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Introduction. If/(z) is a non-constant, entire function, then Hadamard's 
three-circles theorem asserts that 

logM(r,f) = sup log |/(s)! 
\z\<r 

is a convex, increasing function of log r. Hence, by well-known properties of 
logarithmically convex functions, 

log M(r,f) = log M(r0,f) + f ^ d t (r > r»), 

where r0 > 0 and \//(t) is a non-negative, non-decreasing function of t. 
Valiron (6, p. 130) considered the following problem: 

Given a function 

(1) A(r) = const. + j ^ dt (r>a> 0), 

where \f/(t) is non-negative and non-decreasing, is it always possible to find an 
entire function f(z) such that 

log M(r,f) ~ A(r), 
as r —> oo. 

Valiron's results may be summarized by 

THEOREM A. Let A(V) be given by (1), where \p(i) is non-negative, non-decreasing, 
and unbounded. Assume further that 

(2) A(r) < rK, 

for some K > 0 and all sufficiently large r. 
Then there exists an entire function f'(z), of finite order, such that 

(3) log M(r,f) ~ A(r) (r -> + oo). 

If the hypothesis (2) is omitted, it is still possible to find an entire function 
f(z), satisfying (3), provided that, as r —> + œ , it omits the values of an exceptional 
set ©, of finite logarithmic measure. 
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In this note we consider the analogue of Valiron's problem for the charac­
teristic of Nevanlinna, T(r,f). We assume that the reader is familiar with the 
fundamental concepts of Nevanlinna's theory and with the most usual of its 
symbols: log, m{r,f), n(r,f), N(r,f), T(r,f). 

It is well known that, for any meromorphic function f(z), T{r,f) is logarith­
mically convex and hence may be represented as 

(4) T(r,f) = const. + f ^ dt (r > a > 0), 

where \[/(t) is non-negative and non-decreasing. Moreover, if f(z) is not rational, 

(5) logr =o(T(r,f)) ( r - • + « > ) , 

which is equivalent to saying that, in (4), \p(t) is unbounded. 
Our main result is 

THEOREM 1. I. If A(r) is of the form (1), where \f/(t) is non-negative, non-
decreasing, and unbounded and if 

(2) A(r) < rK, 

for some K > 0 and all sufficiently large r, then there exists an entire function 
f(z), of finite order, such that 

(6) r ( r , / ) ~ A ( r ) ( r - > « ) . 

II . If Condition (2) is omitted, then (6) still holds provided r tends to infinity 
avoiding an exceptional set E of finite measure. 

III . If E{r, oo ) denotes the portion of E in (r, oo), then 

(7) measE(r, oo) = 0(1/A(r)) (r -> oo). 

IV. If A(r) satisfies the relation 

A(r + 1/A(») < exp (A'(r)) 

for some r\ in 0 < r\ < f, //z^n (6) holds without reference to an exceptional set. 

Our proof depends on the construction of entire functions of the form 

(8) /« = n(1 + {f}"). 
where the q3 are suitable positive integers. 

It might be interesting to point out that the functions of Theorem 1 satisfy 
the inequality 

(9) T(r,f) < log M(r,f) < T(r,f) + KT^(r,f)\og^r (r g E), 

where K(>0) and rj(0 < rj < J) are suitable constants and E has the same 
meaning as in Theorem 1. (Throughout this note the symbols K and r0 denote 
positive constants which are not necessarily the same ones each time they 
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occur. The symbols (r > r0) following some relation simply mean that the 
relation holds for all sufficiently large values of r.) 

If f(z) is of finite order, (9) holds for all sufficiently large values of r, without 
reference to an exceptional set. 

Combining (9) and Theorem 1, we obtain Valiron's Theorem A, with the 
additional information that the exceptional set S may be taken of finite 
measure. 

An inequality such as (9) makes it impossible for f(z) to have exceptional 
values. More precisely, we prove, in Section 5, that (9) implies the existence 
of a set (i, of finite logarithmic measure, such that, for any finite value of c, 

The method which enables us to deduce (10) from (9) is of some independent 
interest and readily yields other results of the same type. For instance: 

If f(z) is entire, of finite lower order, and if 

logM(r,f)~T(r,f) ( r -> « ) , 

then f(z) has no finite deficient values. 

