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OPTIMAL SERVER SELECTION IN A QUEUEING
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ARRIVALS, AND ARBITRARY ARRIVAL TIMES
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Abstract

We consider a multiple server queueing loss system where the service times of server i

are exponential with rate μi, where μi decreases in i. Arrivals have associated vectors
(X1, . . . , Xn) of binary variables, with Xi = 1 indicating that server i is eligible to serve
that arrival. Arrivals finding no idle eligible servers are lost. Letting Ij be the indicator
variable for the event that the j th arrival enters service, we show that, for any arrival
process, the policy that assigns arrivals to the smallest numbered idle eligible server
stochastically maximizes the vector (I1, . . . , Ir ) for every r if the eligibility vector of
arrivals is either (a) exchangeable, or (b) a vector of independent variables for which
P(Xi = 1) increases in i.
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1. Introduction

Consider an n-server system such that each arrival has an associated vector of binary values
(x1, . . . , xn) with the interpretation that server i is eligible to serve that arrival if xi = 1 and
is ineligible if xi = 0, i = 1, . . . , n. The binary vectors of successive arrivals are assumed to
be independent and identically distributed having the distribution of (X1, . . . , Xn). There is no
queue allowed and an arrival that is not assigned to an idle server that is eligible for that arrival
is lost. Moreover, we assume that, independent of all else, the time it takes server i to serve
a customer is exponential with rate μi, i = 1, . . . , n, where, without loss of generality, we
suppose that μi ≥ μi+1, i < n.

Optimization problems regarding the preceding loss model have previously been considered
only in the special case where P(Xi = 1, i = 1, . . . , n) = 1, that is, only in the case where
arrivals can always be served by any of the n servers. Yao [8] assumed that the arrival process
is a renewal process and only considered ‘priority list’ policies, where a priority list policy
is specified by a permutation i1, i2, . . . , in with the instruction to give an arrival to the idle
server that appears earliest on this list. Yao showed that, among priority list policies, the policy
πo ≡ (1, . . . , n) minimized the rate of lost customers. Derman et al. [2] showed that, for any
arrival process, the total amount of time up to the moment of the nth arrival that the number
being served is less than k is, for every k and n, stochastically maximized by πo. Because their
arrival process is general, giving one the option to add an arrival at time t, they also showed that
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the total amount of the first t time units that the number being served is less than k is, for every k

and t , stochastically maximized by πo. Katehakis [5] used a continuous-time Markov decision
process to show, in the case of Poisson arrivals, that πo minimized the rate at which customers
are lost (a result that also follows from [2] by the PASTA principle). Hordijk and Koole [4]
showed that, for a general arrival process, πo stochastically minimized the cost incurred at a
fixed time t for a variety of cost functions, including that which incurs a cost 1 only when
all servers are busy. Sobel [7] assumed that the arrival process was Poisson and showed that,
for a variety of cost rules, including that which incurs a cost 1 whenever an arrival is lost, πo

minimized the long-run average cost per unit time. References to some papers earlier than
those cited in the preceding are noted in the bibliography.

For our problem, in which not all servers are eligible to serve an arrival, we define the priority
list policy (1, . . . , n) as the policy that gives an arrival to the smallest indexed server that is
both arrival eligible and idle. Let Ij be the indicator variable for the event that the j th arrival
enters service. For any arrival process that is independent of service times, we show that the
priority list policy (1, . . . , n) stochastically maximizes the vector (I1, . . . , Ir ) for every r if the
eligibility vector of arrivals is either (a) exchangeable, or (b) a vector of independent random
variables for which P(Xi = 1) increases in i.

2. Proof of optimality in the exchangeable case

In this section we suppose that the eligibility random vector X1, . . . , Xn is exchange-
able. That is, we suppose that there are probabilities αj ,

∑n
j=0 αj = 1, such that αj =

P(
∑n

i=1 Xi = j) and, given that
∑n

i=1 Xi = j, all
(
n
j

)
sets of j servers are equally likely to be

the set of eligible servers.
Recall that Ij is the indicator of the event that arrival j is served, j ≥ 1.

Theorem 1. For an arbitrary arrival time process, if μi decreases in i then, for every r ≥ 1,

the priority list policy (1, . . . , n) stochastically maximizes the vector (I1, . . . , Ir ). That is, for
any r and any increasing function h(x1, . . . , xr ), the priority list policy (1, . . . , n) maximizes
E[h(I1, . . . , Ir )].

To prove the theorem, we will need a couple of lemmas.

