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Abstract

In this paper we obtain asymptotics for the number of rooted 3-connected maps on an arbitrary surface
and use them to prove that almost all rooted 3-connected maps on any fixed surface have large edge-width
and large face-width. It then follows from the result of Roberston and Vitray [10] that almost all rooted
3-connected maps on any fixed surface are minimum genus embeddings and their underlying graphs are
uniquely embeddable on the surface.

1991 Mathematics subject classification (Amer. Math. Soc): 05C10,05C30,05C15.

1. Introduction

We begin with some definitions:

A map is a connected graph G embedded in a surface 5 (a closed 2-manifold)
such that all components of S - G are simply connected regions, which are called
faces. G is called the underlying graph of M, and is denoted by G{M). Loops and
multiple edges are allowed in G.
A map is rooted if an edge is distinguished together with a vertex on the edge and
a side of the edge. All maps shall be rooted.
We use Tutte's definition [11 ] of connectivity: a graph (or the corresponding map)
is k-connected (abbreviated k-c) if the girth is at least k and it requires removing
at least k vertices to separate the graph.
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• By a cycle in a map, we mean a simple closed curve consisting of edges of the
map. A cycle is called separating if deleting it separates the underlying graph and
is called facial if it bounds a face of the map.

• A cycle is called contractible if it is homotopic to a point; otherwise it is called
non-contractible and denoted by nc-cycle.

• The edge-width of a map M, denoted by ew(M), is the length of a shortest nc-cycle
of M. The face-width (also called representativity in [10]) of a map M, denoted
by fw(Af), is the minimum of \G(M) D C\ taken over all non-contractible simple
closed curves C that lie in the surface and contain no vertices of G(M). It is easily
seen that ew(Af) > fw(M) for any map M.

We will prove the following theorem and its corollaries.

THEOREM 1. Let tg and pg be the constants defined in Theorem 1 of [I]. The
number of 3-connected maps on a surface ofEuler characteristic \ = 2 — 1g is given
asymptotically by

tg(9n)5x/44" on orientable surfaces, and

Pg(9n)5x/44" on non-orientable surfaces.

In the following corollaries, 'almost all' means that the fraction of maps having the
property approaches 1 as n -» oo.

COROLLARY 1. Almost all n-edged 3-connected maps on a given surface have
face-width greater than S log n for some constant S > 0.

COROLLARY 2. Almost all n-edged 3-connected maps on a given surface are not
hamiltonian.

While interesting in itself, the theorem is also important because it shows that the
number of 3-c maps on a surface 'grows normally.' This concept is defined as follows:

• Let & be some family of maps and let &n(S) be the set of n-edged maps in &
that lie on a surface S. We say that & grows normally if

for some A(S, &) and p(&), where x is the Euler characteristic of 5 and the limit
is taken through those n for which &n (S) ^ 0.

A variety of families of maps exhibiting normal growth are listed in [7]. Properties
of such families are discussed in [3, 4] and imply the corollaries.
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The motivation for the first corollary may not immediately be apparent. Robertson
and Vitray [10] have studied graph embeddings with large face-width. They have
shown that they share many properties with planar embeddings. For example, if M is
a map of genus g which has face-width exceeding 2g+2, then it is the minimum genus
embedding of G{M), and if G{M) is also 2-connected, then any other embedding of
G(M) of genus g is obtained from M by a sequence of '2-switchings' (defined by
Whitney [13] who proved the planar case). It follows from this that, if a 3-connected
map of genus g has face-width exceeding 2g + 2, then G (M) has a unique embedding
of genus g.

After establishing the connection between certain types of quadrangulations and
3-connected maps, we will focus on quadrangulations for two sections. In the last
section, we use these results to prove Theorem 1 and its corollaries. To avoid too
many technical details, we shall only prove our results for maps on orientable surfaces.
Similar arguments work for maps on non-orientable surfaces.

2. Quadrangulations and 3-connected maps

• A bipartite quadrangulation is a map whose underlying graph is bipartite and
whose faces are all quadrangles. All quadrangulations shall be bipartite.