In a recent note, Alpâr and Turân (1) have shown, by an ingenious use of 
gap series, that, given any strictly positive, decreasing function h(x), it is always 
possible to find an entire function f{z) such that, for every finite c, the sequence 

zx(c), 22(c), zz(c),... 

of the zeros of f(z) — c has the property 

(11) £ A(l**(c)l) = + » . 

Alpâr and Turân posed the problem of constructing such functions by other 
methods. Theorem 1 provides such a method since, by choosing suitably A(r), 
it is easy to deduce (11) from (10). 

The problem of constructing functions with prescribed asymptotic behaviour 
of the Nevanlinna characteristic becomes much easier if we select our examples 
from the wider class of meromorphic functions. The construction may then be 
based on the following 

THEOREM 2. Let Z\, z2, zz, . . . (|zi| < \z2\ < |s3| < . . . ) be a given sequence of 
distinct complex numbers having no finite point of accumulation and let 
Mi, M2, Ms, • • • be a given sequence of positive integers. Finally, let £(r) be a given 
function of r (>0) , decreasing, strictly positive, otherwise arbitrary. 

Then, it is possible to find a meromorphic function f\z), of the form 

(12) f(z) - £ J » (a* > 0, 2 «* < + oo ), 
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and asetE, of finite measure, such that 

T(r,f) = N{r,f) (r g E) 

and 

0 < T(r,f) - N(r,f) < f(r) (r > r0, r € £ ) . 

.Moreover 

N(r, 1/f) =T(r,f) + 0(log r) (r -> + » ), 

and for any c j± 0, 

i V ( r , l / ( / - c ) ) = r ( r , / ) + 0 ( l ) ( r - > + « ) . 

The proof of Theorem 2 is too elementary to be included here. It may be 
supplied readily by noticing that, if 

p = inf* {»k}, 

and if the positive sequence {ak\ decreases very rapidly, the function in (12) 
satisfies, as r —> + °°, the asymptotic relation 

outside narrow rings 

|z,| - ej < \z\ < \zj\ + ej (ej > 0, Y,*j < + °°)-

It is obvious, in view of Theorem 2, that given /z(x) as in the problem of 
Alpâr and Turân, it is possible to find a meromorphic function/(s) such that 
(11) holds for c = oo as well as for every finite c. 

Finally, we observe that a very simple solution of the problem of Alpâr and 
Turân may be derived from the following immediate consequence of the 
fundamental relations of R. Nevanlinna: 

Let F(z) be a given function, entire or meromorphic, but not rational. 
Then, if the constant a is suitably chosen, the function 

(13) f(z) = F{z) - az 

satisfies t for every finite c, the relation 

The exceptional set E which appears in (14) is now of finite measure; it is 
independent of c and may be omitted altogether if F(z) is of finite order. 

To prove this proposition, we first choose a, in (13), so that 

(15) N(r, 1/f) = N(r, 1/(F' - a)) ~ T(r, Ff) (r -> « ) ; 

this is possible by a classical result (5, p. 280). 
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By Nevanlinna's first fundamental theorem, 

(16) T(r, F') = T(r,f) + 0(1) = m(r, 1//') + N(r, l/f) + 0(1) 
( r -> oo). 

Combining (15) and (16), we find that 

(17) m(r,l/f) =o(T(r,f)) (r-x»). 

By the well-known properties of the derivative (4, p. 104) 

(18) T(r,f) < KT{r,f) (r <? E), 

and hence, combining (17) and (18), we find that 

(19) m(r, l/f) = o(T(r,f)) (r -» » , r <Z E). 

Consider now the identity 

1 f 1 
f-c f-cf" 

where c is finite, otherwise arbitrary. 
Using elementary inequalities, (19), and the theorem on the logarithmic 

derivative, we find that 

(20) m(r, l / ( f - c)) < tn(r,f'/(f - c)) + m(r, l/f) = o(T(r,f)) 
(r—> oo, r £ E). 

