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Abstract. Many authors have studied the dynamics of hyperbolic transcendental entire
functions; these are functions for which the postsingular set is a compact subset of the
Fatou set. Equivalently, they are characterized as being expanding. Mihaljević-Brandt
studied a more general class of maps for which finitely many of their postsingular points
can be in their Julia set, and showed that these maps are also expanding with respect to
a certain orbifold metric. In this paper we generalize these ideas further, and consider a
class of maps for which the postsingular set is not even bounded. We are able to prove
that these maps are also expanding with respect to a suitable orbifold metric, and use this
expansion to draw conclusions on the topology and dynamics of the maps. In particular,
we generalize existing results for hyperbolic functions, giving criteria for the boundedness
of Fatou components and local connectivity of Julia sets. As part of this study, we develop
some novel results on hyperbolic orbifold metrics. These are of independent interest, and
may have future applications in holomorphic dynamics.
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1. Introduction
In the study of dynamical systems, the notion of expansion in its various forms is
fundamental. For a holomorphic function, expansion has frequently been understood in
terms of a conformal metric defined on a neighbourhood of its Julia set. More specifically,
a polynomial p is hyperbolic if it is expanding with respect to a hyperbolic metric induced
on a neighbourhood of its compact Julia set J (p). This is equivalent to saying that
every critical value of p belongs to the basin of attraction of a periodic cycle, and in
particular its orbit lies in the Fatou set F(p) [DH84, Theorem 1, p. 21]. As a consequence
of this expansion, whenever the Julia set of a hyperbolic polynomial is connected, it
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is also locally connected [DH84, Proposition 4, p. 19]. For transcendental entire maps,
infinity is an essential singularity and thus their Julia sets are no longer compact. Still,
with slight modifications on the notion of expansion, which in particular requires the
hyperbolic metric to be defined in a punctured neighbourhood of infinity, the definition
and characterization of hyperbolic transcendental maps are analogous to those in the
polynomial case; see [RS16, Theorem and Definition 1.3] and Definition 2.1. Again,
expansion of hyperbolic transcendental maps was used in [BFR15] to draw conclusions
on the topology of their Julia and Fatou sets.

Regarding expansion arguments, it is crucial for a hyperbolic map f that both its set of
singular values S(f ), that is, the closure of the set of singularities of the inverse f −1, and
the closure of its forward orbit, called the postsingular set P(f ) ..= ⋃

n≥0 f n(S(f )), are
contained in its Fatou set. This is because then all iterates of f act as a covering map in a
neighbourhood of J (f ), where the hyperbolic metric sits, which does not intersect P(f ).
Even if such a neighbourhood no longer exists for subhyperbolic polynomials, that is, those
for which P(p) ∩ F(p) is compact and P(p) ∩ J (p) is finite, still Douady and Hubbard
were able to extend these ideas to this more general setting. More precisely, inspired by
work of Thurston [Thu84a], they overcame the presence of postsingular points in the Julia
sets of subhyperbolic polynomials by considering J (p) as a subset of a Riemann orbifold
on which p acts as an orbifold covering map. In particular, they proved subhyperbolic
polynomials to be expanding with respect to a corresponding orbifold metric [DH84]; see
§3 for basic definitions on orbifold metrics. Thanks to this expansion, they showed that
the aforementioned result on local connectivity of Julia sets for hyperbolic polynomials
generalizes to subhyperbolic ones [DH84, Proposition 4, p. 19].

The notion of subhyperbolicity for transcendental entire functions was first introduced
by Mihaljević-Brandt [Mih12]. A transcendental entire map f is said to be subhyperbolic
if P(f ) ∩ F(f ) is compact and P(f ) ∩ J (f ) is finite. For a transcendental entire
function, the presence of asymptotic values or critical points with arbitrarily large local
degree in its Julia set prevents its Julia set from being successfully considered a subset
of an orbifold [Mih12, Proposition 3.6]. However, orbifold expansion is achieved in
[Mih12, Theorem 4.1] for subhyperbolic functions for which this does not occur, that is,
subhyperbolic maps with bounded criticality on their Julia sets, which are called strongly
subhyperbolic.

Note that since the postsingular set of subhyperbolic transcendental maps is bounded,
all these maps belong to the broadly studied Eremenko–Lyubich class B. This class consists
of all transcendental entire functions with bounded singular set, and this resemblance to
the polynomial case has made this class a target of study in transcendental dynamics.
Moreover, the fact that for subhyperbolic maps the postsingular set is also bounded is
decisive in the arguments concerning estimates on orbifold metrics in [DH84, Mih12].
In this paper, we generalize strongly subhyperbolic functions to a class of functions
that contain critical values escaping to infinity, and thus their postsingular set might be
unbounded. More precisely, we say that a transcendental entire function f is postcritically
separated if P(f ) ∩ F(f ) is compact and PJ

..= J (f ) ∩ P(f ) is discrete. If in addition
f has bounded criticality in J (f ), there is a uniform bound for the number of critical
points in the orbit of any z ∈ J (f ), and there is ε > 0 so that for any distinct z, w ∈
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PJ , |z − w| ≥ ε max{|z|, |w|}, we say that f is strongly postcritically separated. See
Definition 2.3. We note that these maps might have unbounded singular set, but expansion
is achieved for those that are additionally in B.

To each strongly postcritically separated map f ∈ B we associate a pair of orbifolds O
and Õ whose underlying surfaces are respective neighbourhoods of J (f ), and so that we
can extend f to be an orbifold covering map between them. With a slight abuse of notation,
we also denote this map between orbifolds by f ; see §3 for more details. Moreover, for a
holomorphic (orbifold) map f : Õ → O between two hyperbolic orbifolds, we define the
hyperbolic derivative with respect to their orbifold metrics as

‖Df (z)‖ÕO ..= |f ′(z)| · ρO(f (z))

ρÕ(z)
,

whenever the quotient is defined. If, in addition, both z and f (z) belong to the underlying
surface of O, we abbreviate ‖Df (z)‖O ..= ‖Df (z)‖OO.

THEOREM 1.1. (Orbifold expansion for strongly postcritically separated maps) Let f ∈ B
be a strongly postcritically separated map. Then there exist a constant � > 1 and a pair
of hyperbolic orbifolds O and Õ such that f : Õ → O is an orbifold covering map,

‖Df (z)‖O = |f ′(z)| · ρO(f (z))

ρO(z)
≥ �, (1.1)

whenever the quotient is defined, and J (f ) is contained in the underlying surfaces of both
O and Õ.

Theorem 1.1 has allowed us to provide elsewhere [Par19b] a complete description
of the topological dynamics of certain transcendental functions in class B with critical
values that escape to infinity, this being the first result of this kind. Namely, the
results in [Par19b] hold for strongly postcritically separated functions satisfying some
additional condition that guarantees the existence of dynamic rays (see Definition 7.6)
in their Julia sets. In this paper, we use Theorem 1.1 to generalize some of the results
in [BFR15] on the topology of Julia and Fatou sets for hyperbolic functions, to the
larger class of strongly postcritically separated maps. The first one is a generalization of
[BFR15, Theorem 1.2].

THEOREM 1.2. (Bounded Fatou components) Let f ∈ B be strongly postcritically sepa-
rated. Then the following are equivalent:
(a) every component of F(f ) is a bounded Jordan domain;
(b) f has no asymptotic values and every component of F(f ) contains at most finitely

many critical points.

As a consequence of this theorem, we obtain the following result on local connectivity
of Julia sets, which generalizes [BFR15, Corollary 1.8].

COROLLARY 1.3. (Bounded degree implies local connectivity) Let f ∈ B be strongly
postcritically separated with no asymptotic values. Suppose that there is a uniform bound
on the number of critical points, counting multiplicity, in the Fatou components of f . Then
J (f ) is locally connected.
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The next result provides further sufficient conditions for the local connectivity of Julia
sets (compare to [BFR15, Corollary 1.9(a)]).

COROLLARY 1.4. (Locally connected Julia sets) Let f ∈ B be strongly postcritically
separated with no asymptotic values. Suppose that every component of F(f ) contains
at most one critical value, and that the multiplicity of the critical points of f is uniformly
bounded. Then J (f ) is locally connected.

In order to successfully associate orbifolds to a holomorphic function so that some
analogue of Theorem 1.1 holds, the set of ramified points of the orbifolds, and hence the
set of singularities of the corresponding orbifold metrics, must contain the postsingular
points of the function that are also in its Julia set; see the discussion at the beginning of
§5. Since, for strongly postcritically separated functions, these points might tend to the
essential singularity at infinity, we require global estimates of the densities of metrics
on hyperbolic orbifolds, in particular generalizing some known estimates for metrics
on hyperbolic domains. These estimates, which hold for orbifolds Õ, O for which the
inclusion Õ ↪→ O is holomorphic, come in terms of the boundary of Õ in O, denoted
BÕ
O. The set BÕ

O consists of boundary points of the underlying surface of Õ that are in
O, together with those points that have greater ramification value in Õ than in O; see
Definition 4.1.

THEOREM 1.5. (Estimates on relative densities) Let Õ and O be hyperbolic orbifolds
such that the inclusion Õ ↪→ O is holomorphic, and denote by ρÕ and ρO their respective
densities. If R is the O-distance between z ∈ Õ and BÕ

O, then

1 <
eR

√
e2R − 1

≤ ρÕ(z)

ρO(z)
≤ 1 + 2

eR − 1
, (1.2)

whenever the quotient is defined.

We also show in this paper that whenever singularities of an orbifold metric are ‘con-
tinuously perturbed’, the orbifold metric of the new orbifold is a ‘continuous perturbation’
of the metric of the original orbifold; see Theorem 4.3. In particular, that result has the
following implication.

THEOREM 1.6. (Distances are uniformly bounded across certain orbifolds) Given a
compact set A ⊂ U and constants ε > 0 and c, M ∈ N≥1, there is a constant R ..=
R(U , A, ε, c, M) > 0 such that, for every orbifold O with underlying surface U and at
most M ramified points, each with ramification value at most c, and such that the Euclidean
distance between any two of them is at least ε, we have that

dO(p, q) < R for every p, q ∈ A.

Finally, we introduce in §7 a modified notion of homotopy for which we obtain in
Proposition 7.3 an analogue of the homotopy lifting property for a certain class of curves
that contain postsingular points. Moreover, we show in Corollary 7.8 that if U is a bounded
set of a hyperbolic orbifold such that P(f ) ⊂ U is finite and there is a dynamic ray of f

https://doi.org/10.1017/etds.2020.147 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.147


Orbifold expansion and bounded Fatou components 1811

landing at each of those postsingular points, then there exists a constant μ such that, for any
piece of dynamic ray of f contained in U , we can find a curve on its ‘modified homotopy
class’ with orbifold length at most μ. This result is of great value for expansion arguments,
and, in particular, it is used in [Par19b].

1.1. Structure of the paper. In §2 we provide the formal definition of strongly post-
critically separated maps, their basic properties and some examples. Section 3 includes
background on Riemann orbifolds, and §4 studies orbifold metrics and contains the proofs
of Theorems 1.5 and 1.6. Using these results, in §5 we construct for each strongly post-
critically separated map a pair of dynamically associated orbifolds and prove Theorem 1.1.
Section 6 contains the proofs of the results on Fatou components and local connectivity
of Julia sets, that is, Theorem 1.2 and Corollaries 1.3 and 1.4. These proofs will easily
follow from the study of periodic Fatou components: Theorem 6.4 gives several conditions
equivalent to the boundedness of a periodic Fatou component. Finally, §7 includes results
regarding curves in homotopy classes with a uniform bound on their (orbifold) length.

1.2. Basic notation. As introduced throughout this section, the Fatou and Julia set of
an entire function f are denoted by F(f ) and J (f ), respectively. Moreover, we define its
escaping set as I (f ) ..= {z ∈ C : f n(z) → ∞ as n → ∞}. The set of critical values of f

is CV (f ), that of asymptotic values is AV (f ), and the set of critical points is Crit(f ).
The set of singular values of f is S(f ), and P(f ) is its postsingular set. Moreover, we
let PJ

..= P(f ) ∩ J (f ) and PF
..= P(f ) ∩ F(f ). We denote the complex plane by C, the

Riemann sphere by Ĉ and the upper half-plane by H. A disc of radius ε centred at a point
p will be Dε(p), the unit disc centred at 0 will be abbreviated as D, and D∗ ..= D \ {0}. We
indicate the closure of a domain either by U or cl(U) in such a way that it will be clear from
the context, and these closures must be understood to be taken in C. A � B means that A is
compactly contained in B. The annulus with radii a < b ∈ C will be denoted by A(a, b) ..=
{w ∈ C : a < |w| < b}. For a holomorphic function f and a set A, Orb−(A) and Orb+(A)

are the backward and forward orbit of A under f ; that is, Orb−(A) ..= ⋃∞
n=0 f −n(A) and

Orb+(A) ..= ⋃∞
n=0 f n(A).

2. Strongly postcritically separated functions
Definition 2.1. (Postcritically separated, subhyperbolic and hyperbolic maps) A transcen-
dental entire function f is postcritically separated if PJ

..= P(f ) ∩ J (f ) is discrete and
PF

..= P(f ) ∩ F(f ) is compact. In the particular case when P(f ) ∩ J (f ) is finite, f is
called subhyperbolic, and when P(f ) ∩ J (f ) = ∅, f is hyperbolic.

Observation 2.2. (Dichotomy of points in PJ ) If f is postcritically separated, then any
p ∈ PJ either is (pre)periodic or escapes to infinity: indeed, if p /∈ I (f ), then there exists
a subsequence of points in the orbit of p that lies in a bounded set, and by discreteness of
PJ on that set, the claim follows. By the same argument, if in addition f ∈ B, then there
can be at most finitely many points in S(f ) ∩ I (f ).

Recall that for a holomorphic map f : S̃ → S between Riemann surfaces, the local
degree of f at a point z0 ∈ S̃, denoted by deg(f , z0), is the unique integer n ≥ 1 such that
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FIGURE 1. Illustration of the relationships between the classes of functions defined in §2.

the local power series development of f is of the form

f (z) = f (z0) + an(z − z0)
n + (higher terms),

where an �= 0. Thus, z0 ∈ C is a critical point of f if and only if deg(f , z0) > 1. We say
that f has bounded criticality in a set A if AV(f ) ∩ A = ∅ and in addition, there exists a
constant M < ∞ such that deg(f , z) < M for all z ∈ A.