• A quadrangulation is called near-simple if it has no contractible 2-cycles and no
contractible non-facial 4-cycles, and is called simple if it has no 2-cycles and all
4-cycles are facial.

The following lemma connects these concepts with 3-connected maps.

LEMMA 1. There is a bijection <f> between n-edged maps and n-faced quadrangu-
lations, such that fw(M) — ew(0(A/))/2. Furthermore, (/>(M) simple implies M
3-connected, which implies that (j)(M) is near-simple.

PROOF. The proof of the first statement is a straightforward extension of the bijec-
tion on the sphere given by Brown [6]: For any map M, place a vertex in each face and
join it to the vertices on the boundary of the face through every corner and remove all
the original edges of M. This gives a bipartite quadrangulation Q, whose root corner
can be chosen the same as the root corner of M. This is clearly a bijection, and any
nc-cycle of length 2k in Q intersects G(M) in exactly k vertices.

Suppose now that <j>{M) is not near-simple, that is, 0(M) has either a contractible
2-cycle or a contractible non-facial 4-cycle. Then in the former case, one vertex in
the 2-cycle is a cut vertex of M, and in the latter case, two non-adjacent vertices in
the 4-cycle form a cut-pair of M. So M 3-connected implies <p{M) near-simple.

Now suppose that M is not 3-connected; then the edges of M can be partitioned
into two classes, say blue and red, such that only two vertices, say v\ and v2, are
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incident to both blue and red edges. Pick a face fx incident to both blue and red edges
at V\. Tracing around f\ from the blue edge, we must eventually reach a red edge.
This must occur at V\ or v2. If it is at v\, then vt and fx have multiple incidence, and
this gives a 2-cycle in </>(M). If it is at v2, we can then pick another such face f2

and repeat the process, thereby finding two faces f\ and f2 both incident to vt and v2.
They form a non-facial 4-cycle in <1>(M). So 0(M) being simple implies that M is
3-connected.

Our approach is similar to that used in [5]. We obtain asymptotics for the number of
near-simple quadrangulations and then show that almost all near-simple quadrangu-
lations are simple. It then follows from Lemma 1 that the numbers of near-simple
quadrangulations, simple quadrangulations and 3-connected maps are all asymptotic-
ally the same.

3. Enumerating near-simple quadrangulations

On the orientable surface of genus g = 1 — x/2, with x marking the number of
faces, define the following generating functions:

Qg(x) : quadrangulations,

Qg(x) : quadrangulations without contractible 2-cycles,

Q*(x) : near-simple quadrangulations.

Let Ri = VI - 12x, R2 = VI - 27x/4, and R3 = Vl - 4 * .
It follows from Lemma 1 above, [2] and [1, Theorem 1 and Lemma 3] that Qg(x)

is algebraic and has a Laurent series expansion in Rt:

(3.D
AgR

3-5g(l + 0(J?,)), . i fg>0,3-5g(

where the Ag's are constants. We will prove similar results for Qg and Q*:

THEOREM 2. Qg (x) and Q* (x) are algebraic and have the following Laurent series
expansions:

ex T \ n (Y\ _ 13 9--1 • 27V3"^v* • ~ v--x//> y <? " ,

1/ g > 0,

407 14539 p2 i 8 p 3 /
(3 3) 0*(x) = \ 4320 ^SOO"3 ' 729"3VX ' "\"-i//< if 8 — 0'
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where Ag is given by (3.1). Moreover, the only possible finite singularities of Qg(x)
are at x = A/21, —16/27 and —4 and the only singularity of Q*(x) on its circle of
convergence is at x = 1/4.

PROOF. Lemma 1 allows us to convert statements about maps to statements about
quadrangulations. Tutte's formula for Qo [12, (5.2)], can be written as

Tutte also proved [12, p.257]

(3.5) g o t o = ' ( 2 - 3 0 , where x = t(l-t)2 and r(0) = 0,

from which the g = 0 case of (3.2) follows. The formula for QQ(X) can be obtained
from Q*N(x, x) given by [8, (6.24-25)]. Thus, we need only consider the cases g > 0.