(The fact that, in (20), E is independent of c may be seen by using the first 
fundamental theorem in Nevanlinna's estimate for m{r,f /(j — c)) (4, p. 61).) 

Since 
m{r, l / ( f - c)) + N(r, l / ( / - c)) = T(r,f) + 0(1), 

(20) yields (14). 

1. Preliminary constructions. In the following proof, we replace (1) by 

(1.1) A(r)= ftfdt, 

and assume that 
(i) </>(/) is continuous, 

(ii) 4>(t) is strictly increasing and unbounded, 
(iii) 0(1) = 0. 

These regularity assumptions do not restrict the generality of Theorem 1 
because, given ^(t), as in Theorem 1, it is easily seen that there exists a function 
0(0, satisfying the conditions (i), (ii), (iii), and such that 

f ^ d t ~ const. + r ^ d t ( r ^ o ) . 
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Starting from (1.1), we define a function B(r) by the conditions 

(1.2) B ^ = ^ r (r>l,B(l)=0). 

By the mean-value theorem, it is obvious that B(r) is continuous for r > 1, 
strictly increasing, and unbounded. 

Let 

(1.3) ru r2, r3, . . . 

be the sequence defined by the conditions 

(1.4) j =3 2 <(r , ) logr , (j = 1 , 2 , 3 , . . . ) , 

where rj (0 < rj < §) is fixed. Since i>27?(x)log x is continuous, strictly increasing, 
and unbounded and since B2l](l)log 1 = 0 , the sequence (1.3) is uniquely 
determined, strictly increasing, and unbounded. 

We now set 

(1.5) k/ = e x p ( y g ^ ) = exp({5(r,) |" log r3), 

and notice that the sequence {k/}^ is increasing and unbounded, whereas 
the sequence {kj} ^ is decreasing and 

lim kj = 1. 
j->CO 

Denoting by [X] the greatest integer contained in X, it is easily seen that 
the sequence {qj} defined by 

qj = [27*1i2*3 ...kj] + l (j = 1, 2, 3, . . .) 

satisfies simultaneously the four following relations: 

(1.6) q, > k/ (j > 1), 

(1-7) qi+i > q, (j > 1), 

(1.8) lim (qj+i/qj) = 1, 

(1.9) lim (qi/{q1 + q2 + q3 + . . . + q,) ) = 0. 

2. Construction of an entire function / such that N(r, 1/f) ~ A(r). 
Put 
(2.1) Qj=qi + q2 + qs + mmm+ q. (j = 1, 2, 3, . . .) 

and define an increasing unbounded sequence {tj}^ by the conditions 

(2.2) 0(/,) =Qj (j = 1 , 2 , 3 , . . . ) . 

The existence and uniqueness of \tj) are obvious since, by assumption, 
(f)(1) = 0 and <j)(t) is continuous, strictly increasing, and unbounded. 
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We now set 

(2 3) (n^ = 0 ( 0 < / <tl}> 
^ * ^ \n(t) = Qj (tj < t < tmJ = 1 , 2 , 3 , . . .), 

and notice that, in view of (2.2), (1.9), and (1.8), 

1 < Mfj < 1 + ^ «><>< W > ")• 

We consider next the infinite product 

<2-5> 50+{-£•}")- / w-
where, by (1.7), 

q_m — Qj> m - j (m > j). 

Hence, if \z\ = r < R and if p = p(R) is defined by 

(2.6) tp<R< tp+ll 

we have 

(2.7) D 
tj>R "<,c,{i}"<E{-r 

- li-}" s {*}"" < {'l" R 
R) R-r* 

These inequalities show that the product in (2.5) converges uniformly in 
every bounded region. Hence f(z) is an entire function. Comparing (2.3) and 
(2.5), we see that 

n(r, 1/f) = n(r), 

and hence, by (2.4) and (1.1), 

(2.8) N(r, 1/f) = J j ' 2 ® «ft ~ A(r) (r -» » ). 