Definition 2.3. (Strongly postcritically separated functions) A postcritically separated
transcendental entire map f is strongly postcritically separated with parameters
(c, ε) if:
(a) f has bounded criticality in J (f );
(b) for each z ∈ J (f ), #(Orb+(z) ∩ Crit(f )) ≤ c;
(c) for all distinct z, w ∈ PJ , |z − w| ≥ ε max{|z|, |w|}.
Observation 2.4. (Separation of points in PJ ) In the definition of strongly postcritically
separated map, (c) has the following implication: for every constant K > 0, there exists a
constant M > 0, depending only on ε and K , so that

#(PJ ∩ A(r , Kr)) ≤ M for all r > 0. (2.1)

To see this, note that the annulus A(1, K) admits at most some number M of points in PJ ,
so that these points are at pairwise distance at least ε. Moreover, by (c), for any r > 0 and
all distinct w, z ∈ (PJ ∩ A(r , Kr)), |z/r − w/r| > ε. The combination of these two facts
implies (2.1). In particular, since, as r increases, the annuli ‘A(r , Kr)’ are of greater area,
the orbit of any point z ∈ S(f ) ∩ I (f ) must converge to infinity at more than a constant
rate, that is, for all C ∈ R+, there must exist n ≥ 0 so that |f n+1(z)| > |f n(z)| + C.

Remark. When f is subhyperbolic and Definition 2.3(a) holds, f is called strongly
subhyperbolic [Mih12, Definition 2.11]. Note that for subhyperbolic maps, conditions (b)
and (c) in Definition 2.3 are trivially satisfied, and thus any strongly subhyperbolic map is
strongly postcritically separated, see Figure 1.
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Remark. If f is a strongly postcritically separated map, then so is f n for all n ≥ 1. This
follows from the facts that AV(f n) = ⋃n−1

i=0 f i(AV(f )), CV(f n) = ⋃n−1
i=0 f i(CV(f )),

J (f n) = J (f ) and P(f n) = P(f ).

Examples. The following functions belong to the classes of maps just defined.
• The exponential map is a postcritically separated map in class B that is neither strongly

postcritically separated nor subhyperbolic, since its asymptotic value 0 escapes to
infinity and is in its Julia set; see, for example, [SRG15].

• The function f (z) ..= π sinh(z) has only two critical values and no asymptotic values.
Moreover, P(f ) = {0, ±πi} ⊂ J (f ). Thus, f is strongly subhyperbolic, and hence
strongly postcritically separated; see [Mih12, Appendix A] for a description of the
dynamics of this map.

• For the function f (z) ..= cosh(z), S(f ) = CV(f ) = {−1, 1} ⊂ I (f ). Moreover,
f ∈ B and is strongly postcritically separated, but not subhyperbolic; see [Par20]
for more details on the dynamics of this map. In particular, Theorem 1.1 applies to it.

• Let erf denote the error function [AS72, p. 297], and let α ∈ C be a complex solution
to erf(α) = 1. In particular, we set α ≈ 5.902 − 0.262i. Let g : C → C given by

g(z) ..= 2i Im(α)√
π

∫ z

0
e−w2

dw + Re(α) = i Im(α)erf(z) + Re(α).

Then S(g) = AV(g) = {α, α}, where α is the complex conjugate of α. Since erf(α) =
erf(α) = α, both asymptotic values are fixed points in J (g). Hence, g is postcritically
separated but not strongly postcritically separated; see [Six18, p. 7] for more details on
functions constructed this way.

• The function cosh(z) − 1 has as singular set two critical values, namely the point 0,
which is superattracting, and the point −2, which belongs to the escaping set of the
function. Hence, this is another example of a strongly postcritically separated function
in class B.

For a transcendental entire map f , we denote by A(f ) the set of all points whose
forward orbit converges to some attracting cycle of f . The following property will be
of use to us when f ∈ B is postcritically separated, since, as we shall see in Lemma 2.6, in
that case PF � F(f ) = A(f ). By Jordan domain we mean a complementary component
of a Jordan curve on the sphere that is also a simply connected domain in C. In particular,
it might be bounded or unbounded.

PROPOSITION 2.5. (Compact subsets of attracting basins [Mih09, Proposition 3.1]) Let
f be a transcendental entire function and let C ⊂ A(f ) be a compact set. Then there
exist bounded Jordan domains U1, . . . , Un compactly contained in pairwise different
components of A(f ) such that if U ..= ⋃n

i=1 Ui , then

f (U) � U � A(f ) and Orb+(C) � U .

The types of Fatou components that might occur for postcritically separated functions
follow from classical results; see, for example, [Ber93, §4 and Theorem 6] for definitions
and a classification of periodic Fatou components. In particular, we say that a wandering
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domain U is escaping if U ⊆ I (f ). We denote by P(f )′ the derived set of P(f ), that is,
the set of its finite limit points.

LEMMA 2.6. (Fatou components for postcritically separated maps) Let f be postcritically
separated. Then F(f ) is either empty or might consist of a collection of attracting basins,
Baker domains and escaping wandering domains. The number of attracting basins must be
finite, and in the two latter cases, the domains do not contain singular values. In particular,
PF is contained in a finite union of attracting basins, and every periodic cycle in J (f )

is repelling. If in addition f ∈ B, F(f ) is either empty or a finite union of attracting
basins.

Remark. We do not claim the existence of examples of postcritically separated functions
with wandering domains or Baker domains. Instead, this lemma disregards the existence
of some types of Fatou components for these functions.

Proof of Lemma 2.6. Compactness of PF excludes parabolic components. Suppose that
F(f ) had a parabolic component U of period p, with a parabolic fixed point z0 ∈
∂U such that, for every z ∈ U , f np(z) → z0 as n → ∞. Then, since every cycle of
immediate attracting or parabolic basins contains a singular value [Ber93, Theorem 7],
there would exist w ∈ S(f ) that would also belong to some component in the cycle of
U , and hence f j (w) ∈ U for some 0 ≤ j < p. But Orb+(w) ⊂ PF , and simultaneously,
Orb+(w) would contain the subsequence f p+j (w), f 2p+j (w), . . . converging to z0 /∈
F(f ), which would contradict the compactness of PF . Hence, F(f ) does not contain
parabolic components. Note that by our assumptions of the discreteness of PJ and the
compactness of PF , J (f ) ∩ P(f )′ = ∅. Thus, since every boundary point of each Siegel
disk is a limit point of P(f ) (see [Mil06, Corollary 14.4]), Siegel disks cannot occur
for f .

If U is a wandering domain of f , since J (f ) ∩ P(f )′ = ∅, by [BHK+ 93], the only
possible limit function of {f n|U }n≥0 is infinity, and so U must be escaping. Since PF

is compact, I (f ) ∩ PF = ∅, and so if Baker or escaping wandering domains occur for
f , they cannot contain singular orbits. Hence, PF ⊂ A(f ), and by Proposition 2.5, PF

is contained in finitely many attracting basins. Since each cycle of attracting periodic
components must contain a postsingular point, there cannot be any further attracting basins
of F(f ). We have already discarded parabolic cycles in J (f ), as there are no parabolic
components in F(f ). If z0 was an irrationally indifferent periodic point in J (f ), then there
would be a sequence {wk}k ⊂ P(f ) converging non-trivially to z0; see [Mil06, Corollary
14.4]. Since PJ is discrete and PF is contained in the union of finitely many attracting
basins, this is impossible, and so all periodic cycles in J (f ) must be repelling. By [EL92],
functions in class B do not have Baker domains or escaping wandering domains, and so,
for postcritically separated functions in this class, only attracting basins can occur. �

3. Background on Riemann orbifolds
An orbifold is a space that is locally represented as a quotient of an open subset S of
Rn by a linear action of a finite group (see [Thu84a, Ch. 13]). For the purposes of this
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paper, we are only interested in orbifolds modelled over Riemann surfaces. In this case,
orbifolds are conveniently totally characterized by the surface S together with a map that
‘marks’ a discrete set of points of S. For a more detailed introduction to this particular
case, we refer the interested reader to [McM94, Appendix A] and [Mil06, Ch. 19 and
Appendix E]. For the case where the orbifold is constructed over a 2-sphere, see also
[BM17, Appendix A.9].

Definition 3.1. (Riemann orbifold) A Riemann orbifold is a pair (S, ν) consisting of a
Riemann surface S, called the underlying surface, and a ramification map† ν : S → N≥1

such that the set

{z ∈ S : ν(z) > 1}
is discrete. A point z ∈ S for which ν(z) > 1 is called a ramified or marked point, and
ν(z) is its ramification value. If ν(z) = 1 we say that z is unramified. The signature of an
orbifold is the list of values that the ramification map ν assumes at the ramified points,
where each of them is repeated as often as it is assumed by ν.

Remark. We shall often use the term ‘orbifold’ synonymously with ‘Riemann orbifold’.
Note that a traditional Riemann surface is a Riemann orbifold with ramification map ν ≡ 1.
In some cases, we will allow underlying surfaces to be disconnected, and hence certain
properties should be understood componentwise.

In order to define holomorphic maps between orbifolds, we recall that f : S̃ → S

between Riemann surfaces is a branched covering map if every z ∈ S has a connected
neighbourhood U � z such that f maps any component of f −1(U) onto U as a proper
map.

Definition 3.2. (Holomorphic and covering orbifold maps) Let Õ = (S̃, ν̃) and O = (S, ν)

be Riemann orbifolds. A holomorphic map f : Õ → O is a holomorphic map f : S̃ → S

between the underlying Riemann surfaces such that

ν(f (z)) divides deg(f , z) · ν̃(z) for all z ∈ S̃. (3.1)

If in addition f : S̃ → S is a branched covering map such that

ν(f (z)) = deg(f , z) · ν̃(z) for all z ∈ S̃, (3.2)

then f : Õ → O is an orbifold covering map. If there exists an orbifold covering map
between Õ and O, S̃ is simply connected and ν̃ ≡ 1, then Õ is a universal covering orbifold
of O and f is a universal covering map.

We note that an orbifold covering map need not be a covering map, in the usual sense,
between the underlying surfaces. In fact, that will be the most frequent case for us.

Observation 3.3. (Lifts of covering maps [Mil06, Lemma E.2]) Let Õ, O be a pair of
orbifolds with universal covering orbifolds. Then f : Õ → O is an orbifold covering map
if and only if it lifts to a conformal isomorphism between the universal covering orbifolds.

† Unlike in other texts, we only allow the ramification map to take finite values.
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Remark. With a slight abuse of notation, we will sometimes write z ∈ O to indicate that
z belongs to the underlying surface of O. Similarly, given a holomorphic map f between
orbifolds, we also denote by f the holomorphic map between their underlying surfaces,
and vice versa.

As a generalization of the uniformization theorem for Riemann surfaces, with only two
exceptions, every Riemann orbifold has a universal covering orbifold.

THEOREM 3.4. (Uniformization of Riemann orbifolds) Let O = (S, ν) be a Riemann
orbifold for which S is connected. Then O has no universal covering orbifold if and only
if O is isomorphic to Ĉ with signature (l) or (l, k), where l �= k. In all other cases the
universal cover is unique up to a conformal isomorphism over the surface S, and given by
either Ĉ, C or D. In particular, if S � C and #(Ĉ \ S) > 2, then O is covered by D.

Analogously to Riemann surfaces, we call an orbifold O elliptic, parabolic or hyper-
bolic if all of its connected components are covered by Ĉ, C or D, respectively. A more
detailed version of this theorem can be found in [McM94, Theorem A2]. For the proof in
the more general case, see [Thu84a, Proposition 13.2.4].

Theorem 3.4 allows us to induce a metric on those orbifolds that have a universal
cover as the pushforward of the spherical, Euclidean or hyperbolic metric of their
universal cover. More precisely, let O = (S, ν) be an orbifold that has universal covering
surface C ∈ {C, Ĉ, D}, and let ρC(z)|dz| be a complete conformal metric on C. By
pushing forward this metric by an orbifold covering map, we obtain a Riemannian
metric on O, which we denote by ρO(w)|dw| and call the orbifold metric of O. If
C ∈ {D, Ĉ}, this metric is uniquely determined by normalizing the curvature to ±1,
and for C = C the metric is well defined up to a positive scalar multiple. The orbifold
metric on O determines a metric in the surface S with singularities at the ramified
points of O. More precisely, if ν(w0) = m > 1 for some w0 ∈ S, then ρO(w)|dw| has
a singularity of the type |w − w0|(1−m)/m near w0 in S. We then say that w0 is a cone
point.

Remark. (Cone points versus punctures) There is an advantage to defining an orbifold
metric on S � C for which w0 is a cone point over inducing a hyperbolic metric in the
punctured surface S \ {w0}. Even if both of the corresponding densities tend to infinity
as we approach w0, contrary to what happens when w0 is a puncture, the orbifold
distance from a point of S to the cone point w0 is finite, since w0 is part of the surface.
See [Mil06, pp. 210–211], as well as Proposition 7.4 for examples where estimates are
computed.

Remark. (Equivalence of metrics) If O = (S, ν), with S ⊂ C, is an orbifold that admits
an orbifold metric in the sense above, then the corresponding induced metric in S is
topologically equivalent to the Euclidean metric in S. That is, both metrics generate the
same topology on S. We will use this fact without further comment.

Let O = (S, ν) be an orbifold with S � C that admits an orbifold metric ρO(w)|dw|.
This metric induces an O-distance dO(x, y) between points x, y ∈ S in the following way.
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We join x to y by a rectifiable curve γ in S, and define the O-length �O(γ ) of γ by

�O(γ ) ..=
∫

γ

ρO(w)|dw|.

Note that the integral is well defined, since the set of ramified points in γ , and thus
singularities of ρO, is finite. (See, for example, [BM17, A.1 and A.10] for more details
on conformal and orbifold metrics.) Finally, we set

dO(x, y) ..= inf{�O(γ ) : γ is a rectifiable curve in S joining x and y}.

In particular, for any two subsets A, B ⊂ S, which may be singletons, we denote

dO(A, B) ..= inf{dO(x, y) : x ∈ A, y ∈ B}.

The so-called Schwarz lemma or Pick’s theorem for hyperbolic surfaces [BM07,
Theorem 6.4] generalizes to hyperbolic orbifolds in the following result.

THEOREM 3.5. (Orbifold Pick’s theorem) A holomorphic map between two hyperbolic
orbifolds can never increase distances as measured in the hyperbolic orbifold metrics.
Distances are strictly decreased, unless the map is a covering map, in which case it is a
local isometry.

See [Thu84b, Proposition 17.4] or [McM94, Theorem A.3] for more details. Recall that
as a consequence of Pick’s theorem for hyperbolic surfaces, if U and V are hyperbolic
domains with V ⊂ U , the inclusion from V into U is contracting, and so for their
hyperbolic densities ρU and ρV we have that ρV (z) ≥ ρU(z) for all z ∈ V . Theorem 3.5
has analogous implications, which we shall use.

Remark. From now on, we use the notation Õ ↪→ O to indicate the inclusion map between
Õ and O. We are implicitly stating that such map is well defined and, in particular, that the
underlying surface of Õ is contained in the underlying surface of O.

