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NOT EVERY K,-EMBEDDED SUBSPACE IS K,-EMBEDDED
JAN van MILL

0. Introduction. All topological spaces under discussion are assumed to be
Tychonoff.

For any topological space X let 7(X) denote the topology of X. If X C ¥V
then a function «:7(X)—7(Y) is called an extender provided that
k(U)MN X = Uforall U € 7(X). In addition, X is said to be K,-embedded in
Y (cf. [3]) provided there is an extender « : 7(X) — 7(Y) such that

if w =0 then «(@) = @ and «(V) Nk (W) = «(V N W) for all

v, Wer(X);
if > 0 then «(Vy) M ... k(V,) =0 whenever V; N\ V; = @ for
0<i<j=<mand V..., V, € 7(X).

The extender « is called a K,-function (cf. [3]).

Eric van Douwen has asked whether there is a space X with a subspace Z
which is Ki-embedded but not K,-embedded. The aim of this note is to answer
this question.

Example 0.1. There is a separable first countable compact space X which
has a closed subspace Z which is K;-embedded but not Ky-embedded.

Let n be a positive integer and let X C V. An extender « : 7(X) — 7(Y) is
called an M,-function (cf. [2]) if Nizox(U;) = @ for all U, € 71(X) (@ = n)
satisfying (M=o U; = @. The subspace X is said to be M,-embedded in Y.

The following example answers another natural question.

Example 0.2. For every n = 1 there is a compact space X, which has a
closed subspace Z, which is M,-embedded in X, but which is not M ;-embedded
in X, for all 7 > n.

The spaces X, in Example 0.2 unfortunately are not first countable.

1. Hyperspace-like extensions. If 4 is a set and « is any cardinal, define
(as usual)
[(A]*: = {B C A||B| = «}
(A]=x: = {B C A[[B] = «}
[A]<x: = {B C 4] |B|] < «}.
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Let X be a topological space and let # = 3 be fixed. Define

M,(X): = [X]=" — [X]%
In addition, for all 4 C X define

(A),: = {F € M,(X)||F — 4| =1} — {{x}|x € X — 4}
and

(A)e: ={F e My(X)|[FN Al 2 2} U {{x}|x € 4}
respectively.

LEmMA 1.1. Let X be a topological space and let n = 3 be fixed. Then

(@) (4), C (A), forall A C X;

(b) for any two A, B C X, if A C B then (4), C (B), and (4), C (B),s
(c)if AU B = X then {4),\J (B), = M,(X);

d)if 4, BCXand A N\ B = @ then (A), N\ (B), =90

The simple proof of this lemma is left to the reader.
We now take the collection
UMW U € 71XV U] U € (X))}
as an open subbase for a topology on M,(X). By Lemma 1.1 the collection

{(Z),| Z is a zero-set of X} U {(Z),| Z is a zero-set of X}

is a closed subbase for M,(X) which satisfies the conditions of subbase nor-
mality and subbase regularity (in the sense of [5]). This implies that M, (X)
is Tychonoff, cf. [5].

It is easily seen that the function 7 : X — M,(X) defined by 7(x) : = {x}
is a topological embedding. We will identify X and [ X].

Lemma 1.2. Let X be a topological space and let n = 3 be fixed. T hen
(a) X 1s closed in M,(X);

(b) X s first countable if and only if M, (X) is first countable;

(c) X 1s separable if and only if M,(X) is separable;

(d) X s compact if and only if M,(X) is compact.

Proof. The easy proofs of (a), (b) and (c) are left to the reader. To prove (d)
first notice that if M,(X) is compact then by (a) X is compact. Now assume
that X is compact. Define M,(X) = X. By induction on # (n = 2) we will
show that M,(X) is compact. Clearly M,(X) is compact. Now assume that
M,—1(X) is compact. By the lemma of Alexander we need only show that a
cover of type

() (U Uce r(X) e DY YVl Vs € 7(X) (G €I
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has a finite subcover. Since M,_;(X) C M,(X) and since by induction hypo-
thesis M, 1(X) is compact, we may choose a finite /¥ C [ and a finite G C J
such that

lUn—l(X) C Uier <Uz~>,, U Ujea (Vj)n-
Define
Z=dx= (..., ) X" Vi€ F:|{{xy,...,x,0 — Uy > 1}
Nix € XY VF€G: | {xy, ..., x0 — V4| >1}.

It is clear that Z is a closed subspace of the compact space X". Suppose that
there is an x = (xy,...,x,) € Z such that H = {xy, ..., x,} has cardinality
less than or equal to 2. Then

HO (Uiwer Ui\J Ujea V) =0

and since
Uier Ui I Ujee V; = X

this is a contradiction. We conclude that the function f : Z— M, (X ) defined by
Fxy, o)) s =%, .., 1)

is well-defined. An easy check shows that f is continuous. Hence f[Z] is com-
pact. Obviously

JVn(X) - (UiEF <Ui>n U Uje(; (Vj)n) CfLZ]

We conclude that () has a finite subcovering.

2. The examples. We first fix some notation. If 4 and B are sets, 4B is
the set of functions from 4 to B. We are interested in ¢2, for ordinals a £ w.
An element of ©2 can be seen as an a-sequence of 0’s and 1's. As usual we denote
Un<o "2 by €2. For each f € <2 let

I(f) =1 | nln € of,
the set of initial sequences of f. It is clear that
(1) if f, g € 2 are distinct, then I(f) M I(g) is finite.

Hence, {I(f)| f € “2} is an almost disjoint collection of subsets of the countable
set ¢2.
The collection {I(f)|f € “2} has an important property:

(%)  for every uncountable subset G of “2 there is a ¢ € G and an mnfinite H C
G — {g} such that I(h) N I(k') C I(g) for any two distinct, h, k' € H.