We require some definitions.

• A contractible cycle in a non-planar map separates the map into a planar piece and
a non-planar piece. The planar piece is called the interior of the cycle and we also
say that the cycle contains anything in its interior. Since we usually draw a planar
map such that the root face is the unbounded face, we define the interior of a cycle
in a planar map to be the piece which does not contain the root face.

• A 2-cycle or 4-cycle is called maximal (minimal) if it is contractible and its interior
is maximal (minimal).

It is important to note that, in any quadrangulation, all maximal 2-cycles have disjoint
interiors, and that, in any non-planar quadrangulation without contractible 2-cycles,
all maximal 4-cycles have disjoint interiors. (This is simpler than the planar case
[8, p. 260].) Therefore, we can close all maximal 2-cycles in quadrangulations
to obtain quadrangulations without contractible 2-cycles, and remove the interior
of each maximal contractible 4-cycle to obtain near-simple quadrangulations. The
process can be reversed and used to construct quadrangulations from near-simple
quadrangulations.

To study Qg, we use an approach similar to that in [5]. All quadrangulations of
genus g > 0 can be divided into two classes according to whether or not the root face
lies in the interior of some contractible 2-cycle.

For any quadrangulation in the first class, let C be the minimal 2-cycle containing
the root face. Cutting along C, filling holes with disks and closing those two digons,
we obtain a general quadrangulation of genus g and a planar quadrangulation with a
distinguished edge. Taking the latter quadrangulation, cutting along all of its maximal
2-cycles and closing as before gives a quadrangulation without contractible 2-cycles,
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together with a set of planar quadrangulations extracted from within the maximal 2-
cycles. Thus the generating function for the first class is 2w Q'0(u) Qg (x)/( 1 + <2o(•*))»
where
(3.6) K = *(1 + Qo(x))2.

For any quadrangulation in the second class, closing all maximal contractible 2-
cycles gives quadrangulations without contractible 2-cycles. Thus the generating
function for this class is Qg(u). Combining the two classes, we have Qg(x) =
Qg(u) + 2uQ'0(u)Qg(x)/{\ + &,(*)) and so

which is the same as the first line of [5, (4.1)]. Using (3.1), (3.2) with g = 0, and
(3.7), we obtain (3.2) for g > 0.

We now use a similar argument to derive Q*g(x) from Qg(x). For any quad-
rangulation without contractible 2-cycles, let C be the maximal contractible 4-cycle
containing the root face. Cutting along C and filling holes with disks, we obtain

(a) a planar quadrangulation which has no 2-cycles and has a distinguished face
other than the root face, and

(b) a quadrangulation of genus g which, after the removal of the interiors of all
maximal 4-cycles, gives a near-simple quadrangulation.

Note that

(3.8) v = v(x) —
x

enumerates by the number of interior faces the planar quadrangulations having at least
one interior face and having no 2-cycles. It follows from the construction that

(3.8) x2Qg(x) =

which gives

(3.9) Q*(v) = —,Qg{x).
8 XV'

Using (3.2), (3.8) and (3.9), we obtain (3.3) for g > 0.
The sources of the singularities of Qg(u) fall into three classes:

(1) singularities of Qg{x) that are carried over to Qg(u) by (3.7),
(2) singularities that arise when (3.6) is solved for x{u) to use in (3.7), and
(3) singularities of Qo(u).

By [1, Lemma 3], the only possible singularities of Qg(x) are at 1/12 and —1/4, the
latter requiring /?t(—1/4) = —2. These lead to u — A/21 and u = —4, respectively.
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We now turn to the second source of singularities. Following [5], we rewrite (3.4) as

27M(1 + Rtf + 4(/?x - l)(2Ki + I)2 = 0

and observe that this can be further rewritten as a polynomial equation in x and u.
After some algebra, one finds that the leading coefficient in x vanishes at u = —16/27,
and multiple roots can occur when Rt = 0. This determines all possible singularities
for Qg in the second class. By (3.5), the last class corresponds to multiple roots t (u)
oft(l-t)2 — u, which leads to u — A/21.