COROLLARY 3.6. (Comparison of orbifold densities) Let Õ and O be hyperbolic orbifolds
for which the inclusion Õ ↪→ O is holomorphic. If ρÕ and ρO are the respective
densities of their orbifold metrics, then ρÕ(z) ≥ ρO(z) for all unramified z ∈ Õ, with strict
inequality when the inclusion map is not an orbifold covering map.

Observation 3.7. (Relative densities) Note that if Õ ↪→ O is holomorphic, then all
ramified points of O are also ramified points of Õ, and so the quotient ρÕ(z)/ρO(z) is
well defined for all unramified z ∈ Õ. Moreover, if f : Õ → O is a covering map, then by
Theorem 3.5 it is a local isometry, and so ρÕ(z) = |f ′(z)|ρO(f (z)) for all z ∈ Õ ∩ O.

By the previous observation and Corollary 3.6, the following result holds.

COROLLARY 3.8. (Lower bound on hyperbolic derivative) Let f : Õ → O be a covering
map between hyperbolic orbifolds for which the inclusion Õ ↪→ O is holomorphic but not
a covering. Let ρÕ and ρO be the respective densities of their orbifold metrics. Then, for
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all unramified z ∈ Õ,

‖Df (z)‖O = |f ′(z)|ρO(f (z))

ρO(z)
= ρÕ(z)

ρO(z)
> 1.

4. Hyperbolic orbifold metrics
In the first part of this section we study the relation between the densities of the metrics
of two hyperbolic orbifolds whenever one of them is holomorphically embedded in the
other. More specifically, let Õ ..= (S̃, ν̃) and O = (S, ν) be hyperbolic orbifolds such
that the inclusion Õ ↪→ O is holomorphic. Note that, in particular, we are assuming that
S̃ ⊆ S. Recall that then, by Corollary 3.6, ρÕ(z) ≥ ρO(z) for all unramified z ∈ Õ. The
intuition behind this fact is the following: since a hyperbolic orbifold metric is defined
as a pushforward of the hyperbolic metric in D with singularities at ramified points, its
density tends to infinity both when approaching ramified points, and when tending to the
boundary of the underlying surface of the orbifold. Moreover, if w0 is a ramified point, then
the density function is of the form |w − w0|(1−m)/m near it, where m is its ramification
value. Note that for a fixed w0, as m increases, the density function tends ‘faster’ to infinity
when we approach w0. Hence, since Õ ↪→ O being holomorphic implies that S̃ ⊆ S and
ν̃(z) ≥ ν(z) for all unramified z ∈ Õ, the desired inequality on their densities follows. This
motivates the definition of the following set.

Definition 4.1. (Boundary of Õ in O) Given a pair of orbifolds Õ = (S̃, ν̃) and O = (S, ν)

such that the inclusion Õ ↪→ O is holomorphic, we define the boundary of Õ in O as the
set

BÕ
O

..= ∂S̃ ∪ {z ∈ S̃ : ν̃(z) > ν(z)}.

Remark. If Õ ↪→ O is holomorphic, then BÕ
O �= ∅ if and only if S̃ � S, or S = S̃ and the

inclusion is not an orbifold covering map. Moreover, in this case, the quotient ρÕ(z)/ρO(z)

is well defined for all unramified z ∈ Õ; see Observation 3.7.

Under the conditions of Definition 4.1, Theorem 1.5 provides bounds for the quotient of
densities in terms of the O-distance between a point z ∈ S̃ and the set BÕ

O. This is inspired
by [MR13, Proposition 3.4], where an analogous result is shown to hold for hyperbolic
Riemann surfaces. Let us restate Theorem 1.5 in a more precise version.

Theorem 1.5 (Relative densities of hyperbolic orbifolds) Let Õ ..= (S̃, ν̃) and O ..= (S, ν)

be hyperbolic orbifolds such that the inclusion Õ ↪→ O is holomorphic. Let z ∈ Õ be
unramified and suppose that R ..= dO(z, BÕ

O) < ∞. Then

1 <
eR

√
e2R − 1

≤ ρÕ(z)

ρO(z)
≤ 1 + 2

eR − 1
. (4.1)

Remark. The exact dependence of the bounds on R is not relevant for our purposes;
instead we are interested in the fact that the quotient of densities depends only on R and is
bounded away from 1 (see Figure 2). Still, we point out that the proof will show that the
bounds are sharp, in the sense that they can be attained.
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FIGURE 2. Plot of the function �(R) ..= eR/
√

e2R − 1, which provides a lower bound for the quotient of densities
in the setting of Theorem 1.5. Observe that �(R) > 1 for all R > 0.

Proof of Theorem 1.5. We can assume without loss of generality that the surfaces S̃ and
S are both connected, since otherwise the same argument applies componentwise. For the
point z fixed in the statement of the proposition, let π : D → O be a covering map with
π(0) = z. In particular, by definition of orbifold covering map, for any x ∈ D,

ν(π(x)) = deg(π , x) · νD(x) = deg(π , x), (4.2)

as νD ≡ 1 by definition. Since by assumption z ∈ S̃ ⊆ S, there exists a connected
component of π−1(S̃) that contains the point 0. We shall denote this component by D̂.
Since Õ ↪→ O is holomorphic, ν(w) divides ν̃(w) for all w ∈ Õ, and so, using (4.2), we
can define a ramification map ν̂ : D̂ → N≥1 as

ν̂(x) ..= ν̃(π(x))

deg(π , x)
. (4.3)

Note that by (4.2) and since Õ ↪→ O is holomorphic, for each x ∈ D̂, ν̂(x) > 1 if and only
if π(x) ∈ {w ∈ Õ : ν̃(w) > ν(w)}. Since {w ∈ Õ : ν̃(w) > ν(w)} is a discrete set, as ν̃ is
the ramification map of an orbifold, Ô ..= (D̂, ν̂) is also a Riemann orbifold. Observe that
by definition, the restriction π |D̂ : Ô → Õ is an orbifold covering map.

Since by assumption dO(z, BÕ
O) = R, by definition of the set BÕ

O, there must exist at

least one point z2 ∈ BÕ
O such that dO(z, z2) = R. In particular, z2 ∈ S. Let us connect z2

to z by a geodesic (in the metric of O) of length R. By lifting this geodesic to the unit
disc using the map π , we see using Theorem 3.5 that there exists w ∈ cl(D̂) such that
distD(0, w) = R. By pre-composing with a rotation, we can assume that w is a positive
real number. We recall that the densities of the hyperbolic metric on Dr , for some r ∈ R+
and on D∗, are respectively given by

ρDr
(x) = 2

r(1 − |x|2/r2)
and ρD∗(x) = 1

|x| · | log |x|| . (4.4)

Since π is a covering map, by Theorem 3.5, dD(x, y) ≥ dO(π(x), π(y)) for all x, y ∈ D.
Hence, by the choice of w, the disc (in the hyperbolic metric on D) of radius R centred at
the origin is contained in D̂, and in particular is a Euclidean disc of radius w. Moreover, by
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definition of the constant R, ν̂(z) = 1 for all z ∈ Dw ⊂ D̂, and thus, if we regard Dw as a
hyperbolic orbifold with ramification map constant and equal to 1, the inclusion Dw ↪→ Ô
is holomorphic. In particular, by Corollary 3.6, ρÔ(x) ≤ ρDw

(x) for all x ∈ Dw. Thus,
using Theorem 3.5, (4.4) and recalling that π(0) = z,

ρÕ(z)

ρO(z)
= |π ′(0)| · ρÕ(π(0))

|π ′(0)| · ρO(π(0))
= ρÔ(0)

ρD(0)
≤ ρDw

(0)

ρD(0)
= 1

w
. (4.5)

We have obtained an upper bound for the relative densities at z in terms of the value w.
In order to get a lower bound, we divide the proof into two cases depending on whether
ν̂(w) = 1 or ν̂(w) > 1. In the first case, z2 = π(w) ∈ ∂S̃, and so w ∈ ∂D̂. In particular,
D̂ ⊂ D \ {w}, and so the inclusion Ô ↪→ (D \ {w}, ρD\{w}) is holomorphic, where ρD\{w}
is the constant function equal to 1. Therefore, by Corollary 3.6, ρÔ(x) ≥ ρD\{w}(x) for
all unramified x ∈ Ô. Consider the Möbius transformation T : D → D given by T (x) ..=
(x − w)/(wx − 1), which in particular satisfies T (w) = 0 and T (0) = w. The restriction
T |D\{w} is a covering map for the orbifold with underlying surface D∗ and ramification
map constant equal to 1. Then, using Theorem 3.5, (4.4) and (4.5),

ρÕ(z)

ρO(z)
= ρÔ(0)

ρD(0)
≥ ρD\{w}(0)

ρD(0)
= |T ′(0)| · ρD∗(T (0))

|T ′(0)| · ρD(T (0))
= ρD∗(w)

ρD(w)
= 1 − w2

2w| log w| . (4.6)

For the second case, that is, whenever k ..= ν̂(w) ≥ 2, we define the orbifold Ok
w

..=
(D, μ) with μ(w) = k and μ ≡ 1 elsewhere. Then, the inclusion Ô ↪→ Ok

w is holomor-
phic, and so by Corollary 3.6, ρÔ(x) ≥ ρOk

w
(x) for all x ∈ D̂. Thus, using (4.5),

ρÕ(z)

ρO(z)
= ρÔ(0)

ρD(0)
≥ ρOk

w
(0)

ρD(0)
. (4.7)

Let Ok
0 be the orbifold with underlying surface the unit disc and signature (k), its only

ramified point being 0. Let f : D → Ok
0 be the covering map given by f (x) = xk . Then

T ◦ f : D → Ok
w is an orbifold covering map, and thus, by Theorem 3.5,

|f ′(x)|ρOk
0
(f (x)) = ρD(x) = |T ′(f (x))| · |f ′(x)|ρOk

w
(T (f (x))).

Hence, if we choose any x ∈ D such that f (x) = w, using that T (w) = 0, we get that
ρOk

0
(w) = |T ′(w)|ρOk

w
(0). Arguing similarly, ρD(w) = |T ′(w)|ρD(0). Thus, substituting

in (4.7),

ρÕ(z)

ρO(z)
≥ ρOk

w
(0)

ρD(0)
=

ρOk
0
(w)

ρD(w)
. (4.8)

We aim to get a lower bound for ρOk
0
(w)/ρD(w) independent of the value k. We can

compute the density of the induced metric in Ok
0 using that ρD(x) = |f ′(x)|ρOk

0
(f (x))

and (4.4). Since f (x) = xk = u implies xk−1 = u(k−1)/k , we get that, for each u ∈ D,

ρOk
0
(u) = 2

k|u|(k−1)/k(1 − |u|2/k)
. (4.9)
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Thus, if we make the change of variables q ..= 1/k, r ..= 1/w, we are aiming to find a lower
bound, independent of q, for

ρOk
0
(w)

ρD(w)
= 1 − w2

kw(k−1)/k(1 − w2/k)
= q(1 − r−2)r

rq − r−q
where q ∈ (0, 1/2] and r > 1.

(4.10)
Observe that for each fixed value of r , the last quotient above is strictly decreasing in q.

This can be seen by considering, for each r > 1, the functions fr : (0, 1/2] → R given by

fr(q) ..= q

rq − r−q
= q

sinh(q log r)
= s

log r sinh(s)
,

where we have made the change of variables s = q log r . Let h(s) ..= s/ sinh(s) and note
that h′(s) = (sinh(s) − s cosh(s))/ sinh2(s) is always negative, as tanh(s) < s when s is
positive. Thus, the same holds for f ′

r (q), and so each function fr is strictly decreasing in q.
Substituting in (4.10),

ρOk
0
(w)

ρD(w)
≥ (1 − r−2)r

2(r1/2 − r−1/2)
= r−1/2(1 + r−1)

2
= 1 + w

2
√

w
for each w < 1. (4.11)

Thus, putting together equations (4.6), (4.8) and (4.11), we get that, for the point z in the
statement,

ρÕ(z)

ρO(z)
≥ min

{
1 − w2

2w| log w| ,
1 + w

2
√

w

}
= 1 + w

2
√

w
> 1. (4.12)

Finally, (4.1) is obtained, recalling that the hyperbolic distance between 0 and
any point z ∈ D is given by log((1 + |z|)/(1 − |z|)). In our case, dD(0, w) =
log((1 + w)/(1 − w)) = R, and so w = (eR − 1)/(eR + 1). Substituting accordingly
in equations (4.5) and (4.12), the desired bounds are achieved. �

The second goal of this section is to prove Theorem 1.6. In order to achieve this, we
will first prove in Theorem 4.3, for orbifolds with the same number of ramified points, all
with the same ramification value, that if these ramified points are ‘continuously perturbed’,
the orbifold metric of the new orbifold is a ‘continuous perturbation’ of the metric of the
original one. It is possible that these results have appeared before in the orbifolds literature,
but since a reference has not been located, we present proofs that use quasiconformal maps.
We refer to [LV73, Vuo88] for definitions.

We start by fixing the type of orbifolds that we shall consider, namely, those for which
their ramified points are at least at a certain (given) Euclidean distance from each other.

Definition 4.2. (Orbifolds associated to vectors) Given a compact subset A of a Jordan
domain U � C and constants N , X ∈ N≥1 and r > 0, denote

T N
r (A) ..= {(w1, . . . , wN) ∈ AN : |wi − wj | ≥ r for all i �= j}. (4.13)

Each w = (w1, . . . , wN) ∈ T N
r (A) has an associated orbifold OX

w
..= (U , νw ), with

νw (z) ..=
⎧⎨
⎩X if z = wi for some 1 ≤ i ≤ N ,

1 otherwise.
(4.14)
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Remark. By Theorem 3.4, for any orbifold OX
w as in Definition 4.2, since U � C, its

universal cover is D, and so the distance function dOX
w

is well defined. Moreover, it is easy
to see that T N

r (A) is compact.

In the following theorem, we see that continuous perturbations of a vector w ∈ T N
r (A)

lead to continuous perturbations on the distance function dOw
of its associated orbifold.

Compare to [Mih12, Theorem 4.2] for a similar argument when a single ramified point of
an orbifold is perturbed.

THEOREM 4.3. (Continuity of orbifold metrics under perturbations) Let A be a compact
subset of a Jordan domain U . Let N , X ∈ N≥1 and r > 0. Then the function h : A2 ×
T N

r (A) → R given by

h(p, q, w1, . . . , wN) ..= dOw
(p, q)

is continuous, where w ..= (w1, . . . , wN) ∈ T N
r (A) and Ow

..= OX
w is its associated

orbifold.

