosmos.
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1. Introduction

Central to Einstein’s special theory of relativity is that all inertial
observers will measure an identical value of the speed of light, c
(Einstein 1905). However, as noted by Einstein himself, this refers
to the average of a round-trip journey for light that is reflected
off a distant mirror, and, as long as the average speed is c, the
outward and inward velocities could be different (see extensive
review in Anderson, Vetharaniam, & Stedman 1998). Whilst this
might seem strange, anisotropy in the speed of light would result
in anisotropy in time dilation effects, ensuring that synchronisa-
tion of distant clocks remains fraught. Hence, no experimental
measurement of the one-way speed of light is possible.

An objection to differing one-way speeds of light might be
observations of the distant universe, where we clearly have, on
average, an isotropic view, seeing young galaxies at high redshift,
and the smoothness and uniformity of the Cosmic Microwave
Background over the sky; surely the anisotropy in the speed of
light would be imprinted on this view? In this paper, we will tackle
this question by considering an idealised cosmological model, the
Milne universe, and will explore an extreme case where the speed
of light is infinite in one direction, and c/2 in the other. The layout
of this paper is as follows: in Section 2, we present the mathemat-
ics of differing one-way speeds of light and will present the Milne
universe in Section 3.We discuss theMilne universe with differing
one-way speeds of light in Section 4, whilst presenting our con-
clusions in Section 5. In the following, we will set c, the average
round-trip speed of light, to unity.
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2. One-way speed of light

In considering differing one-way speed of light models, the
underlying transformations of coordinates are modified. In the
following, we follow the mathematical formalism of Anderson et
al. (1998). We consider differing one-way speeds of light related
to c by

c± = c
1∓ κ

≡ 1
1∓ κ

. (1)

Setting κ = 0 corresponds to an isotropic speed of light, whereas
κ = 1 presents the extreme case where the c+ = ∞ and c− = 1/2.
To preserve the observations of special relativity, a coordinate
velocity v= dx

dt in the isotropic c case (κ = 0) is mapped to a new
velocity:

ṽ= dx̃
dt̃

= γ

γ̃
v, (2)

where

γ = 1√
1− v2

and γ̃ = 1− κv√
1− v2

. (3)

The relative time dilation between two observers in the case where
the one-way speed of light is given by

dt̃′

dt̃
= 1

γ̃
. (4)

Figure 1 presents an illustration of the impact of the anisotropic
speed of light. The left-hand side of this figure presents the famil-
iar case where the speed of light is equal in both directions with the
green-dashed line representing a light cone for an observer at the
origin. The grey lines represent the worldlines of massive objects
moving relative to the observer at the origin at v= 0.7, with their
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Figure 1. Space-time diagram for the situation where the speed of light is equal in both directions (left) and the limiting case where the speed of light is c/2 in one direction, and
infinite in the other (right). The green dashed line represents a future lightcone for the observer at the origin of space and time, whereas the grey lines represent the worldlines of
massive objects moving relative to the coordinate system. Through synchronising all clocks at the origin, the blue lines represent light rays emitted from themassive objects after
a fixed amount of time has passed for both. Clearly, the observer at the origin sees the massive objects at the same age when the light rays are seen.

clocks synchronised at the origin. The blue lines represent light
rays emitted from massive objects after a fixed about of proper
time has passed. Given the symmetry of the situation, the light
rays arrive at the origin at the same time, and the observer sees the
moving objects showing the same amount of proper time passing
at the same instant.

3. The Milne universe

The discussion in the previous section is wrapped in the lan-
guage of special relativity, whereas the cosmological description
of the universe relies on Einstein’s general theory of relativity.
Whilst the typical approach to studying cosmology is to begin with
the Friedmann–Robertson–Walker (FRW) metric (e.g., Hobson,
Efstathiou, & Lasenby 2006), this is just a convenient choice of
coordinates and other choices can be made. Infeld & Schild (1945)
demonstrated that cosmological models can be cast in a kinematic
form, where by motion through space, coupled with gravitational
potentials, replaces the picture of expanding space (e.g., Lewis et al.
2007).