The same sort of argument is used with (3.9) to study the singularities of Q*g{v)-
Since Q*Q does not appear in that formula, the third source of singularities does not
arise. The three possible singularities x — A/21, —16/27 and —4 of Qg give only
v(x) = 1/4, —3/8 and —3/4 as possible singularities of magnitude less than 1.
We now turn to the second source of singularities. From (3.8) and (3.5) we have
v = t(l-2t)/(l-t)2, where t(0) = 0. A little algebra leads to

v + 2

which has singularities at v = 1/4 and v + 2 = 0.

4. Almost all near-simple quadrangulations are simple

In this section, we prove

THEOREM 3. Almost all near-simple quadrangulations on any fixed surface are
simple; that is, the ratio of the number of n-faced near-simple quadrangulations to
n-faced simple quadrangulations approaches 1 as n —> oo.

PROOF. We must prove that almost all n -faced near-simple quadrangulations have
no nc-cycles of length two or four. When g = 0, there is nothing to prove. For
simplicity, we shall only consider non-separating nc-cycles. Separating nc-cycles can
be handled more easily as in the proof of [4, Theorem 1]. Let Q be a near-simple
quadrangulation of genus g > 0.

We first consider the case where Q has no non-contractible 2-cycles but has a non-
separating non-contractible 4-cycle C. Cutting along C and filling holes with disks
gives a quadrangulation Q' of genus g — 1 with two distinguished facial 4-cycles Ci
and C2. Q' may have some contractible non-facial 4-cycles which correspond to the
4-cycles in Q homotopic to C. Since Q has no contractible non-facial 4-cycles, all
contractible non-facial 4-cycles in Q' must contain either C\ or C2.
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To visualise the next step, it may be helpful to imagine that C\ is drawn in the
plane. Suppose that there are some non-facial 4-cycles containing Cx. Cutting along
all these non-facial 4-cycles and filling the resulting holes with disks gives a sequence
Si of quadrangulations. We can regard each of these as having a distinguished face as
well as a root face, in order to mark the two distinct faces coming from the cuts along
4-cycles.

We must characterize the possibilities for the sequence S\. We firstly describe this
in terms of the map M corresponding to the quadrangulation Q. The operation of
cutting along C in Q corresponds to cutting M along a closed curve through two
vertices and two faces, and adding two edges ex and e2 between the vertices sliced
by the curve, to produce a map M'. The edges ex and e2 correspond to C\ and C2 in
Q'. Since Q has no 2-cycles, neither does Q', and hence M' is 2-connected. Thus,
by the results of Tutte [11], M' decomposes into 'cleavage units' each of which is
either a 'polygon' (a cycle), a 'bond' (two vertices joined by a multiple edge), or
is 3-connected. These cleavage units are joined together in a tree T, where two
components adjacent in T contain the same 'hinge' of M'. Each hinge is a pair of
vertices whose removal disconnects AT, and two faces each incident with each of
these vertices determine to a 4-cycle of Q'. No two polygons are adjacent and no two
bonds are adjacent. Since every contractible non-facial 4-cycle in Q' contains C\ or
C2, no pair of vertices whose removal disconnects M' can leave ex and e2 in the same
planar component. It follows that in the subforest of T induced by the planar cleavage
units, the components containing cleavage units containing ex and e2 are paths, and
that all bonds and polygons have at most four edges. (This situation is similar to the
decomposition of 3-connected graphs on removal of an edge, as encountered in [14];
but the situation there resembles the situation here when ex and e2 share a face, in
which case there can be no bonds with four edges.)

We introduce some shorthand terminology. Let Q3A and QAA denote the quad-
rangulations which correspond to the maps which are just a 3-cycle and a 4-cycle
respectively. Each of these quadrangulations has precisely one other rooting, giving
the quadrangulations Q3B and Q4B respectively. These correspond to the maps dual
to the 3-cycle and 4-cycle, which contain just a triple edge and just a quadruple edge
respectively. We refer to both Q3A and Q3B as Q3, and the same for Q4.