Proof. Since the domain of the function h is a metric space, the notions of continuity
and sequential continuity for h are equivalent. Thus, we will prove the theorem by
showing that for a fixed but arbitrary x ..= (p, q, w1, . . . , wN) ∈ A2 × T N

r (A), if {xk
..=

(pk , qk , wk
1, . . . , wk

N)}k≥1 is a sequence of points in A2 × T N
r (A) such that xk → x

as k → ∞, then h(xk) → h(x). That is, if w ..= (w1, . . . , wN) and for each k ≥ 1,
wk

..= (wk
1, . . . , wk

N), then we will prove continuity of h by showing that

dOwk
(pk , qk) → dOw

(p, q) as k → ∞. (4.15)

By translation, we may assume without loss of generality that 0 ∈ A and wj �= 0 for all
1 ≤ j ≤ N . Then, since w ∈ T N

r (A), we can choose ε < r/2 so that all disks in the set

{Dε} ∪ {Dε(wj ) : 1 ≤ j ≤ N}
are pairwise disjoint and contained in U . Since by assumption xk → x as k → ∞, there
exists K > 0 such that wk

j ⊂ Dε(wj ) for all k ≥ K and 1 ≤ j ≤ N . Moreover, for each
k ≥ K and 1 ≤ j ≤ N , we define a quasiconformal map ϕk

j : Dε(wj ) → Dε(wj ) that
satisfies ϕk

j (wk
j ) = wj . With that aim, let Hk

j : Dε(wj ) → H be the unique Riemann map
such that Hk

j (wj ) = i and so that Hk
j (wk

j ) lies in the positive imaginary axis. Recall that

H denotes the upper half-plane. In particular, Hk
j (wk

j ) = hk
j i, where hk

j
..= edj (wk

j ,wj ) and
dj denotes the hyperbolic metric in Dε(wj ). Define Lk

j : H → H as Lk
j (z)

..= Re(z) +
hk

j Im(z)i. Note that Lk
j is a hk

j -quasiconformal self-map of H. We then define

ϕk
j : Dε(wj ) → Dε(wj ) as ϕk

j
..= (Hk

j )−1 ◦ Lk
j ◦ Hk

j .

If follows from the definition of the functions involved that ϕk
j extends continuously to

∂Dε(wj ) as the identity map. Hence, the map ϕk : U → U given by

ϕk(z)
..=

⎧⎨
⎩ϕk

j (z) if z ∈ Dε(wj ) for some 1 ≤ j ≤ N ,

z otherwise,
(4.16)
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is well defined and continuous. In fact, ϕk is a K(k)-quasiconformal map, where K(k) ..=
maxN

j=1{hk
j } (see, for example, [GŚ98]), and moreover,

ϕk|Dε
≡ id|Dε

for all k ≥ K . (4.17)

In particular, K(k) → 1 and ϕk → id as k tends to infinity. Let π : D → Ow and
let πk : D → Owk be orbifold covering maps, normalized such that π(0) = πk(0) =
0 and arg(π ′(0)) = arg(π ′

k(0)). Note that as an orbifold map, ϕk : Owk → Ow is a
homeomorphism that preserves ramified points, that is,

νw(z) > 1 ⇐⇒ νwk(ϕk(z)) > 1. (4.18)

Thus, we can lift ϕk to a homeomorphism 
k : D → D such that

π ◦ 
k = ϕk ◦ πk and 
k(0) = 0. (4.19)

Note that 
k is also K(k)-quasiconformal, since both π and πk are holomorphic and ϕk

is a K(k)-quasiconformal map. Recall that, for every K , the space of K-quasiconformal
self-maps of the disc fixing zero is compact; see [Hub06, Corollary 4.4.3]. In particular,
since K(k) → 1 as k tends to infinity, the limit function of {
k}k is K-quasiconformal for
every K > 1; that is, it is conformal, and thus a Möbius transformation fixing zero. Note
that by (4.17) and (4.19), the maps 
k are all holomorphic on the same neighbourhood of 0,
and by our assumptions on the derivatives of π , πk and ϕk at 0, we have that |
′

k(0)| → 1
as k → ∞. Consequently, the sequence {
k}k converges locally uniformly to the identity
as k → ∞. Hence, by (4.18) and (4.19), πk converges locally uniformly to π as k → ∞.

Recall that our goal is to prove (4.15). Note that since {πk}k and π are orbifold
covering maps, by Theorem 3.5 they are local isometries. Hence, instead of proving
(4.15) using the orbifold metrics in Owk and Ow, we will prove an analogue of (4.15)
for preimages of the points p, q, pk , qk under the covering maps {πk}k and π . More
precisely, let us choose δ small enough so that there exist respective connected components
Vp and Vq of π−1(Dδ(p)) and π−1(Dδ(q)) containing a single preimage of p and of q,
respectively. That is, π−1(p) ∩ Vp =.. {p̃} and π−1(q) ∩ Vq =.. {q̃}. In addition, for each
k ≥ K , let us consider the holomorphic functions π

p
k : Vp → U and π

q
k : Vq → U given

by π
p
k (z) ..= πk(z) − p and π

q
k (z) ..= πk(z) − q. Then the sequences {πp

k }k and {πq
k }k

converge uniformly in compact subsets to the functions π |Vp − p and π |Vp − q, which
have respectively unique zeros at p and q. Then, by Hurwitz’s theorem, for each k large
enough, there exist points {p̃πk

} ..= π−1
k (p) ∩ Vp ∩ Dδ1(p̃) and {q̃πk

} ..= π−1
k (q) ∩ Vq ∩

Dδ1(q̃) for some δ1 small enough. In particular,

p̃πk

k→∞−−−−→ p̃ and q̃πk

k→∞−−−−→ q̃. (4.20)

Note that for each k ≥ K , p̃πk
is a preimage of p under πk , rather than a preimage of pk

under πk , and hence the proof is not concluded just yet. However, since by assumption

pk k→∞−−−−→ p and qk k→∞−−−−→ q, for every k sufficiently large, π−1
k (pk) ∩ Vp =.. {Pk},

π−1
k (qk) ∩ Vq =.. {Qk}, and in addition

|Pk − p̃πk
| k→∞−−−−→ 0 and |Qk − q̃πk

| k→∞−−−−→ 0. (4.21)
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Thus, as a combination of (4.20) and (4.21), and using that, for compact subsets of D, the
Euclidean and hyperbolic metrics are equivalent, we have that

dD(Pk , Qk) → dD(p̃, q̃) as k → ∞,

which is equivalent to (4.15), as we wanted to show. �

Theorem 1.6 now becomes a consequence of the preceding result together with
Theorem 1.5. We restate it here for ease of exposition.

Theorem 1.6 (Distances are uniformly bounded across certain orbifolds) Given a compact
subset A of a Jordan domain U and constants r > 0 and c, M ∈ N≥1, there exists a constant
R ..= R(U , A, r , c, M) > 0 such that, for every orbifold O with underlying surface U and
at most M ramified points, each with ramification value smaller than or equal to c, and
such that the Euclidean distance between any two of them is at least r ,

dO(p, q) < R for every p, q ∈ A.

Proof. For each N = 1, . . . , M , we apply Theorem 4.3 to the compact set A, the domain
U ⊃ A and constants N and X = c!. Then Theorem 4.3 asserts that, for each N , the
function h : A2 × T N

r (A) → R of its statement is continuous and defined on a compact set.
Hence, for each N , there exists a constant RN such that, for any orbifold Ow = (U , νOw

)

with w ∈ T N
r (A) and νOw

as specified in (4.14), dOw
(p, q) < RN for all p, q ∈ A. Note

that by Corollary 3.6, the same bound holds for any orbifold with N ramified points in A

with ramification degrees between 1 and c. This is because the inclusion map would be
holomorphic as their ramification values divide c!, and the same argument applies if the
orbifold has no ramified points in A. Let us define R̃ ..= maxN≤M RN . Then if Ô ..= (U , ν̂)

is any orbifold with at most M ramified points, any two at Euclidean distance at least r , all
lying in A and each of them with ramification value at most c, then

dÔ(p, q) < R̃ for all p, q ∈ A. (4.22)

Let us fix any orbifold O ..= (U , ν) satisfying the hypotheses of the statement of this
theorem. Moreover, let us fix Ô = (U , ν̂) with ν̂ ≡ ν|A in A and ν̂ ≡ 1 in U \ A, and
note that (4.22) holds for Ô.

Let W ..= {z ∈ U : dÔ(A, z) < R̃} and define the orbifold Õ ..= (W , ν|W), with ν|W
being the restriction of ν to W . Observe that A � W and that the inclusions Õ ↪→ O and
Õ ↪→ Ô are holomorphic. In particular, the boundary of Õ in Ô, denoted BỖ

O, consists of
all ramified points of Õ lying in W \ A together with ∂W . Then, by definition of W , for all
z ∈ A, dÔ(z, BỖ

O) < R̃, and by Theorem 1.5, for all unramified z ∈ A, (ρÕ(z)/ρÔ(z)) ≥
1 + (2/(eR̃ − 1)) =.. K . Moreover, if γ is a geodesic in the metric of Ô joining two points
p, q ∈ A, again by the choice of W , γ must be totally contained in W , and hence in Õ.
Thus,

dÔ(p, q) =
∫

|γ ′(t)|ρÔ(γ (t)) dt ≥ 1
K

∫
|γ ′(t)|ρÕ(γ (t)) dt ≥ 1

K
dÕ(p, q).
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By this and by Corollary 3.6, for all p, q ∈ A,

dO(p, q) ≤ dÕ(p, q) ≤ KdÔ(p, q) ≤ K · R̃ =.. R.

Since the constant K does not depend on the domain W but only on R̃, the statement
follows. �

5. Uniform expansion
This section is devoted to the proof of Theorem 1.1: for each strongly postcritically
separated function f ∈ B, we define a pair of hyperbolic orbifolds (Õ, O) so that in
particular their underlying surfaces contain J (f ) and so that f : Õ → O is an orbifold
covering map. In order to construct these orbifolds, we take into account Corollary 3.8.
That is, a first step towards expansion requires, in addition to the conditions above,
that the inclusion Õ ↪→ O is holomorphic. Then the combination of the inclusion being
holomorphic and f being a covering map, (i.e. merging formulae (3.1) and (3.2)) implies
that the ramification map ν of O must satisfy

deg(f , z) · ν(z) divides ν(f (z)) for all z ∈ Õ. (5.1)

In other words, if z ∈ Õ, then deg(f , p) · ν(p) divides ν(z) for all p ∈ f −1(z).

Remark. Note that if J (f ) is in the underlying surfaces of Õ and O, then by (5.1) all
points in P(f ) ∩ J (f ) are ramified in O.

In order to achieve our goal, we have followed Mihaljević-Brandt’s strategy when
proving the corresponding statement for strongly subhyperbolic transcendental maps
[Mih12, Propositions 3.2 and 3.4]. The underlying idea is essentially the same as that
in Douady and Hubbard’s work for subhyperbolic rational maps [DH84, p. 22] (see also
[Mil06, §19]): the ramification value of each point in O is defined as a multiple of
the local degrees of all points on its backward orbit; see (5.2). In particular, with this
definition, all postsingular points of f are ramified. Unlike in the polynomial case, both
for strongly subhyperbolic and postcritically separated maps, in addition to those in P(f ),
more ramified points in O are needed in order to guarantee expansion, that is, to guarantee
that the set BÕ

O from Definition 4.1 has ‘enough points’. Thus, the set of ramified points of
O will consist of PJ together with a repelling periodic cycle.

DEFINITION AND PROPOSITION 5.1. (Dynamically associated orbifolds) Let f be a
strongly postcritically separated map. Then there exist orbifolds O ..= (S, ν) and Õ ..=
(S̃, ν̃) with the following properties.
(a) Either S = C = S̃ or cl(S̃) ⊂ S = C \ U , where U is a finite union of bounded

Jordan domains.
(b) The set of ramified points of O equals PJ ∪ B, where B is a periodic cycle in

J (f ) \ PJ .
(c) J (f ) ⊂ S̃ ⊂ S and PF ∩ S = ∅.
(d) O and Õ are hyperbolic orbifolds.
(e) f : Õ → O is an orbifold covering map and the inclusion Õ ↪→ O is holomorphic.
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(f) There exists p ∈ S \ PJ such that #{f −1(p) ∩ S̃} is infinite and

#{z ∈ f −1(p) : ν̃(z) ≤ ν(z)} < ∞.

We say that a pair (Õ, O) of Riemann orbifolds is dynamically associated to f if Õ and
O satisfy (a)–(f).

Proof. If F(f ) = ∅, then we define S ..= C. Otherwise, by Lemma 2.6, PF is contained
in a finite union of attracting basins, and so by Proposition 2.5 we can find bounded
Jordan domains U1, . . . , Un such that, for U ..= ⋃n

i=1 Ui , we have that PF ∪ f (U) �
U � F(f ). We then define S ..= C \ U . In particular, S is connected and J (f ) ⊂ S.

CLAIM. There exists a periodic cycle, which we denote by B, contained in J (f ) \ PJ .

Proof of claim. Note that, as PJ is forward invariant, the cycle any repelling periodic point
in J (f ) \ PJ belongs to is totally contained J (f ) \ PJ . Since f is an entire transcendental
function, J (f ) must contain non-degenerate continua [Bak75]. Since PJ is discrete, we
can choose a bounded piece γ of such a continuum, so that γ and PJ are at ε-Hausdorff
distance for some fixed ε > 0. Then, since J (f ) can be characterized as the closure
of the set of repelling periodic points of f [Ber93, Theorem 4], each point in γ is
either a repelling periodic point, or an accumulation of such points. In any case, we can
find a repelling periodic point in the ε-neighbourhood of γ , and so its cycle belongs to
J (f ) \ PJ . �

We define the map ν : S → N+ as

ν(z) ..=
⎧⎨
⎩lcm{deg(f m, w), where f m(w) = z for some m ≥ 1} if z /∈ B,

2 if z ∈ B.
(5.2)

Note that no critical point of S belongs to a periodic cycle, since PF ⊂ U and, by
Lemma 2.6, all periodic cycles in J (f ) are repelling. By this, Definition 2.3, and
expanding the definition of local degree for an iterate of f , there exists a constant C such
that, for any w ∈ S and m ≥ 1,

deg(f m, w) =
m∏

j=1

deg(f , f j (w)) ≤ C. (5.3)

Therefore, ν(z) ≤ lcm{1, 2, . . . , C} < ∞ for all z ∈ S. Moreover, the map ν is defined in
(5.2) such that ν(z) > 1 if and only if z belongs to PJ ∪ B. Hence, since f is postcritically
separated, PJ is discrete, and thus O ..= (S, ν) is a Riemann orbifold. In particular, (b)
follows by construction.