This was shown in [4].
The set 7" = ¢2 \U “2 is a tree, partially ordered by inclusion, the so-called
Cantor tree, cf. [6]. The tree 1" is topologized in the following way: points of
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¢2 are isolated, and a basic neighborhood of f € “2 contains f and all but
finitely many points of I(Jf).
We can now construct Example 0.1.

2.1. Construction of Example 0.1. Let vT be a first countable compactification
of T'. Such a compactification is described in [4]. Let X = M;(y1’) (cf. Section 1)
and let Z = 47. Then X is separable and first countable (cf. Lemma 1.2).

That Z is K;-embedded in X is trivial; it is easily seen that « : 7(Z) — 7(X)
defined by «(U) = (U)s is a K -function.

Let us now show that Z is not Ky-embedded in X. The proof is an adaptation
of a proof in [4].

To the contrary, assume that « : 7(Z) — 7(X) is a Ky-function. For each

fe«2let U(f) = «(I(f) \J {f}). Then U(f) is a neighborhood of f in X. Since
{(V)slfeVer2)

is a neighborhood base of f in X (the reader should verify this) we can take
' (f) € 7(Z) such that

Fe V() TV C U = «(f) U If}).

Since { V(f) M«2| f € «2} has cardinality 2¢ there is an uncountable G C ¢2
and a point p € ¢2 such that

P E Nyea VI(g) Me2.

By (x) above there is a g € G and an infinite H C G — {g} such that
I(h)y NI(W) C I(g) for any two distinct h, b’ € H. Since V(h) Me2 is
infinite for all 2 € H we conclude that

{Vn)y — I(g) I {ehl h € HY

is a disjoint collection of nonempty subsets of Z.
Since I(g) \J {g} is clopen in Z so is W = Z — (I(g) U {g}). For every
w € Wlet O(w) C W be open such that

w € O(w) C {Ow))s C x(W).
By the compactness of W there is a finite /* C W such that
W C User O(x) C Uzer (O(x))s C x(W).

Since [ is finite there is an x € F and there are distinct #, ' € H such that
O(x) intersects both V (k) and V(#'). Take p(h) € O(x) M V (k) and p(K') €
O(x) M V (k). Notice that p(h) = p(h'). Define B = {p, p(k), p(h')}. Then

B € (0(x))s N (V(h))s N (V(R))s Cx(W) M &(I (k) \J {h})
N k(IR U {k'}).
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Now, since

k(W) M k(I(h) \J {hY) O (T (R') I ARY) Cr(W N (I(h) \J {h})
N I(R) I {h'Y)) = (@) = 0,

this is a contradiction.

For the construction of Example 0.2 we need a theorem in [1]. Let NV denote
the set of natural numbers.

THEOREM 2.2. (cf. [1]). Letn = 2. Let f C P (N)andletg : P(N) — [ f]<v
such that for all A € P (N) we have A = \J g(A4). Then there is a collection
H € [P (N)]" and for each H € H there is a Gy € g(H) such that

() NFH = 0;
(ii) for all B € [{Gy| H € )" we have that \ B # 0.

This gives us Example 0.2.

2.3. Construction of Example 0.2. Let BN be the Cech-Stone compactification
of N. Let n = 1 be fixed. Let ¥ = N U [BN]**2, regarded as a subspace of
M, 2(BN). Let X = Y and Z = BN.

We first show that BN is M,-embedded in X. Indeed, define

k:17(BN) —> 17(X)
by
K(U): =X —cly (Y = (U2 N V).

We claim that « defined in this way is an M,-function. Indeed, take open sets
Uy, ..., U, € 7(BN) such that Ni—y U; = . We claim that

Nimo (Uidnpa N Y = 0.

Indeed, to the contrary, assume there is an F € M=o (U;)nr2 M Y. For each

1€1{0,1,...,n}let F;: =FNU;. Then|F) Z#n + 1 and since |F| =n +2
there is a point x € M=y F,. Then x € M=y U; which is a contradiction.
Hence

Nico (Ui)upr N Y = 0.

However, since V is dense in X, this implies that M= x(U;) = 0.

We now show that BN is not M,;,-embedded in X. It can easily be seen that
this implies that BV is not M -embedded in X for all ¢ = n + 1. The proof is
inspired by a construction in [1].

Let p: 7(BN) — 7(X) be any extender. For all A C N we have that

A Cclgy(4) Cp(clan(4)).

Since clgy(A4) is compact, with the same technique as used in 2.1, there is a
finite F(4) C 7(BN) such that

clan(4) C Urez ) <F>n+‘2 C p(clgn(4)).
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Define a function g : 2 (N) — [Z (N)]<“ by
g(4) = (FN NI F € §(4)).
Notice that 4 = \U g(4) for all A C N. By Theorem 2.2 there are

Ao, ..., A1 C NandforeachO £ 17 < n + 1thereisa G, € g(4;) such that
(wm”‘- 9;
(b) N G N ﬂ'ﬁf,,fﬂ G, #@forall0 =m < n+ 1.

Forall0 = m < n + 1 take

Xy € mt—o G, M ﬂ'iﬂg

Since ﬂ'ﬁiol A; =0 we have that H = {x, 0 <17 =< n + 1} has cardinality
7 + 2 and hence isa pointof ¥. Forall0 =17 < n 4+ 1 take F; € §(4;) such
that Fi NN = Gf. Then

H € M (Fidurr C NG plclan (A1)
Since ﬂ'ﬁiol clgy(4:) = 0 we find that p is not an M, ,-function.
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