Lemma 1. Let X, Y, and I be independent, with X being exponential with rate μ, Y being
exponential with rate λ < μ, and P(I = 0) = λ/μ = 1 − P(I = 1). Then W ≡ X + IY is
exponential with rate λ.

Proof. The moment generating function of X + IY is

E[esW ] = E[esX]E[esIY ] = μ

μ − s

[
λ

μ
+ μ − λ

μ

λ

λ − s

]
= λ

λ − s

which proves the result.

Note that Lemma 1 allows us to couple an exponential random variable X with rate μ and
an exponential random variable W with rate λ < μ in such a manner that W is either equal
to X or is larger than X by a random amount that is independent of X and is exponential with
rate λ.

Definition. Say that the n-server system under consideration is in state S if S is the set of
servers that are currently busy. Also, for states S2 = (i, i1, . . . , ik) and S1 = (j, i1, . . . , ik′),
say that S2 dominates S1 if i ≤ j and k ≤ k′.
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Lemma 2. If S2 dominates S1 then, for any r and any increasing function h(x1, . . . , xr ),

sup
π

Eπ [h(I1, . . . , Ir ) | S2] ≥ sup
π

Eπ [h(I1, . . . , Ir ) | S1],

where π is a policy, and Eπ [X | S] denotes the expected value of X given that policy π is
employed and S is the state at time 0.

Proof. Suppose that S2 = (i, i1, . . . , ik) dominates S1 = (j, i1, . . . , ik′). We now show by
induction on r that, for any policy π1, there is a policy π2 such that

Eπ2 [h(I1, . . . , Ir ) | S2] ≥ Eπ1 [h(I1, . . . , Ir ) | S1]
whenever h is an increasing function of r variables. To begin, consider two scenarios, scenario
one having initial state S1 and scenario two having initial state S2, and let π1 be a policy that
is to be used in scenario one. Couple the arrival processes in the two scenarios so that arrivals
are at identical times. Let T = (T1, T2, . . .) be the sequence of interarrival times, and let
T ′ = (T2, T3, . . .).

Couple service times so that the initial service time of server im is the same in both scenarios
for m = 1, . . . , k. Couple the initial service times of server j in scenario one with that of server
i in scenario two so that either they are equal or the service time of server j exceeds that of
server i by an exponential random variable with rate μj . (That this is possible follows from
Lemma 1.) Because the set of idle servers seen by the first arrival in scenario one is a subset of
the set of idle servers seen by the first arrival in scenario two, the lemma follows when r = 1.

So assume that it is true for r, and now let h be an increasing function of r + 1 variables. To
complete the proof, we couple the eligibility vectors of the first arrival in the two scenarios, but
how we do so depends on which of the following two cases results.

Case 1. If, in scenario two, server i completes service before the first arrival then let the
eligibility vectors for the first arrival in the two scenarios be identical. Also, if this case results
then whoever policy π1 assigns to the first arrival in scenario one should also be the server
assigned by policy π2 in scenario two. If there is no eligible idle server for the initial arrival
in scenario one and there is at least one eligible idle server in scenario two then let π2 assign
the arrival to any of the idle eligible servers. Noting that the set of idle servers in scenario one
at the moment of the first arrival is a subset of the set of idle servers in scenario two at that
moment, it follows that if N(S1) and N(S2) denote the sets of busy servers after the first arrival
in scenarios one and two, respectively, then N(S2) dominates N(S1). Moreover, K2 ≥ K1,
where K1 and K2 are respectively equal to the indicators of the events that the first arrival
is served in scenarios one and two. (That is, K1 and K2 are respectively the values of I1 in
scenarios 1 and 2.) Now, for any sets of servers A1 and A2 such that A2 dominates A1, and
binary values k2 ≥ k1,

Eπ1 [h(I1, . . . , Ir+1) | S1, T , N(S1) = A1, K1 = k1]
≤ sup

π
Eπ [h(k1, I1, . . . , Ir ) | A1, T

′]
≤ sup

π
Eπ [h(k2, I1, . . . , Ir ) | A1, T

′]
≤ sup

π
Eπ [h(k2, I1, . . . , Ir ) | A2, T

′]
= sup

π
Eπ [h(I1, . . . , Ir+1) | S2, T , N(S2) = A2, K2 = k2].
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In the first inequality above we used the fact that if, in scenario one, server j is busy at the
moment of the first arrival then, whether or not server i had completed service in scenario
two, the remaining service time of server j is exponential with rate μj , and so the situation
after the first arrival is the same as if the problem began with the set of busy servers A1 and
we are interested in maximizing the quantity Eπ [h(k1, I1, . . . , Ir )] when the set of interarrival
times are T ′. The second inequality follows because h is an increasing function, and the next
inequality follows from the induction hypothesis. Hence, there is a policy π2 such that