The orbifold O is hyperbolic; if S �= C, then this follows from Theorem 3.4. If,
however, S = C, by [McM94, Theorem A2], the only orbifolds such that S = C are either
hyperbolic, or they are parabolic with signature (n) or (2, 2). It is shown in [Mih12, Proof
of Proposition 3.2] that:
• for any n ≥ 2, each orbifold with underlying surface C and signature (n) must contain

an asymptotic value in S; and
• the orbifold with surface C and signature (2, 2) can only occur for polynomials.
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These two cases lead to contradictions with AV(f ) ∩ S = ∅ and f being postcritically
separated. Thus, O must be hyperbolic. By definition of the map ν, for every z ∈ f −1(S),
deg(f , z) divides ν(f (z)), and hence we can define

S̃ ..= f −1(S) and ν̃(z) : S̃ → N+ with ν̃(z) ..= ν(f (z))

deg(f , z)
. (5.4)

Since the set of ramified points of O is discrete, one can see, using for example the
identity theorem, that the set {z ∈ S̃ such that ν̃(z) > 1} is also discrete. Thus, Õ ..= (S̃, ν̃)

is an orbifold. By construction, AV(f ) ∩ S = ∅, and so the map f : S̃ → S is a branched
covering. Furthermore, for all z ∈ S̃, deg(f , z) · ν̃(z) = ν(f (z)), and hence f : Õ → O is
an orbifold covering map.

Recall that f (U) � U whenever U �= ∅, which implies cl(S̃) ⊂ S. Moreover, if S = C,
then J (f ) = C, and since AV(f ) ∩ J (f ) = ∅ by assumption, S̃ = f −1(C) = C. Thus,
(a) follows. Moreover, since J (f ) is a totally invariant set, J (f ) ⊂ S̃, as stated in (c).
Let z ∈ S̃. The definition of ν together with (5.3) implies that ν(z) · deg(f , z) divides
ν(f (z)). In turn, by (5.4), ν(f (z)) = ν̃(z) · deg(f , z). Hence, ν(z) divides ν̃(z) and so the
inclusion Õ ↪→ O is a holomorphic map, proving statement (e). Since in addition O is
hyperbolic, by Theorem 3.4, each connected component of Õ must be hyperbolic, and so
Õ is a hyperbolic orbifold. Thus, statement (d) follows. All that remains is to show item (f).
For that purpose, choose any p ∈ B. In particular p ∈ S, and so f −1(p) ⊂ S̃. Moreover,
since AV(f ) ∩ J (f ) = ∅, by Picard’s theorem, #f −1(p) is infinite; see [Sch10, Theorem
1.14]. Since p ∈ B ⊂ J (f ) \ PJ , deg(f , z) = 1 for all z ∈ Orb−(p) and, in particular, for
all z ∈ f −1(p) \ B, we have that ν̃(z) = 2 and ν(z) = 1. Consequently, (f) follows and the
proof is concluded. �

Note that condition (f) in the previous proposition implies that, for any pair (Õ, O)

of orbifolds associated to f , the inclusion Õ ↪→ O is not an orbifold covering map, and
hence the set BÕ

O is non-empty. The next proposition tells us that when in addition f ∈ B,

the set BÕ
O contains a sequence of points whose moduli converge to infinity at a specific

rate.

PROPOSITION 5.2. (Unbounded sequence in BÕ
O) Let f ∈ B be strongly postcritically

separated and let (Õ, O) be a pair of orbifolds dynamically associated to f . Then,
there exist a constant N > 1 and an infinite sequence of points {zi}i≥0 ⊂ BÕ

O such that
|zi | < |zi+1| ≤ N |zi | for all i ≥ 0.

Proof. Let O = (S, ν) and let p ∈ S \ S(f ) be the point in Proposition 5.1 for which
#{z ∈ f −1(p) : ν̃(z) ≤ ν(z)} < ∞. That is, all but finitely many preimages of p belong to
BÕ
O. Since f ∈ B, we can find a Jordan domain D such that S(f ) ⊂ D and p ∈ C \ D.

Since p is non-exceptional, each connected component of f −1(C \ D), that is, each tract
of f , contains infinitely many preimages of p; see [Par19a, §2.4]. If {zi}i≥0 is the set of
preimages of p in one tract, it follows from estimates on the hyperbolic metric on simply
connected domains that there exists a constant N ′ > 1 such that |zik | < |zik+1 | ≤ N ′|zik |
for an infinite subsequence {zik }ik∈N. For details on this argument, see [Rem09, Proof of
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Lemma 5.1] or [Mih10, Proof of Proposition 3.4]. Hence, since all but finitely many points
of {zi}i must belong to BÕ

O, the statement follows. �

Note that Corollary 3.8 applies to any pair of orbifolds (Õ, O) dynamically associated
to f , and so ‖Df (z)‖O = ρÕ(z)/ρO(z) > 1 for all unramified z ∈ Õ. We aim to prove
Theorem 1.1 for any such pair of associated orbifolds by finding a sharper uniform lower
bound for ρÕ/ρO combining the following lemma with Theorem 1.5. In turn, Lemma
5.3 is a consequence of Proposition 5.2 together with Theorem 1.6 and item (c) in the
Definition 2.3 of strongly postcritically separated maps.

LEMMA 5.3. (Distances within annuli are uniformly bounded) Suppose that f is a
strongly postcritically separated function with parameters (c, ε), and let O = (S, ν) and
Õ = (S̃, ν̃) be a pair of orbifolds dynamically associated to f . Let us fix some constant
K > 1. Then there exists a constant R ..= R(K) > 0 such that if p, q ∈ A(t , Kt) ⊂
A(t/K , tK2) ⊂ S for some t > 0, then dO(p, q) ≤ R. If in addition f ∈ B, then, for all
z ∈ Õ,

dO(z, BÕ
O) ≤ R.

Proof. By Proposition 5.1(b), the set of ramified points of O equals PJ ∪ B, where
B is a periodic cycle in J (f ) \ PJ . Thus, since f is strongly postcritically separated,
by Observation 2.4, there exists a constant M > 0 so that, for each r > 0 such that
A(r , Kr) ⊂ O, the closed annulus A(r , Kr) contains at most M̃ ..= M + #B ramified
points of O. For each b ∈ B, let εb > 0 be such that

if z, w ∈ ((PJ ∪ B) ∩ A(K−1|b|, K|b|)), then |z − w| ≥ εb max{|z|, |w|}. (5.5)

For each b ∈ B, the constant εb exists because #B is finite and PJ is discrete. Note that if
b ∈ A(r , Kr) ⊂ O for some r > 0, then A(r , Kr) ⊂ A(K−1|b|, K|b|). Let

ε̃ ..= min{ε, min
b∈B

εb}.
Recall that, by Proposition 5.1(a), S is a punctured neighbourhood of infinity, and so we
can fix an arbitrary r > 0 such that Ar

..= A(r/K , K2r) ⊂ S. Since

Ar =
2⋃

j=0

A(Kj−1r , Kjr), (5.6)

Ar contains at most 3M̃ ramified points of O. We might assume without loss of
generality that r = 1, since otherwise the same argument applies by scaling by r . Let
C ..= maxz∈S ν(z), and note that, by (5.3), C < ∞. Then, by Theorem 1.6 applied to the
domain A(1/K , K2), the compact set A(1, K) and the parameters 3M̃ , C ∈ N and ε̃ > 0,
we conclude that there exists a constant R1 such that

dÔ(p, q) < R1 for all p, q ∈ A(1, K) and all orbifolds Ô ..= (A(1/K , K2), νÔ),
(5.7)

where νÔ is any ramification map that only assumes values smaller or equal to C, and
it does so for at most 3M̃ points, which are at Euclidean distance at least ε̃ from each
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other. We shall now complete the proof of the first part of the statement using (5.7). For
each t > 0 such that At = A(t/K , K2t) ⊂ S, define the orbifolds Ot

..= (At , ν|At ) and
Ot

1
..= (A1, νt

1), where ν|At is the restriction of the ramification map ν of O to At , and
νt

1(z)
..= ν|At (tz). Note that, by (5.6), the definition of νt

1, (5.5) and Observation 2.4, both
Ot , Ot

1 contain at most 3M̃ ramified points, any pair at a (Euclidean) distance at least
ε̃. Consequently, (5.7) applies to Ot

1. Then the map ϕt : Ot
1 → Ot given by ϕt (z)

..= tz

is an orbifold covering map, and since Ot ↪→ O is holomorphic, by definition of Ot ,
Corollary 3.6 and (5.7), for every p, q ∈ A(t , Kt),

dO(p, q) ≤ dOt
(p, q) = dOt

1
(ϕ−1

t (p), ϕ−1
t (q)) < R1,

and the first statement of the lemma is proved.
In order to prove the second part of the lemma, if f ∈ B, let {zi}i≥0 ⊂ BÕ

O be the infinite
sequence of points from Proposition 5.2 for which there is N > 1 such that |zi | < |zi+1| ≤
N |zi | for all i ≥ 0. Recall that, by Proposition 5.1, S = C = S̃, or S is the complement of
a finite union of bounded Jordan domains and cl(S̃) ⊂ S. Then there exists a finite number

I ..= min{j ≥ 0 : C \ D|zj |/K ⊂ S}
that equals 0 when S = C. Let J ..= �log N/log K� and, for each i > I , denote

Ai
..= A(|zi−1|, N |zi−1|) ⊆

J⋃
j=1

A(Kj−1|zi−1|, Kj |zi−1|).

In particular, zi ∈ Ai for all i > I . Hence, for all z ∈ Ai ⊂ S, using the first part of the
lemma, dO(z, BÕ

O) ≤ J · R1 =.. R2. Since the constant J is independent of the index i > I ,
we can conclude that

dO(z, BÕ
O) < R2 for all z ∈

⋃
i>I

Ai = C \ D|zI |. (5.8)

If S̃ ⊂ C \ D|zI |, we are done. Otherwise, recall that either C \ D|zI | ⊂ S̃ = C, or we have
that cl(S̃) ⊂ S. In any case, we can consider the compact set K ..= cl(D|zI | ∩ S̃) and any
domain U such that K ⊂ U ⊂ S. In particular, if OU

..= (U , ν|U), then the inclusion
OU ↪→ O is holomorphic. Note also that in the first case, zI ∈ K, while in the second,
∂S ∩ K �= ∅ and all points in that intersection also belong to BÕ

O. Consequently, in any

case we can choose a point p ∈ K ∩ BÕ
O. Let Ñ be the number of ramified points of OU . If

Ñ > 1, let δ be the minimum of the (Euclidean) distances between any two ramified points
in U . Otherwise, if Ñ equals 0 or 1, let δ be any positive real number. Then, by Corollary
3.6 and Theorem 1.6 applied to U , K and the parameters C, Ñ ∈ N and δ > 0, there exists
a constant R3 > 0 such that, for all z ∈ cl(D|zI | ∩ S̃),

dO(z, BÕ
O) ≤ dOU

(z, BÕ
O) ≤ dOU

(z, p) < R3.

By this together with (5.8), the lemma follows letting R ..= max{R1, R2, R3}. �

Theorem 1.1 now follows easily on combining Lemma 5.3 and Theorem 1.5.
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Proof of Theorem 1.1. Let f ∈ B be strongly postcritically separated. By Proposition 5.1,
there exists a pair of hyperbolic orbifolds O ..= (S, ν) and Õ ..= (S̃, ν̃) such that J (f ) ⊂
S̃ ⊂ S, f : Õ → O is a covering map and the inclusion Õ ↪→ O is holomorphic. Hence,
by Corollary 3.8,

‖Df (z)‖O = |f ′(z)|ρO(f (z))

ρO(z)
= ρÕ(z)

ρO(z)
. (5.9)

Moreover, by Lemma 5.3, there exists a constant R such that dO(BÕ
O, z) < R for all

unramified z ∈ Õ. Thus, by Theorem 1.5 and using (5.9), ‖Df (z)‖O ≥ (eR/
√

e2R − 1) =..

� > 1 for all unramified z ∈ Õ, as we wanted to show. �

As a consequence of Theorem 1.1, we obtain the following corollary that relates the
O-length of bounded curves to the O-length of their successive images.

COROLLARY 5.4. (Shrinking of preimages of bounded curves) Let f ∈ B be a strongly
postcritically separated map, and let (Õ, O) be a pair of dynamically associated orbifolds.
Then, for any curve γ0 ⊂ O, for all k ≥ 1 and each curve γk ⊂ f −k(γ0) such that f k|γk

is
injective,

�O(γk) ≤ �O(γ0)

�k

for some constant � > 1.

Proof. By Theorem 1.1 and Corollary 3.8, there exists a constant � such that, for all
unramified z ∈ Õ,

‖Df (z)‖O = ρÕ(z)

ρO(z)
≥ � > 1. (5.10)

In particular, recall that the set of ramified points in Õ is negligible when computing
the length of bounded curves, as it is discrete and so has Lebesgue measure 0. Let γ0

be any curve as in the statement. We proceed by induction on k. Suppose k = 1 and let
us parametrize the curves γ0 and γ1 such that f (γ1(t)) = γ0(t) for all t ≥ 0. Since by
Proposition 5.1 f : Õ → O is an orbifold covering map, by Theorem 3.5, ρÕ(γ1(t)) =
|f ′(γ1(t))| · ρO(γ0(t)) for all t ≥ 0. Using this and (5.10),

�O(γ1) =
∫

|γ ′
1(t)|ρO(γ1(t)) dt =

∫
|γ ′

1(t)|
ρO(γ1(t))

ρÕ(γ1(t))
ρÕ(γ1(t)) dt

≤ 1
�

∫
|γ ′

1(t)|·|f ′(γ1(t))|ρO(γ0(t)) dt = 1
�

∫
|γ ′

0(t)|ρO(γ0(t)) dt ≤ �O(γ0)

�
.

Let us suppose that the statement is true for some k − 1. Then, if γk ⊂ f −k(γ0), f (γk) =
γk−1 for some curve γk−1 ⊂ f −k+1(γ0). By the same argument as before and using the
inductive hypothesis,

�O(γk) ≤ 1
�

∫
|γ ′

k−1(t)|ρO(γk−1(t)) dt = 1
�

�O(γk−1) ≤ �O(γ0)

�k
. �

https://doi.org/10.1017/etds.2020.147 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.147


Orbifold expansion and bounded Fatou components 1831

6. Results on the topology of Fatou and Julia sets
In this section we provide the proofs of Theorem 1.2 and Corollaries 1.3 and 1.4. We
note that the arguments in the proofs of the corresponding results for hyperbolic maps
in [BFR15] rely mostly on the maps being expanding, that is, on their derivative with
respect to the hyperbolic metric being greater than 1 in a punctured neighbourhood of
infinity that contains their Julia set. Since we have achieved an analogous result for
strongly postcritically separated maps in Theorem 1.1, we are able to adapt most of the
proofs in [BFR15] with few modifications. We start by borrowing some auxiliary results
from [BFR15]. The first one is a well-known result that we cite as stated in [BFR15,
Lemma 2.7].

LEMMA 6.1. (Coverings of doubly connected domains) Let U , V ⊂ C be domains and
let f : V → U be a covering map. Suppose that U is doubly connected. Then either V is
doubly connected and f is a proper map, or V is simply connected and f is a universal
cover of infinite degree.