Consideration of the fact that Q is near-simple shows that the sequence of cleavage
units of M' corresponding to Sx can contain no 'polygon' or 'bond' of order greater than.
4, and that in each QA in Sx, the distinguished face and the root face are non-adjacent.

We can now state the conditions on the sequence of quadrangulations in 5] which
follow from the properties of the decomposition of M' into cleavage units:

(1) Each of the quadrangulations in Sx either is simple with more than four faces or
is one of the four quadrangulations Q3A, Q3B, QAA and Q4B.
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(2) Two consecutive elements of St cannot both be in {Q3A, Q4A] nor both in
{Q3B,Q4B}.

(3) Given the root face of either Q4A or Q4B, there is only one valid choice for the
distinguished face.

The 4-cycles containing C2 give a similar sequence Si. Therefore Q' is decomposed
into two sequences of the type of Si and a near-simple quadrangulation of genus g — l
which has a distinguished face. In addition, the original rooting of Q lies in one of
these components. To give an upper bound for the number of maps Q', let F} (x) be
the generating function for the sequence of consecutive Q3's and Q4's and let F2(x)
be the generating function for planar simple quadrangulations with more than 4 faces.
Then we have
(4.1) FiOt) = (4x3 + 2x4)/(l -2x- x2),

since the first element of the sequence can be of type A or B, and from then on there
is only one way to attach a Q4 but two ways to attach a Q3.

Since the sequence Si can begin with either Fx or F2 and end with either Fx or F2,
we obtain the following upper bound for the counting series for a non-empty Si:

(4.2) G,(JC) = (Fi +xF^ + 2FxF'2lx)l(\ - F.F^/x3).

Therefore the counting series for Q' is bounded by

(4.3) //,(*) = 2Or2(0;_1)'(l + Gi(x))2)'.

(The factor of 2 appears because there are two ways to identify the distinguished faces
Cx and C2 of Q' to retrieve Q. The outer derivative chooses the original rooting of
Q)

We now consider the case where the quadrangulation Q has some non-contractible
2-cycles. By cutting along 2-cycles analogously to the 4-cycle case, but closing up
the boundary of each resulting digon to form an edge, Q can be decomposed into
two sequences of planar quadrangulations without 2-cycles, each of which having a
distinguished edge as well as a root edge, and a quad Q' of genus g — 1 as described
in case 1 (with the exception that Q' here has two distinguished edges instead of two
distinguished faces). Let S2 denote one of these planar sequences. In each element
of S2, all non-facial 4-cycles must contain either the distinguished edge or the root
edge, so each element can be further decomposed into a sequence of the type of Si as
described in the first case above. Therefore the counting series for S2 is bounded by

(4.4) l / ( l - 2G , (x ) )

where the factor of 2 is introduced in order to convert the distinguished face of one of
the objects counted by d into a distinguished edge. Thus the counting series for Q
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in this case is bounded by

(4.5) H2(x) = Or2(G;_,)'(l/(l - 2G, (x)))2)'.

Using (4.1) and F2{x) = Q* — x2 - 2x3 we can show (with the aid of Maple) that
the denominators of (4.2) and (4.4) are not zero at x = 1/4. Therefore by (3.3) the
lowest terms in R3 of (4.3) and (4.5) are R*~5s, which is negligible compared with

5. 3-connected maps

The proof of Theorem 1 follows easily from Theorem 2 and the definitions of tg

and pg in [1].
We now prove Corollary 1. It was shown in [4, Theorem 1] that, if & is a class of

maps with normal growth, then the edge-width of most maps in &n(S) is about logn.
In fact, the argument used there can also be used to show that the face-width of most
such maps is also about logn, thus proving Corollary 1.

Since the class of 3-connected maps on a surface has normal growth, it follows
from [3, Corollary 1] that almost all of them contain any given 3-connected planar
map M. One particular map M was used in [9] to show that almost all 3-connected
triangulations of the plane are not hamiltonian. The same map now suffices to complete
the proof of Corollary 2.
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