Further, for r < Ry and p defined by (2.6), 

(2.9) log M(r,f) = £ g, log(r/Q + £ log(l + | M " ) 
tj<r tj<r \ \ T J / 

< f(r, l/f) + p log 2 + £ l-f-}". 
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Hence, by (2.7) and elementary inequalities of Nevanlinna's theory, 

(2.10) N(r, 1/f) < T(r,f) < log M(r,f) < N(r, 1/f) + p log 2 

where p is defined by (2.6). 

3. Proof of Assertion I of Theorem 1. Choose, in (2.10), 

(3.1) R = 2r. 

Then, by (2.1), (2.2), and (2.6), 

qv<Qv< 4>(2r) < ("^p-dt< A(2er) 
*/2r * 

and hence, by (2), 

(3.2) qp = 0(rK) (p =p(2r),r-> oo). 

By (1.5) and (1.6), 

exp(^"(rp)logrp) < qp, 

which, combined with (3.2), yields 

(3.3) B*(rv)\ogrp = 0(logr) , 

and hence 

(3.4) rp < r {p > pQ). 

Returning to (1.4), using (3.3), (3.4), and the fact that B(r) is increasing, 
we find that 

p < B*(r)K log r (r > r0). 

Hence, we deduce from (2.10) that 

(3.5) N(r, 1/f) < T(rJ) < log M(r,f) < N(r, l/f) + KB*(r)\og r 
(r —> oo), 

which, in view of (2.8) and (1.2), yields (6). 

4. Proof of Assertion II of Theorem 1. Assume that r is sufficiently 
large and fixed, and that the variable p increases from r to + °°. 

Consider the increasing continuous function H(p) = (p — r)/p and the 
non-increasing step function 

L(P) = ^ (s. > 3), 

where s = s(p) is defined by 

(4.1) Qs < *(p) < Qs+1. 
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The function 

G GO = L{p) - H{P) 

is strictly decreasing and continuous on the right. For p sufficiently large, we 
have G(p) < 0, whereas 

G(r) = L(r) > 0. 

Denote by R the least upper bound of those values of p(>r ) such that 
G(p) > 0 and let 

(4.2) p = s(R). 

If e > 0, we have G(R + e) < 0 and so 

lim G(R + e) = G(R) < 0, 

which, in view of (4.2), may be rewritten as 

(4.3) ^ < ^ . 
qp R 

Hence R > r and, if e ( > 0 ) is sufficiently small 

p-l<s(R- e). 

Then , by definition of R, 
R - e- r log gp-i 

R — e qp-i 

and hence, letting e —> 0 + , we find t h a t 

(4.4) ^ I < Î 9 £ f c î . 
K qp_i 

Now (1.7) and (1.8) imply t h a t 

and hence (4.3) and (4.4) yield 

(4.5) Î 2 0 £ < ^ J : < 2 ! 2 p ir>r0,R = R(r),p = s(R)). 
1v K 1v 

Using the first of the inequalities (4.5), we obtain 

( 4"6 ) \~R) R=~r <eXp\-q»-ir)R^-r< b o ­

using (4.6) in (2.10), we find that 

(4.7) N(r, 1//) < r ( r , / ) < log M(r,f) < iV(r, 1//) + p log 2 + 0(1), 

as r -> + oo. 
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If 

(4.8) p < jB2'(r)logrf 

then, by (2.8) and (1.2), 

(4.9) p < 2iV2'(r, l/f)\ogl-^r < 2T^ (r J)\ogl~^r. 

The assertion (6) of Theorem 1 now follows (under the assumption (4.8)) 
from (4.7), (4.9), (2.8), and (5). 

To complete the proof of Theorem 1, we show first that 

(4.10) p > B^{r)\ogr 

implies that 

(4.11) A(r + 1/A(r)) > exp{A»(r)} (r > r0). 

By (1.4) and (4.10) 

(4.12) B^(r)\og r < B2*(rp)log rp 

and therefore, since B(r) is increasing, 

(4.13) r < rp. 