The next proposition gathers some well-known facts on the behaviour of entire maps
on preimages of simply connected domains. For ease of reference, the following statement
merges [BFR15, Propositions 2.8 and 2.9]. For the first part, compare to [Hei57, Her98,
Bol99].

PROPOSITION 6.2. (Mapping of simply connected sets) Let f be an entire function, let
D ⊂ C be a simply connected domain, and let D̃ be a component of f −1(D). Then either
(1) f : D̃ → D is a proper map and hence has finite degree, or
(2) for every w ∈ D with at most one exception, #(f −1(w) ∩ D̃) is infinite. In this case,

either D̃ contains an asymptotic curve corresponding to an asymptotic value in D, or
D̃ contains infinitely many critical points.

If in addition D ∩ S(f ) is compact, we have the following assertions.
(A) If #(D ∩ S(f )) ≤ 1, then D̃ contains at most one critical point of f .
(B) In case (1), if D is a bounded Jordan domain such that ∂D ∩ S(f ) = ∅, then D̃ is

also a bounded Jordan domain.
(C) In case (2), the point ∞ is accessible from D̃.

In addition, we will make use of the following result in order to show that the boundaries
of certain Fatou components are not locally connected.

THEOREM 6.3. (Boundaries of periodic Fatou components [BFR15, Theorem 2.6]) Let
f be a transcendental entire function, and suppose that U is an unbounded periodic
component of F(f ) such that f n|U does not tend to infinity. Then Ĉ \ U is not locally
connected at any finite point of ∂U .

The proof of Theorem 1.2 will follow easily once we show that whenever condition (b)
on its statement holds, every periodic Fatou component is bounded. We achieve this in
the following theorem. In particular, we note the similarities with [BFR15, Theorem 1.10]:
Theorem 6.4 holds for a more general class of maps, but [BFR15, Theorem 1.10] has the
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stronger conclusion that periodic Fatou components are quasidiscs. We suspect that this is
also the case for the class of maps we study. However, we have not been able to conclude
so; see [Par19a, p. 169] for further discussion.

THEOREM 6.4. (Immediate basins of strongly postcritically separated maps) Let f ∈ B be
strongly postcritically separated and let D be a periodic Fatou component of f , of some
period p ≥ 1. Then the following are equivalent:
(1) D is a Jordan domain;
(2) Ĉ \ D is locally connected at some finite point of ∂D;
(3) D is bounded;
(4) the point ∞ is not accessible in D;
(5) the orbit of D contains no asymptotic curves and only finitely many critical points;
(6) f p : D → D is a proper map;
(7) for at least two distinct choices of z ∈ D, the set f −p(z) ∩ D is finite.

Proof. Let f and D be as in the statement. In particular, D is simply connected
(multiply-connected Fatou components of transcendental entire functions are wandering
domains [Bak84, Theorem 3.1]). By passing to an iterate, we may assume without loss
of generality that p = 1. Since the complement of a Jordan domain is locally connected
at every point, (1) ⇒ (2) is immediate. If (2) holds, then since by Lemma 2.6 all Fatou
components of f belong to attracting cycles, by Theorem 6.3 D must be bounded, and
so (2) implies (3). If D is bounded, then D cannot contain a curve to ∞, and hence
(3) ⇒ (4). Since f is postcritically separated and D ⊂ F(f ), P(f ) ∩ D is compact. Thus,
by Proposition 6.2(C), if infinity is not accessible in D, then item (1) must occur in
Proposition 6.2, and so D contains only finitely many critical points and no asymptotic
values, which is equivalent to f : D → D being a proper map. Thus, (4) ⇒ (5) ⇔ (6).
Since any proper map has finite degree, (6) ⇒ (7).

To conclude the proof, it suffices to show that (7) ⇒ (1). To that end, suppose that (7)
holds for f . Recall that, by Proposition 2.5, there exists a bounded Jordan domain U0 � D

such that f (U0) ⊂ U0 and P(f ) ∩ D � U0. For each n ≥ 1, let

Un
..= f −n(U0) ∩ D,

and note that by the property f (U0) ⊂ U0, one can see using induction that

Un ⊂ Un+1 for all n ≥ 0, and D =
∞⋃

n=0

Un. (6.1)

Since we have assumed that (7) holds for f , so does Proposition 6.2(1), and hence f : D →
D is a proper map of some degree d ≥ 1. Moreover, by definition of U0, for each n ≥
1, f n : D \ Un → A ..= D \ U0 is a finite-degree covering map (of degree dn) over the
doubly connected domain A. By Lemma 6.1, the domain D \ Un is also doubly connected,
and hence Un is connected for all n. Furthermore, since P(f ) ∩ D � U0, it follows from
Proposition 6.2(B) applied to f n : Un → U0 that each Un is a bounded Jordan domain.
Hence, for every n ≥ 0, f : ∂Un+1 → ∂Un is, topologically, a covering map of degree d

over a circle.
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Claim. There exists a diffeomorphism ϕ : {z ∈ C : 1/e < |z| < 1} → D \ U0 such that

f (ϕ(z)) = ϕ(zd) whenever e−1/d < |z| < 1. (6.2)

�

This claim and its proof appear in [BFR15, Proof of Theorem 1.10], and thus we omit
the proof. Our next and final goal is to extend the domain of the function ϕ continuously
to include ∂D. To that end, for each θ ∈ R and n ≥ 0, consider the curve

γn,θ
..= ϕ({ea+iθ : −d−n ≤ a ≤ −d−(n+1)}). (6.3)

Note that, by the commutative relation in (6.2), γn,θ is the preimage of the arc γ0,θ ·dn under
some branch of f −n, and in particular it is a simple curve with endpoints in ∂Un and
∂Un+1.

Let Õ ..= (S̃, ν̃) and O ..= (S, ν) be a pair of orbifolds dynamically associated to f .
In particular, by Proposition 5.1(a), S can be chosen so that D \ U0 ⊂ S. Note that for
each θ̃ ∈ R, the curve γ0,̃θ is contained in the compact set U1 \ U0. Since D \ U0 ⊂
F(f ) \ P(f ), by Proposition 5.1(b), there are no ramified points of O in U1 \ U0. Thus,
the density ρO of the orbifold metric of O attains a maximum value in U1 \ U0, and since
the Euclidean length of the curves {γ0,̃θ }θ̃ must be finite, as these curves are the image
under ϕ of a straight line, there exists a constant L > 0 such that

max
θ̃

�O(γ0,̃θ ) < L.

Moreover, for all n ≥ 0 and θ ∈ R, γn,θ ⊂ D \ U0 ⊂ S \ P(f ), and so, since D is
by assumption invariant, f n maps γn,θ injectively to γ0,θ ·dn . Hence, we can apply
Corollary 5.4 to conclude that there exists a constant � > 1 such that

�O(γn,θ ) ≤ �O(γ0,θ ·dn)

�n
≤ maxθ̃ �O(γ0,̃θ )

�n
≤ L

�n
, (6.4)

where we note that the upper bound is independent of θ . For each n ≥ 0, let us define the
function

σn : R/Z → ∂Un as σn(t)
..= ϕ(e−d−n+2πti).

Note that, for each t ∈ R/Z, the curve γn,2πt defined in (6.3) joins σn(t) and σn+1(t). Thus,
by (6.4), {σn}n forms a Cauchy sequence of continuous functions. Consequently, using
(6.1), there exists a limit function σ : ∂D → ∂D, which by (6.2) is the continuous extension
of ϕ to the unit circle. Hence, ∂D is a continuous closed curve as it is the continuous image
of ∂D. In particular, D is bounded. By the maximum principle, ∂D = ∂D and C \ D has
no bounded connected components. Hence, D is a Jordan domain. �

Using the preceding theorem, we are now ready to provide the proofs of our results on
the topology of Fatou and Julia sets.

Proof of Theorem 1.2. We start proving that (a) implies (b) by showing the contrapositive.
Note that since f is strongly postcritically separated, all asymptotic values of f must lie
in F(f ), and hence if AV(f ) �= ∅, then F(f ) must have an unbounded component by
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definition of asymptotic value. Moreover, if some Fatou component U contains infinitely
many critical points, since these are the zeros of the analytic function f ′, they can only
accumulate at infinity, and therefore U is unbounded.

To prove that (b) implies (a), we note that by Lemma 2.6, all Fatou components of f are
(pre)periodic. If (b) holds for f , that is, AV(f ) = ∅ and each Fatou component contains
at most finitely many critical points, then by Theorem 6.4 ((5) ⇐⇒ (1)), every periodic
Fatou component is a bounded Jordan domain. Next, we see that strictly preperiodic Fatou
components are also bounded Jordan domains. If V is any preimage of a periodic Fatou
component U , then, by assumption, Proposition 6.2(2) cannot hold. Thus, f : V → U

must be a proper map. In addition, V is also bounded by Proposition 6.2(B). Proceeding
by induction on the pre-period of V , the claim follows. �

In order to prove Corollary 1.3, we will make use of a result from [BM02], where the
concept of semihyperbolic entire maps is introduced.

Definition 6.5. (Semihyperbolic functions) An entire function f is semihyperbolic at a
point p if there exist r > 0 and N ∈ N such that, for all n ∈ N and for all components U

of f −n(Dr (p)) = {z ∈ C : f n(z) ∈ Dr (p)}, the function f n|U : U → Dr (p) is a proper
map of degree at most N . A function f is semihyperbolic if f is semihyperbolic at all
p ∈ J (f ).

PROPOSITION 6.6. If f is strongly postcritically separated, then f is semihyperbolic.

Proof. Let us fix p ∈ J (f ). Since P(f ) ∩ J (f ) is discrete and P(f ) ∩ F(f ) is compact,
there exists r > 0 such that Dr (p) ∩ P(f ) contains at most the point p. By Definition 2.3,
there exist constants C, μ > 0 such that, for all z ∈ J (f ),

#(Orb+(z) ∩ Crit(f )) ≤ C and deg(f , z) < μ.

Therefore, for any n ≥ 0 and any connected component U of f −n(Dr (p)), since we have
that U ∩ Orb−(P (f )) ⊂ Orb−(p), f n|U is a proper map of degree at most μC =.. N . �

The following theorem is a version of [BM02, Theorem 4] for our class of maps. In
particular, this theorem tells us that if Fatou components are Jordan domains, in certain
cases local connectivity of their Julia sets follows.

THEOREM 6.7. (Bounded components and bounded degree imply local connectivity) Let
f ∈ B be strongly postcritically separated with no asymptotic values. Suppose that every
immediate attracting basin of f is a Jordan domain. If there exists N ∈ N such that the
degree of the restriction of f to any Fatou component is bounded by N , then J (f ) is
locally connected.

Remark. We note that [BFR15, Theorem 2.5] is a version of Theorem 6.7 for
hyperbolic maps whose proof is based on expansion of hyperbolic maps in a
neighbourhood of their Julia set. Therefore and alternatively, we could have presented
an analogous proof for functions in class B that are strongly postcritically separated using
Theorem 1.1.
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Proof of Corollary 1.3. Let f ∈ B be strongly postcritically separated with no asymptotic
values, and assume that every Fatou component of f contains at most N critical points,
counting multiplicity, for some N ∈ N. Then, hypothesis (b) in Theorem 1.2 holds for
f , and consequently every Fatou component U is a bounded Jordan domain. Moreover,
Proposition 6.2(1) must hold and so the restriction f |U : U → f (U) is a proper map.
Since f has no wandering domains (Lemma 2.6), all Fatou components of f are simply
connected [Bak84, Theorem 3.1]. Then the Riemann–Hurwitz formula (see [Mil06,
Theorem 7.2]) tells us that the degree of f |U is bounded by N + 1. Consequently, local
connectivity of J (f ) follows from Theorem 6.7. �

Proof of Corollary 1.4. Let f be strongly postcritically separated with no asymptotic
values, and assume that every Fatou component contains at most one critical value. Then,
by Proposition 6.2(A), each Fatou component also contains at most one critical point.
Since, by assumption, the multiplicity of the critical points is uniformly bounded, local
connectivity of J (f ) is a consequence of Corollary 1.3. �

7. Pullbacks and post-homotopy classes
Given an entire function f and two simple curves γ , β ⊂ f (C) \ P(f ), homotopic and
with fixed endpoints, by the homotopy lifting property, for each curve in f −1(γ ), there
exists a curve in f −1(β) homotopic to it and sharing the same endpoints. In Proposition 7.3
we get, by using a modified notion of homotopy, an analogue of this result for a certain
class of curves that contain postsingular points. Moreover, in this section we also show
that if f is an entire function with dynamic rays in its Julia set and U is a certain bounded
domain of any hyperbolic orbifold whose underlying surface intersects J (f ), then there
exists a constant μ such that, for every piece of dynamic ray contained in U , we can find
a curve in its ‘modified homotopy’ class with orbifold length at most μ; see Definition
7.6 and Corollary 7.8. In particular, this result is crucial to proving the main result
in [Par19b].

For completeness and in order to fix notation, we include some definitions regarding
homotopy and covering spaces theory that we require, and we refer the reader to [Hat02,
Ch. 1] or [Mun00, Ch. 9] for an introduction to these topics. In this section, by a curve in a
space X we mean a continuous map γ : I → X with I = [0, 1], and in particular its image
γ (I) is bounded. With a slight abuse of notation, we also refer to γ (I) as γ , and we denote
by int(γ ) the curve obtained from γ by removing its endpoints. A homotopy of curves in X

is a family {γt : I → X}t∈[0,1] for which the associated map γ : I × [0, 1] → X given by
γ (s, t) ..= γt (s) is continuous. Two curves α and β are homotopic in X when there exists a
homotopy {γt }t∈[0,1] in X such that γ0 ≡ α and γ1 ≡ β. Being homotopic is an equivalence
relation on the set of all curves in X. Given a covering space f : X̃ → X, a lift of a map
g : Y → X by f is a map g̃ : Y → X̃ such that f ◦ g̃ = g. The main result that serves our
purposes is the following proposition.

PROPOSITION 7.1. (Homotopy lifting property) Given a covering space f : X̃ → X, a
homotopy {γt : Y → X}t∈[0,1] and a map γ̃0 : Y → X̃ lifting γ0, there exists a unique
homotopy {γ̃t : Y → X̃}t∈[0,1] that lifts {γt }t∈[0,1].
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β

γ

p
w2w1 w3q

FIGURE 3. Example of two curves γ , β ∈ H
q
p ({w1, w2, w3}) that are post-k-homotopic for some k ≥ 1. Points

in f −k(P (f )) are represented by black dots.