The focus of this paper will be the limiting case of the FRW
metric, namely the Milne universe in which the universe is empty,
devoid of any matter, radiation, or energy (Milne 1933). A key fea-
ture of of the Milne universe is that, while it is spatially curved, its
space-time is flat and can, therefore, be directly mapped into the
Minkowski metric (see Chodorowski 2005)

We begin by describing the Milne universe in Minkowski
space-time. At t = 0, a collection of massive test particles (quaintly
referred to as galaxies) are ejected in all directions from the ori-
gin (x= 0) with a range of velocities. In the limiting case of an
empty universe, we disregard gravity (the effect of these galaxies
on space-time), and so the galaxies maintain a constant velocity.
Because faster galaxies move further in a given period of time, the
further away we look, the faster the galaxies are moving and the
more their light is redshifted; this gives the Hubble law for any of
the galaxies.

Assuming an isotropic speed of light, consider two galaxies that
are emitted with the same speed in opposite directions. In order to
measure their positions, we (still at the origin) send a light beam
after them at time t1. The light bounces off the galaxy at (xg , tg)
and returns to us at t2. With an isotropic speed of light, the light

reached the galaxy halfway between t1 and t2. The distance to the
galaxy is half of the total light travel time:

tg = 1
2
(t2 + t1) (5)

xg = 1
2
(t2 − t1). (6)

This second expression effectively defines the radar distance to
an object (c.f. Lewis et al. 2008). If the galaxy started a clock as
it departed the origin, the time on that clock when our photon
arrives is given by:

τp =
√
x2g − t2g = √

t1t2. (7)

From this, we infer that the galaxy is moving with speed vg =
xg/tg = (t2 − t1)/(t2 + t1).

Now, suppose that the speed of light is c+ = ∞ in the positive
x-direction and c− = 1/2 in the negative x-direction, as shown in
Figure 1 (right). As before, we send a beam of light after the galaxy
at t1 and it returns to us at t2.

Right-hand Galaxy (moving in the positive direction): the light
travels instantaneously to the galaxy at t1, and returns to us at
speed 1/2:

tgr = t1 (8)

xgr = 1
2
(t2 − t1). (9)

For this anisotropic universe, the formula to calculate the proper
time is

τgr =
√
t2gr + 2xgrtgr = √

t1t2, (10)

as above. The inferred speed of the galaxy is vgr = xgr/tgr =
− 1

2 (t2 − t1)/t1, which is related to the inferred velocity for the
isotropic case by Equation (2).

Left-hand Galaxy (moving in the negative direction): The light
travels at speed c/2 to the galaxy at t1, and returns instantaneously
to us:

tgl = t2 (11)

xgl = −1
2
(t2 − t1). (12)
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Figure 2. Space-time diagram for the Milne universe in FRW coordinates. The horizontal dashed grey line denotes now in cosmic time, whilst the sold grey lines are comoving
objects at x= 1, 5, 10, 50, and 100. The blue lines represent the past light cone for an observer at the origin today and the timewhere they cross the comoving objects is the agewe
observe them at today; clearly, due to the symmetry of the situation, the view in opposite directions will be the same, withmore distant objects appearing younger. The two black
dots denote emission from x= 5 that is observed at the origin today, whilst the red dashed line represents the age of the universe when the light from these sources is emitted.

For this anisotropic universe, the formula to calculate the proper
time is

τgl =
√
t2gl + 2xgltgl =

√
t1t2, (13)

as above. The inferred speed of the galaxy is vgl = |xgl|/tgl = 1
2 (t2 −

t1)/t2, which is related to the inferred velocity for the isotropic case
by Equation (2).

Importantly, the redshift of the returning light that is observed
by us is the same in all three cases: 1+ zg = √

t2/t1, so the
observed universe is identical whether the speed of light is identi-
cal in all directions or is anisotropic. However, for the anisotropic
advocate, galaxies with the same redshift in different directions
are located at the same distance, but emitted the light we observe
at different times. They have different velocities, and so they
conclude that the left side of the universe is expanding faster than
the right-hand side.

What does this Milne universe look like in an expanding space
framework? We begin with the the FRWmetric:

ds2 = −dt2 + a2(t)
[
dx2 + R2

oS
2
k (x/Ro) d�2] , (14)

where a(t) is the normalised scale factor, such that a(to)= 1 and to
is the present age of the universe. The function Sk(x) is sin(x), x,
and sinh(x) for a spatially closed, flat, and open universe, respec-
tively. The angular terms, which are related to the surface of a
3-sphere, are given by d�2 = dθ 2 + sin2 θ dφ2. The present day
scale factor, Ro, in an open universe is given by:

Ro = 1
Ho

1√
1− �o

, (15)

where Ho is the present day Hubble Constant and �o is the
present-day total energy density. For the Milne universe, �o = 0,
and so Ro =H−1

o , and the normalised scale factor a(t)= t/to.
It is instructive to construct a space-time diagram for theMilne

universe (Figure 2) which shows the instantaneous proper distance
to a comoving observer at a spatial coordinate, x, given by D(t)=
a(t)x versus the cosmological time, t; as an illustration, comoving
observers are presented at x= 1, 5, 10, 50, and 100. Also, presented
in blue is the past lightcone for an observer at the spatial origin at

the present time. The path of a light ray in these coordinates is
governed by:

dx
dt

= ± to
t
. (16)

Remembering that in these coordinates, the proper times of
comoving observers are synchronised with the cosmic time, t, the
observer at the origin will see distant objects with an age given by
their crossing of the past light cone, and, given the symmetry of
the situation, the origin observers view will be symmetrical, with
more distant objects appearing younger.

4. Milne and special relativity

Examining Figure 2 suggests that the Milne universe is very dif-
ferent to the flat space-time of special relativity. However, given
that it has no material content, the underlying space-time struc-
ture of the two are the same, and so we should be able to undertake
a coordinate transformation between the two. Note that this is
different to the conformal representation of FRW universes (e.g.,
Harrison 1991), which straightens light rays to 45◦, as there can be
a complex relationship between universal conformal time and the
experienced proper time.

We follow Chodorowski (2007) by firstly defining χ = x/Ro
and dt = Roadη such that Equation (14) can be written as:

ds2 = R2
oa

2(η)
[−dη2 + dχ 2 + sinh2 (χ)d�2] . (17)

At this stage, we define a coordinate transformation from (η, χ)
to new coordinate (T,R) through

T =Aeη cosh(χ) (18)

R=Aeη sinh(χ), (19)
where A is a constant. With these:

Aeη =
√
T2 − R2 and tanh(χ)= R

T
(20)

with these transformations, and a little algebra, Equation (17) can
be written as:

ds2 = −dT2 + dR2 + R2d�2 (21)
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Figure 3. The Milne universe presented in Figure 2, but now mapped into the flat space-time coordinates. The comoving objects have been mapped into sloped lines, whereas
synchronised lines of constant cosmological time have beenmapped into hyperbola. There are clear similarities between this and the left-hand space-time diagram presented in
Figure 1.

Figure 4. The Milne universe presented in Figure 2 but mapped into the case with an anisotropic speed of light. Again, the grey dashed line corresponds to the present time in the
cosmological time of the Milne universe, whereas the the red dashed line is the cosmological time for a pair of emitters on either side of the sky. As can be seen, the observer at
the origin is presented with an isotropic view of the sky, even through the speed of slight is anisotropic.

which is just the flat space-time of special relativity with polar
coordinates over the spatial part. Clearly, in these new coordi-
nates, light rays travel at 45◦, comoving observers are represented
as straight lines with a slope given by tanh(χ). Additionally, the
relationship between the proper time experienced by an observer
at the origin, dT, and the comoving observer, dτ , is given by:

dτ
dT

=
√
1−

(
dR
dT

)2

=
√
1− tanh2(χ). (22)

To illustrate this, we map the situation presented in Figure 2
into the (T, R) coordinates. This is illustrated in Figure 3. As noted
above, the comoving observers to sloped lines, and as can be seen,
these asymptote to 45◦ as all motion is bounded by the speed of
light. In these coordinates, the comoving observers in the Milne
universe, which are moving apart due to expanding space, are

transformed into objects moving with velocities relative to each
other through flat space-time. The key points that synchronous
lines in the Milne universe, which are lines of constant universal
time, have been mapped into hyperbola in the (T, R) coordinates.

The remaining question is: how do lines of constant cosmolog-
ical time map onto the situation where the one-way speed of light
is anisotropic? Hence, we undertake the transformation of the sit-
uation in Figure 3 through the mathematics present in Section 2,
noting that the velocity is given by v= dR

dT , and present the result
in Figure 4. Again, the extreme case is considered, so the speed of
light in one direction is 1/2 and the other is infinite.

As seen in Figure 1, the comoving observers are now asymmet-
ric about the observer at the origin, but also added to Figure 4 are
lines of synchronicity of the FRW universe, with the grey dashed
line being now, whereas the red dashed line is the time that two
sources emit their light to be observed by the observer at the origin
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Figure 5. The line of simultaneity in the emitter in the FRW coordinates (Figure 2), mapped into the anisotropic velocity of light coordinates (Section 4) from κ = 0, the isotropic
case represented as a hyperbola, to the extreme case, with κ = 1, both presented in bolder red, with intermediate cases, in steps of κ = 0.2, presented in lighter red. The filled
circles represent the location of the emitter in these coordinates for each of the cases. Note that the spatial location of the emitter in the R̃ coordinate is independent of κ .