By (1.6), (1.5), and (4.13), 

(4.14) qp > exp{£"(fp)logrp} > exp{£*(r)log r} , 

and since (logx)/x is decreasing for x > e, (4.14) and the second inequality 
in (4.5) yield 

R-r < 2 log gP 

R qp 

< 2B\r)\og r exp{ - 5 » log r\ 

< 2B\r)exp{-±B\r)\og r}r_1log r (r > r0). 

Hence, since 

\B*(r)\ogr > {B(r)\ogry = A'(r) (r > r0), 

we have 

^ ^ < 4 A ^ ( r ) e x p { - A t ? ( r ) } . i 

4rA(r) 

which implies 

(4-15) R < r + ^ — y (r > r0). 
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By (4.14) and the definitions (4.1) and (4.2), 

(4.16) exp{S'(r)logr} < exp{5'(rp)logr,} < qp < Qp < 0(£) . 

On the other hand, by (4.15) and (1.1), 

(4.i7) *(*> < r+Jir)_R £+A'Hr) ̂ 4 = ^ *m 

< (2rA(r) + 2) A( 

Now in view of (1.2) 

A*(r) < \B*(r)\ogr (r > r0), 

2rA(r) + 2 < 3rA(r) < exp{i£*(r)log r + A'(r)} 

< exp{£5*(r)log r} (r > r0). 

Therefore, by (4.16) and (4.17), 

(4.18) A(r + 1/A(r)) > exp{iB"(r)log r} > exp(A'(r)) (r > r0). 

We have thus shown that (4.10) implies (4.11). 
By a well-known lemma of E. Borel, the inequality 

A(r + 1/A(r)) > 2A(r) 

cannot hold outside a set JE, of values of r, satisfying the condition (7). (This 
form of Borers lemma will be found in (2, p. 18).) 

Hence r Q E implies (4.9) and all the assertions of Theorem 1 become 
obvious. 

The relation (9) follows from (3.5) if f(z) is of finite order and from (4.7) 
and (4.9) if the condition (2) is omitted. 

5. Study of N(r, l/(f- c))/T(r,f). We start from the following form of a 
lemma which has been proved elsewhere. 

LEMMA (3, Lemma III) . Let f(z) be meromorphic and let c be any finite 
complex quantity. Let I(r) be the set of 0 for which 

\f(rei&) - c\ < 1, 
and let 

n(r) = meas I(r). 

Then, for 1 < r < Rf 

(5.1) 4 ^ ) < ̂  7{sf/-L_),(r){i + &_!_} . 
In view of the first fundamental theorem, it is obvious that (5.1) may be 

replaced by 
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(5.2) m[r, ~ - J < -~-f T(R,fh(r)\l + log ^ y } (r0 < r < R). 

In view of the mean-value theorem, the definition of T(r,f) implies that 

2TT(r,f) <fIir)\ig\f(re^)\de + \2T - /*(r)}log M(r,f) 

< M(r)log(l + \c\) + (2T - v(r))log M(r,f). 

Hence, by (9), 

Since T(r,f) is logarithmically convex, 

(5.4) T(r,f) = T(l,f) + D(r)log r (T(l,f) > 0), 

where D(r) is non-decreasing. Hence (5.3) implies that 

Using this inequality in (5.2) and assuming that 

r0 < r < R < 2r, 

we find that 

(5-5) fn(r,jè-)<T»^T,ZXt <r<tE,r>r0), 
K r (log r)D(R) 

'f-c/^ {R-r){D{r)V 

where r(0 < r < 1) is a suitable constant. 
By Borel's lemma (2, p. 19), we have 

(5.6) D{R)=D{r + ^m^<Dx+\r) (r d &), 

where e is an arbitrary fixed positive quantity and ©* is a set of finite logarith­
mic measure. 

Using (5.6) and (5.4) in (5.5), we obtain 

m(r,T^fJ
C)) <K{\ogD(r))D'-T(r) = o(l) , 

provided that we have chosen 0 < 6 < r and that, as r —* + œ we assume that 

r g {£U@*} = (g. 

Since 

N(r, l/(f - c)) = r ( r , / ) - m(f, l / ( / - c)) + 0(1), 

the proof of (10) is complete. 
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