Proof. See [Hat02, Proposition 1.30] for the proof of the statement whenever the
homotopies have fixed endpoints, and [GH81, (5.3) Covering Homotopy Theorem] or
[Hat02, §4.2] for the general case. �

Recall that, for an entire function f , its singular set S(f ) is the smallest closed set for
which f : C \ f −1(S(f )) → C \ S(f ) is a covering map, and regarding the iterates of
f , for each k ≥ 1, S(f k) ⊆ P(f ); see [Par19a, Proposition 2.13]. Consequently, for all
k ≥ 1 and every entire function f ,

f k : C \ f −k(P (f )) → C \ P(f ) is a covering map. (7.1)

Thus, the homotopy lifting property applies to any homotopy of curves in C \ P(f ).
We are interested in obtaining an analogous property that applies to certain curves
whose image in C contains postsingular points. We specify now which curves we are
interested in.

Let us fix an entire function f and let k ∈ N. We suggest the reader keeps in mind the
case where k = 0, since it will be the one of greatest interest for us. Let W(k) be a finite set
of (distinct) points in f −k(P (f )), totally ordered with respect to some relation ‘≺’. That
is, W(k) ..= (W(k), ≺) = {w1, . . . , wN } ⊂ f −k(P (f )) such that wj−1 ≺ wj ≺ wj+1 for
all 1 < j < N . We note that W(k) can be the empty set. Then, for every pair of points†

p, q ∈ C \ W(k), we denote by Hq
p(W(k)) the collection of all curves in C with endpoints

p and q that join the points in W(k) in the order ‘≺’, starting from p. More formally, γ ∈
Hq

p(W(k)) if int(γ ) ∩ f −k(P (f )) = W(k) and γ can be parametrized so that γ (0) = p,
γ (1) = q and γ (j/(N + 1)) = wj for all 1 ≤ j ≤ N . In particular, γ can be expressed as
a concatenation of N + 1 curves

γ = γ w1
p · γ w2

w1
· · · · · γ q

wN
, (7.2)

each of them with endpoints in W(k) ∪ {p, q} and such that

int(γ w1
p ), int(γ wi+1

wi
), int(γ q

wN
) ⊂ C \ f −k(P (f ))

for each 1 ≤ i ≤ N ; see Figure 3.

We use the following notion of homotopy for the sets of curves described.

† In particular, p and q might belong to f −k(P (f )).
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Definition 7.2. (Post-k-homotopic curves) Consider W(k) = {w1, . . . , wN } ⊂ f −k(P (f ))

and two curves γ , β ∈ HwN+1
w0 (W(k)), for some {w0, wN+1} ⊂ C \ W(k). We say that

γ is post-k-homotopic to β if, for all 0 ≤ i ≤ N , γ
wi+1
wi

is homotopic to β
wi+1
wi

in (C \
f −k(P (f ))) ∪ {wi , wi+1}.
Remark. Note that both the curves γ and β in the definition above belong to
HwN+1

w0 (W(k)), and so they share the points w0, . . . , wN+1. In particular, γ and β share
their endpoints, and, for each 0 ≤ i ≤ N , the respective subcurves γ

wi+1
wi

and β
wi+1
wi

also
share the same fixed endpoints wi and wi+1.

In other words, for each 1 ≤ i ≤ N , the restrictions of γ and β between wi and wi+1

are homotopic in the space (C \ f −k(P (f ))) ∪ {wi , wi+1}; see Figure 3. It is easy to see
that this defines an equivalence relation in Hq

p(W(k)), with p = w0 and q = wN+1. For
each γ ∈ Hq

p(W(k)), we denote by [γ ]
k

its equivalence class. Note that if W(k) = ∅ and
p, q ∈ C \ f −k(P (f )), then, for any curve γ ∈ Hq

p(W(k)), [γ ]
k

equals the equivalence
class of γ in C \ f −k(P (f )) in the usual sense. Moreover, if γ is any curve that meets
only finitely many elements of f −k(P (f )), then it belongs to a unique set of the form
‘Hq

p(W(k))’ up to reparametrization of γ , and so its equivalence class [γ ]
k

is defined in
an obvious sense. Hence, the notion of post-k-homotopy is well defined for all such curves,
and from now on we will sometimes omit the set of curves they belong to.

The following result is an analogue of Proposition 7.1 for post-k-homotopic curves.

PROPOSITION 7.3. (Post-homotopy lifting property) Let f be an entire map and let C ⊂ C

be a domain so that f −1(C) ⊂ C and AV(f ) ∩ C = ∅. Let γ ⊂ C be a bounded curve
such that #(γ ∩ P(f )) < ∞. Fix any k ≥ 0 and any curve γk ⊂ f −k(γ ) for which the
restriction f k|γk

is injective. Then, for each β ∈ [γ ]0 , there exists a unique curve βk ⊂
f −k(β) such that βk ∈ [γk]

k
. In particular, βk and γk share their endpoints.

Proof. Suppose that γ ∈ HwN+1
w0 (W(0)), where w0 and wN+1 are the endpoints of γ and

W(0) = P(f ) ∩ int(γ ) =.. {w1, . . . , wN } for some N > 0. Let

W̃ (k) ..= f −k(P (f )) ∩ int(γk) = f −k(W(0)) ∩ int(γk) =.. {v1, . . . , vN }.

In particular, γk ∈ HvN+1
v0 (W̃ (k)) for some v0, vN+1 ∈ f −k({w0, wN+1}). For each 0 ≤

i ≤ N , we denote by γ i
k the subcurve in γk with endpoints vi and vi+1.

Similarly, for a fixed β ∈ [γ ]0 and each 0 ≤ i ≤ N , we denote by βi and γ i the
respective subcurves in β and γ with endpoints wi and wi+1. That is, for parametrizations
of β and γ such that γ (i/(N + 1)) = wi = β(i/(N + 1)) for every 0 ≤ i ≤ N + 1,

βi ..= β|[i/N ,i/(N+1)] and γ i ..= γ |[i/N ,i/(N+1)].

For each ε > 0 small enough, we consider the restrictions βi,ε ..= β|[(i/N)+ε,(i/(N+1))−ε]

and γ i,ε ..= γ |[(i/N)+ε,(i/(N+1))−ε]. Then, since βi,ε ⊂ βi and γ i,ε ⊂ γ i , βi,ε is homotopic
(in the usual sense) to γ i,ε in (C \ f −k(P (f ))) ∪ {wi , wi+1}. Recall that the notion of
homotopy does not require curves to share their endpoints. Therefore, for each 0 ≤ i ≤ N ,
if γ

i,ε
k

..= γ i
k ∩ f −k(γ i,ε), by (7.1) and Proposition 7.1, there exists a unique curve β

i,ε
k ⊂
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f −k(βi,ε) such that

β
i,ε
k is homotopic to γ

i,ε
k in C \ f −k(P (f )). (7.3)

We shall now see that as ε → 0, for all 0 ≤ i ≤ N , β
k,ε
i converges to a curve βk

i ,
with endpoints vi and vi+1 and that is homotopic to γ k

i in C \ f −k(P (f )) ∪ {vi , vi+1}.
Indeed, note that f −k(wi) and f −k(wi+1) are discrete sets of points, and hence we
can find open neighbourhoods Vi � vi and Vi+1 � vi+1 such that Vi ∩ f −k(wi) = {vi}
and Vi+1 ∩ f −k(wi+1) = {vi+1}. By the assumption AV(f ) ∩ C = ∅, using the open
mapping theorem, we conclude that f k|Vi

is an open map, and so we can find an open
neighbourhood Wi � wi with Wi ⊂ f k(Vi). In particular, βi,ε(t) ∈ Vi for all t sufficiently
close to i/N + ε, and βi,ε(t) ∈ Vi+1 for all t sufficiently close to (i + 1)/N + ε. Thus, by
continuity of f , as ε → 0, each of the curves in {βi,ε}i converges to a curve with endpoints
vi and vi+1, which we denote by βk

i . By (7.3) and since by construction Vi ∩ f −k(P (f )) ∩
Vi+1 = {vi , vi+1}, we have that βk

i is homotopic to γ k
i in C \ f −k(P (f )) ∪ {vi , vi+1}.

Thus, the curve

βk
..= {v0} · βk

0 · {v1} · · · · · βk
N · {vN+1},

satisfies by construction that βk ∈ [γ ]
k

and f k(βk) = β, as required. �

The second goal of this section is to prove Corollary 7.8. This result asserts that, given
a function f and a domain U in a hyperbolic orbifold, if certain technical conditions
are satisfied, then there is a positive constant μ such that, for any curve γ ⊂ U , there
exists a curve in [γ ]0 of orbifold length less than μ. In the next auxiliary proposition we
construct curves in any desired post-0-homotopy class of arbitrarily small orbifold length
for orbifolds with a unique ramified point.

PROPOSITION 7.4. (Short post-0-homotopy curves around a ramified point) Given ε > 0
and d ∈ N≥1, define the hyperbolic orbifold O ..= (Dε , νd) with νd(0) = d and νd ≡ 1
elsewhere, and let ρO(z)dz be its orbifold metric. Let f be an entire function such that
P(f ) ∩ Dε = {0}. Then, for all ε′ < ε small enough, �O(∂Dε′) < ε/6. Moreover, for any
curve γ ⊂ Dε′ , there exists γ̃ ∈ [γ ]0 satisfying �O(γ̃ ) < ε/6.

Remark. The function f does not play any role in the proof of the proposition, and its role
in the statement is to fix post-0-homotopy classes. Note that for any function f as in the
statement and each curve γ ⊂ D∗

ε , [γ ]0 equals the homotopy class of γ (in the usual sense)
in the punctured disc D∗

ε .

Proof of Proposition 7.4. Let Õ be the orbifold with underlying surface D and with 0 as
its unique ramified point, of degree d . We computed in (4.9) an explicit formula for the
density of its orbifold metric, namely, ρÕ(u)du = 2(d|u|(d−1)/d(1 − |u|2/d))−1 for each
u ∈ D∗. If λε is the function that factors by ε−1, that is, λε(z)

..= ε−1z, then λε : O → Õ
is an orbifold covering map. Hence (see Observation 3.3), for each z = εu, the density of
the orbifold metric of O is

ρO(z) = ε−1ρÕ(u/ε) = 2(ε1/d |z|(d−1)/d(1 − ε−2/d |z|2/d))−1.
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Observe that, for any ε1 < ε, the function ρO is constant when restricted to ∂Dε1 , and
�O(∂Dε1) = 2πε1ρO(ε1), as a function of ε1, is strictly decreasing and converging to 0
whenever ε1 → 0. Thus, the first part of the statement follows.

In order to prove the second part of the statement, note that, for any z ∈ Dε , the O-length
of the radial line joining 0 to z, a segment which we denote by [0, z], is at most |z|ρO(z).
By a radial line we mean any subcurve of a straight line in D joining the origin to ∂D.
Thus, the O-length of the segment [0, z] also converges to 0 as |z| → 0. Hence, we can fix
any ε′ < ε such that

�O([0, ε′]) < ε/18. (7.4)

Let γ ⊂ Dε′ with endpoints p and q. If γ contains the point 0, then γ ∈ H
q
p ({0}) and the

concatenation of the radial lines joining p and q to 0, that is, γ̃ ..= [p, 0] · [0, q] satisfies
γ̃ ∈ [γ ]0 and, by (7.4), �O(γ̃ ) < ε/9 < ε/6. Otherwise, γ ⊂ H

q
p (∅). Thus, the curves in

[γ ]0 are exactly those homotopic to γ (in the usual sense) in Dε′ \ {0} with fixed endpoints.
Note that, roughly speaking, the homotopy class of such a curve is determined by the
number n of times that the curve ‘loops’ around 0 following an orientation. Hence, we are
aiming to construct a representative of any such class with a bound on its orbifold length,
namely ε/6. In a rough sense, for each n ≥ 0, we define a representative γ +

n as follows.
We start at the point p and follow the radial line towards the origin until we meet a circle
centred at the origin of some radius εn small enough. Then we follow an arc of this circle
anticlockwise until meeting the point on the radial line from 0 to q. Then we follow the
circle of radius εn anticlockwise n times. Finally, we follow the radial line to q. Similarly,
we define a curve γ −

n starting at q and following the circle of radius εn clockwise n times.
More formally, for each natural n ≥ 0, by the observations made at the beginning of the

proof, we can choose εn < ε′ such that

�O(∂Dεn) <
ε

18(n + 1)
. (7.5)

Define [p, x(n)] and [y(n), q] as the restriction of the radial lines from p to 0 and 0
to q with respective endpoints {x(n), y(n)} ⊂ ∂Dεn . Let α+

n and β−
n be the arcs in ∂Dεn

that connect x(n) to y(n) in positive and negative orientation respectively; see Figure 4.
Let ∂D+

εn
and ∂D−

εn
respectively be the positively and negatively oriented loops starting at

y(n). We define the curves γ +
n and γ −

n as the concatenations

γ +
n

..= [p, x(n)] · α+
n · ∂D+

εn
· · · · · ∂D+

εn︸ ︷︷ ︸
n times

·[y(n), q] and

γ −
n

..= [p, x(n)] · β−
n · ∂D−

εn
· · · · · ∂D−

εn︸ ︷︷ ︸
n times

·[y(n), q].

By the choices of ε′ and εn in (7.4) and (7.5), max{�O(γ −
n ), �O(γ +

n )} < ε/6, and thus,
for each homotopy class of curves in Dε′ \ {0}, we have constructed a representative with
the desired O-length. The statement now follows. �

Given an entire function f , in order to construct in Corollary 7.8 curves of any
post-0-homotopy class with uniformly bounded orbifold length in a compact set U , we
will assume that there are dynamic rays landing at every point in P(f ) ∩ U . The reason
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p

q

εn

ε′

x(n)
y(n)[p, x(n)]

[y(n), q]

α+
n

β−
n

FIGURE 4. Construction of representatives γ −
n and γ +

n for each post-0-homotopy class of curves in
Proposition 7.4 as a concatenation of oriented curves.

for this is that we will use those dynamic rays as a boundary that other dynamic rays
cannot cross more than once. Then Corollary 7.8 will be a consequence of the more general
Theorem 7.5, which shows that we can find curves of uniformly bounded orbifold length
in any desired post-0-homotopy class, lying in any simply connected domain C for which
P(f ) ∪ C ⊂ ∂C and #(P (f ) ∩ ∂C) is finite.

If π : D → C is the Riemann map for some simply connected domain C, whenever
∂C is locally connected, by the Carathéodory–Torhorst theorem [Pom92, Theorem 2.1], π

extends continuously to a surjective map π : D → C which we call the extended Riemann
map. Note that in that case, there might exist curves γ ⊂ ∂C for which there is not a curve
β ⊂ π−1(γ ) satisfying π(β) = γ . For example, let C be a disc D minus a cross ‘+’ that
intersects ∂D at a single point. Then, the horizontal segment of the cross would be an
example of such a curve in ∂C. We will exclude those ‘pathological cases’ in our result.