Eπ1 [h(I1, . . . , Ir+1) | S1, T , N(S1), K1] ≤ Eπ2 [h(I1, . . . , Ir+1) | S2, T , N(S2), K2].
Taking expectations it follows that, for any policy π1, there is a policy π2 such that

Eπ1 [h(I1, . . . , Ir+1) | S1] ≤ Eπ2 [h(I1, . . . , Ir+1) | S2],
which completes the induction and establishes the result in this case.

Case 2. If, in scenario two, server i has not yet completed service before the first arrival
then with X

(1)
1 , . . . , X

(1)
n equal to the eligibility vector for the first arrival in scenario one, let

X(2)
s = X(1)

s , s �= i, s �= j,

X
(2)
i = X

(1)
j , X

(2)
j = X

(1)
i ,

and take X
(2)
1 , . . . , X

(2)
n as the eligibility vector for the first arrival in scenario two. (Because

an eligibility random vector X1, . . . , Xn is exhangeable, X
(2)
1 , . . . , X

(2)
n has the appropriate

distribution.) Now if the first arrival is assigned to server i in scenario one then assign it to
server j in scenario two (which can be done because X

(2)
j = X

(1)
i ); otherwise, make the same

assignment in scenario two as is made in scenario one, with the exception that if the arrival
is not eligible for any idle server in scenario one and there is an idle eligible server for it in
scenario two, then in scenario two it should be assigned to one of its idle eligible servers. Now,
as in case 1, for i = 1, 2, let N(Si) be the set of busy servers in scenario i after the first arrival.
Because N(S2) dominates N(S1), and the number of lost customers after the first arrival will
be no greater in scenario two than in scenario one, we can, as in case 1, apply the induction
hypothesis to complete the proof.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Fix h, and consider any given policy π . Now, if π ever deviates from
the priority list policy (1, . . . , n), it will enter a state that is dominated by the state that would
have been entered if (1, . . . , n) were employed. By Lemma 2, it follows that there is a policy
that uses (1, . . . , n) for the initial period that is at least as good as π with respect to the criterion
E[h(I1, . . . , Ir )]. But continuing this argument for each subsequent period shows that always
using (1, . . . , n) minimizes E[h(I1, . . . , Ir )].

3. An extension to eligibility vectors of independent random variables

Suppose now that the eligibility vector (X1, . . . , Xn) is not exchangeable but rather that it
is a vector of independent random variables, and let pi = P(Xi = 1). Then we can prove the
following result.

Theorem 2. if μ1 ≥ μ2 ≥ · · · ≥ μn and p1 ≤ p2 ≤ · · · ≤ pn then the priority list policy
(1, . . . , n) stochastically maximizes (I1, . . . , Ir ) for every r .
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Theorem 2 can be proven in the same manner as Theorem 1, with the exception that in
case 2 (which holds when server i has not yet completed service in scenario two before the first
arrival), we couple the eligibility vectors X(1) and X(2) for the first arrival in the two scenarios
in the following manner. For independent uniform (0, 1) random variables U1, . . . , Un, set

X(1)
m = I {Um < pm}, m = 1, . . . , n,

X(2)
m = I {Um < pm}, m �= i, j,

X
(2)
j = I {Ui < pj },

X
(2)
i = I {Uj < pi},

where I {A} is the indicator of the event A. Note that, because pi < pj , if the first arrival is
eligible for server i in scenario one then it is also eligible for server j in scenario two. The
proof then continues as in the exchangeable case.

Remark. Yao [8] showed that, when μi is decreasing in i, the rate of lost customers under
the priority list policy L1 = (i1, . . . , ik, ik+1, ik+2, . . . , in) was less than when the priority list
policy L2 = (i1, . . . , ik, ik+2, ik+1, . . . , in) is employed, whenever ik+1 < ik+2. We can prove
the stronger result that (I1, . . . , Ir ) is stochastically larger when using L1 than it is when using
L2 under either the conditions of Theorem 1 or Theorem 2. This is done by restricting attention
to those policies that give highest priority to servers i1, . . . , ik in that order, and lowest priority
to those servers in, . . . , ik+3 in that order, and then showing by the same approach used to
establish Theorem 1 that the best policy under this restriction is that which gives server ik+1
priority over server ik+2.
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