(see Figure 2). As can be seen, these are now asymmetric due to the
asymmetric action of time dilation. In fact, the difference in the
one-way speed of light and the resultant time dilation conspire to
ensure that the view of the observer at the origin is identical irre-
spective of the one-way speed of light. Hence, at least in the Milne
universe, whether the speed of light is identical in all directions,
or is anisotropic, results in a uniform view of the distant universe.

So far, we have considered two cases, where either the speed of
light is isotropic, or the extreme case where the anisotropic speed
is 1/2 in one direction, and infinite in the other. The question
remains whether this holds true in general case, for an arbitrary
κ . To consider this, we explore the form of the synchronous lines
in the FRW universe (lines of constant cosmological time) in the
Milne universe when we consider the anisotropic speed of light. In
Figure 5, the emitters from the previous discussion are presented
as filled circles, but now values of κ of 0 to 1 in steps of 0.2 are
considered; as can be seen, as κ increases, the shape of this syn-
chronous lines becomes more asymmetrical. Also shown, as filled
circles, is the location of the emitters for each of the considered
values of κ ; importantly, it should be noted that their location in R̃
is fixed.

We can explore the impact of differing values of κ in terms
of geometry in the space-time diagram. Consider an observer
located at T̃ = t̃o at the origin, and emitters who have experienced
a proper-time, τ̃e since leaving the origin. For an arbitrary value
of κ , and noting that the location of the emitter when a photon is
emitted, (t̃r , r̃e), is given by:

r̃e = ṽ t̃e (23)

and noting that, from Equation (4), that

t̃e = 1− kv√
1− v2

τ̃e (24)

then, using the definition of the velocity in these coordinates
(Equations (2)):

r̃e = v√
1− v2

τ̃e (25)

which is independent of κ , as expected (for more explanation,
see the detailed discussion of the transformations presented in
Anderson et al. 1998). Hence, the speed of a light ray connecting
the emitter and the observer is given by:

dr̃
dt̃

= 
r̃

t̃

= r̃e
t̃o − t̃e

(26)

Noting that this speed equal ±1 for the case where κ = 0, this
expression becomes

dr̃
dt̃

= −sgn(v)
1+ sgn(v)κ

, (27)

where sgn(v) is the sign of the velocity. When κ = 1, this recovers
the velocity of light as being 1/2 and infinite (c.f. Equation (1)),
as expected, but also illustrates that for all other values of κ , the
observer will see an isotropic universe.

5. Conclusion

In his formulation of the special theory of relativity, Einstein chose
the convention that the speed of light is isotropic and so equal in all
directions. He also acknowledged that the physical predictions of
his theory will be unchanged if the speed of light was anisotropic,
as long as the average round-trip speed is equal to c. In this paper,
we have considered the question of the impact of the one-way
speed of light on cosmological observations, addressing the sug-
gestion we should observe different sides of the sky possessing
different ages if light speed was unequal. By examining the sim-
plest FRW universe, namely the empty Milne universe, it is seen
that the anisotropic speed of light results in anisotropic time dila-
tion effects that compensate for the differing light travel times. In
this universe, any observer would see an isotropic universe around
them, even if the speed of light was not.

The anisotropic speed of light advocate must conclude that
galaxies that are a given distance away have a faster recession speed
in one direction than in the other, and the universe is expand-
ing faster to the right or to the left. However, the dependence of
redshift on the speed of light means that this does not change the
appearance of the night sky. One side of the sky is not significantly
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more redshifted than the other. The initial velocities given to the
galaxies at the beginning of the universe had just the right degree
of anisotropy to balance the effect of anisotropic redshift. Perhaps
at this point, the anisotropic speed of light advocate will suspect a
fix, but there is nothing internally inconsistent or in contradiction
with data about this model.

Of course, the Milne universe, as a limiting case of FRW cos-
mologies, is special in that it can be directly mapped onto the
flat space-time of special relativity, and hence the question of the
one-way speed of light can be directly addressed. For more gen-
eral cosmological models, where the presence of mass and energy
results in curved space-time, the picture is more complicated as
there is no simple mapping of the modified Lorentz transforma-
tions into the general relativistic picture. We leave this discussion
for a future contribution.
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