THEOREM 7.5. (Curves in post-0-homotopy classes with uniformly bounded lengths) Let
f be an entire map and let O = (S, ν) be a hyperbolic orbifold with S ⊂ C. Let C ⊂
S \ P(f ) be a simply connected domain such that C � S, ∂C is locally connected and
∂C ∩ P(f ) is finite. Let π : D → C be the extended Riemann map. Then there exists a
constant η ..= η(C) > 0 with the following property. Let γ be any injective curve such that
either int(γ ) ⊂ C, or γ ⊂ ∂C and there exists a curve β ⊂ π−1(γ ) satisfying π(β) = γ .
Then there exists a curve γ̃ ∈ [γ ]0 such that �O(γ̃ ) ≤ η.

Proof. For any two points z, w ∈ D, we denote by [z, w] the straight segment joining
them. We start by finding, for each curve of the form π([z, w]) ⊂ C, a curve in its
post-0-homotopy class of (uniformly) bounded O-length. To that end, let L : D × D →
R≥0 be given by

L(z, w) ..= inf
β∈[π([z,w])]0

�O(β). (7.6)
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D

C

w

w̃

z
z̃

[z̃, w̃]

[z, w]

ξz̃

ξw̃

π(w)π(w̃)

y
γy

π(z̃)

λ(z̃)
x

γx

δx

π([z̃, w̃])

π([z, w])

β
δy

π(ξz̃)

π(ξw̃)

π(z)

π

U(w)

U(z)

FIGURE 5. Proof of upper semicontinuity of the function L. Points in P(f ) are represented by stars.

We claim that L achieves a maximum value μ in D × D. To prove this, firstly we note
that since any geodesic in O joining two points in C has by definition finite O-length,
L(z, w) < ∞ for all (z, w) ∈ D × D. Then we show in the next claim that L is upper
semicontinuous, and the existence of the maximum follows from the combination of these
two facts.

CLAIM. The function L is upper semicontinuous.

Proof of claim. Let (z, w) ∈ D × D and ε > 0 be arbitrary but fixed. We want to show
that there exists a neighbourhood U(z) × U(w) of (z, w) such that, for every (z̃, w̃) ∈
U(z) × U(w), L(z̃, w̃) < L(z, w) + ε. Since by assumption #(C ∩ P(f )) < ∞, d ..=
maxz∈C∩P (f ) ν(z) < ∞. Let us choose ε′ < ε small enough so that the estimates provided
by Proposition 7.4 with the parameters ε and d! hold. Moreover, since the set of ramified
points of O is discrete, we can choose ε′ < ε/3 such that Dε′(π(z)) ∪ Dε′(π(w)) ⊂ O and
the only possible ramified points in Dε′(π(z)) ∪ Dε′(π(w)) are π(z) and π(w). We also
choose ε′ small enough such that Dε′(π(z)) ∩ Dε′(π(w)) = ∅. For the rest of the proof of
the claim, we assume that π(z) and π(w) are ramified points of O of degree d!, since by
Corollary 3.6, any estimates on lengths of curves obtained in this setting also hold for the
original ramification values of π(z) and π(w), which lie between 1 and d .

By continuity of π , we can find connected neighbourhoods U(z) � z, U(w) � w,
relatively open in D and satisfying the following properties.
• π(U(z)) ∪ π(U(w)) ⊂ (Dε′(π(z)) ∪ Dε′(π(w))) ∩ C.
• For any (z̃, w̃) ∈ U(z) × U(w), there exists a curve in π−1(∂Dε′(π(z))) ∩ D,

which we denote by ξ z̃, that joins the first point of intersection of [z, w] with
π−1(∂Dε′(π(z))), with the first point of intersection of [z̃, w̃] with π−1(∂Dε′(π(z))).
Similarly, there is an arc ξ w̃ in π−1(∂Dε′(π(w))) ∩ D with analogous properties; see
Figure 5.
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In particular, π(ξ z̃) and π(ξw̃) are arcs in ∂Dε′(π(z)) ∩ C and ∂Dε′(π(w)) ∩ C joining
π([z̃, w̃]) and π([z, w]). Let λ(z̃) be the restriction of π([z̃, w̃]) between π(z̃) and
the endpoint of π(ξ z̃) that also belongs to π([z̃, w̃]). In particular, λ(z̃) belongs to
Dε′(π(z)), and thus, by Proposition 7.4, there exists λ̃(z̃) ∈ [λ(z̃)]0 satisfying �O(λ̃(z̃)) <

ε/6. Analogously, if λ(w̃) is the restriction of π([z̃, w̃]) between π(w̃) and the endpoint
of π(ξw̃) that also belongs to π([z̃, w̃]), then there exists λ̃(w̃) ∈ [λ(w̃)]0 such that
�O(λ̃(w̃)) < ε/6. We also define λ(z) (respectively, λ(w)) as the restriction of π([z, w])
between π(z) (respectively, π(w)) and the endpoint of π(ξz) (respectively, π(ξw)) that
also belongs to π([z, w]).

Consider the subcurves

�π([z̃, w̃])� ..= π([z̃, w̃]) \ (λ(z̃) ∪ λ(w̃)) and

�π([z, w])� ..= π([z, w]) \ (λ(z) ∪ λ(w)).

In particular, for each of the just-defined restrictions, one of their endpoints is an endpoint
of π(ξ z̃), and the other one is an endpoint of π(ξw̃). Since all curves with fixed endpoints
totally contained in a simply connected domain are homotopic (see [Hat02, Proposition
1.6]), any two curves totally contained in C are homotopic in C \ P(f ), and thus the
concatenation

π(ξ z̃) · �π([z, w])� · π(ξw̃) is post-0-homotopic to �π([z̃, w̃])�. (7.7)

Let us choose any curve β ∈ [π([z, w])]0 so that �O(β) < L(z, w) + ε/3. Let x be the
first point in β ∩ ∂Dε′(π(z)) and y be last point in β ∩ ∂Dε′(π(w)) with respect to a
parametrization of β from π(z) to π(w), and let �β� be the restriction of β between
those points; see Figure 5. Let us choose a pair of arcs δx ⊂ ∂Dε′(π(z)) and δy ⊂
∂Dε′(π(w)) connecting respectively x and y to the single points in the intersections
π(ξ z̃) ∩ �π([z̃, w̃])� and π(ξw̃) ∩ �π([z̃, w̃])�, in such a way that the regions that those
arcs together with �β� and �π([z̃, w̃])� enclose do not contain π(z) nor π(w). Since by
assumption β ∈ [π([z, w])]0 , by construction, the concatenation

δx · �π([z, w])� · δy is post-0-homotopic to �β�.

Consequently, if γx ⊂ (π(ξ z̃) ∪ δx) and γy ⊂ (π(ξ w̃) ∪ δy) are the curves joining the
endpoints of �π([z̃, w̃])� and �β�, then, using (7.7),

γ2
..= γx · �β� · γy is post-0-homotopic to �π([z̃, w̃])�.

By construction and using Proposition 7.4,

�O(γ2) ≤ �O(∂Dε′(π(z))) + �O(β) + �O(∂Dε′(π(w))) < �O(β) + ε/3.

Finally, the concatenation

γ ..= λ̃(z̃) · γ2 · λ̃(w̃) is post-0-homotopic to π([z̃, w̃])

and L(z̃, w̃) ≤ �O(γ ) < L(z, w) + ε. �
If μ is the maximum value that L attains in D × D, then, for every point (z, w) ∈

D × D, we can find a curve β ∈ [π([z, w])]0 such that �O(β) < 2μ. Let γ be an injective
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curve as in the statement. We start by considering both of the cases when int(γ ) ⊂ C,
and when γ ⊂ ∂C and in addition int(γ ) ∩ P(f ) = ∅. Let p and q be the endpoints of γ

and let z, w ∈ π−1({p, q}) be the endpoints of a curve in D that is mapped injectively
to γ under π . Note that such a curve always exists: when int(γ ) ⊂ C, it is the curve
that contains the unique preimage π−1(int(γ )), and when γ ⊂ ∂C, there are two such
curves, which in particular share one of their endpoints. In both cases, π([z, w]) and
γ belong to a simply connected domain contained in (C \ P(f )) ∪ {p, q}. Thus, if we
consider the set W ..= γ ∩ P(f ), which might be either empty or contain one of both of the
endpoints {p, q} of γ , we have, again using [Hat02, Proposition 1.6], that π([z, w]), γ ∈
Hq

p(W(0)) are post-0-homotopic, and in particular, π([z, w]) ∈ [γ ]0 . Thus, there exists
γ̃ ∈ [π([z, w])]0 = [γ ]0 such that �O(γ̃ ) ≤ 2μ.

All that remains is to consider the case where γ ⊂ ∂C and there is a curve β ⊂ π−1(γ )

satisfying π(β) = γ . Let p and q be the endpoints of γ and suppose that γ ∈ H
q
p (W)

for W ..= P(f ) ∩ γ = {w1, . . . , wN }. Let us parametrize γ so that γ (0) = p, γ (1) = q

and γ (j/(N + 1)) = wj for all 1 ≤ j ≤ N . In particular, following (7.2), we can express
γ as a concatenation γ = γ0 · γ2 · · · γN , where γi

..= γ |[i/N ,(i+1)/N]. Note that, for each
0 ≤ i ≤ N , γi satisfies the hypotheses of the case considered above, that is, γi ⊂ ∂C and
int(γi) ∩ P(f ) = ∅. Thus, for each i, there exists a curve γ̃i ∈ [γi]0 with �O(γ̃i) ≤ 2μ.
Then the concatenation γ̃ = γ̃0 · γ̃2 · · · γ̃N satisfies γ̃ ∈ [γ ]0 and �O(γ̃ ) ≤ 2μ|P(f )| =..

ν. Letting η ..= max{ν, 2μ}, the theorem follows. �

Before stating our final result, we provide a formal definition of dynamic rays.

Definition 7.6. (Dynamic rays [RRRS11, Definition 2.2]) Let f ∈ B. A ray tail of f is an
injective curve γ : [t0, ∞) → I (f ), with t0 > 0, such that:
• for each n ≥ 1, t �→ f n(γ (t)) is injective with limt→∞ f n(γ (t)) = ∞;
• f n(γ (t)) → ∞ uniformly in t as n → ∞.
A dynamic ray of f is a maximal injective curve γ : (0, ∞) → I (f ) such that the
restriction γ|[t ,∞) is a ray tail for all t > 0. We say that γ lands at z if limt→0+ γ (t) = z,
and we call z the endpoint of γ .

Observation 7.7. (Properties of dynamic rays) With our definition, dynamic rays might
contain singular values and postsingular points, as occurs for the map f = cosh; see
[Par20, Par19b]. In addition, dynamic rays might overlap pairwise in subcurves delimited
by (preimages) of critical points; see [Par19a, Ch. 4] or [RRRS11, proof of Proposition
2.3] for further discussion. Moreover, any two rays intersect in a connected set, since
otherwise, their intersection would enclose a domain that escapes uniformly to infinity,
contradicting that I (f ) has empty interior as f ∈ B; see [EL92].

COROLLARY 7.8. (Pieces of rays with uniformly bounded length) Let f ∈ B, let O =
(S, ν) be a hyperbolic orbifold with S ⊂ C, and let U � S be a simply connected domain
with locally connected boundary. Assume that P(f ) ∩ U ⊂ J (f ), #(P (f ) ∩ U) is finite
and there exists a dynamic ray or ray tail landing at each point in P(f ) ∩ U . Then there
exists a constant LU ≥ 0, depending only on U , such that, for any (connected) piece of ray
tail ξ ⊂ U , there exists δ ∈ [ξ ]0 with �O(δ) ≤ LU .
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Proof. Let P(f ) ∩ U =.. {p1, . . . , pN } for some N < ∞. We start by defining a set X ⊃
(P (f ) ∩ U) using pieces of dynamic rays. By assumption, for each 1 ≤ i ≤ N , there exists
at least one dynamic ray or ray tail landing at each pi ∈ P(f ) ∩ U . We choose any such
ray and let �i be its parametrization including its landing point. Then denote by γi the
unique connected component of �i ∩ U that contains its landing point pi . Note that γi

might contain some other points in P(f ) ∩ U . We construct the set X inductively. Define
X1

..= γ1 ∪ ∂U . For each 2 ≤ j ≤ N , if pj ∈ Xj−1, we define Xj = Xj−1. Otherwise, let
Xj be the union of Xj−1 with the connected component of γj \ Xj−1 containing pj , which
by Observation 7.7 is a bounded piece of dynamic ray. By construction, X ..= XN is the
union of ∂U with a collection of Ñ ≤ N connected components, each of them consisting
of a concatenation of finitely many pieces of rays, and so that U \ X is simply connected.
That is, the set X can be written as X = ⋃Ñ

k=1 Tk ∪ ∂U , where each Tk is topologically a
tree with finitely many edges {ek

1, . . . , ek
m(k)}. We denote M ..= max

k≤Ñ
m(k).

Let C ..= U \ X and note that by construction, C is a simply connected domain such
that C ∩ P(f ) = ∅, and moreover, since ∂C = X ∪ ∂U , ∂C is locally connected. Hence,
the set C satisfies the hypotheses in Theorem 7.5. We claim that if ξ is a piece of ray tail
in U = C \ ∂U , then ξ is of one of the following three types:
Type 1. int(ξ) ⊂ C.
Type 2. ξ ⊂ X and ξ is a concatenation of at most M curves {αi}i≤M , so that, for each
αi , there exists a curve βi ⊂ ∂D such that π(βi) = αi , where π : D → C is the extended
Riemann map.
Type 3. ξ is a concatenation of at most 2Ñ + 1 curves of types 1 and 2.
Indeed, if ξ ⊂ ∂C, by assumption, ξ ⊂ Tk for some k, and so ξ is contained in a
concatenation of some of the edges {ek

1, . . . , ek
m(k)} of Tk . For each i, π−1(ek

i ) is either
an arc that maps two-to-one to ek

i , or consists of two different arcs, each of them mapping
one-to-one to ek

i . Thus, ξ is of type 2. Let us now analyse the case where ξ ⊂ C \ ∂U

is a piece of dynamic ray which is not of type 1 nor 2. Then ξ ∩ Tk �= ∅ for some k.
Since Tk is a union of pieces of dynamic rays, all of its points but maybe some endpoints
escape uniformly to infinity. Hence, by Observation 7.7, ξ ∩ Tk is connected. This means
that ξ ∩ X is a collection of at most Ñ curves, preceded and/or followed by subcurves of
ξ with interior in C. Thus, ξ is of type 3. Consequently, by Theorem 7.5, there exists a
constant η such that if ξ is a piece of dynamic ray in U , then there exists a curve ξ̃ ∈ [ξ ]0

such that �O(ξ̃ ) ≤ max{M , 2Ñ + 1}η =.. μ. �
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