COUNTING COLOURED GRAPHS
E. M. WRIGHT

1. Introduction. A graph on n labelled nodes is a set of n objects called
“nodes,” distinguishable from each other, and a set (possibly empty) of
“edges,” that is, pairs of nodes. Each edge is said to join its pair of nodes,
at most one edge joins any two nodes and no edge joins a node to itself. By
a k-colouring of such a graph we mean a mapping of the nodes of the graph
onto a set of k distinct colours, such that no two nodes joined by an edge
are mapped onto the same colour. We take & > 1.

Following Read (1), we write M, = M, (k) for the number of such coloured
graphs, F, = F,(k) for the number of such coloured graphs in which there
is at least one node mapped onto each colour, and f, = f,(k) for the number
of those graphs of the latter set which are connected. We write also T'(a) = 2¢
and use > to denote summation over all ¢ such that 1 < 7 < k. Read (1)
showed that

_ no(la 1 >
(L.1) Malk) = 2o T(z” 52 i),
where 3, denotes summation over all sets of non-negative integers s; such
that
(1.2) E Si = m.
F, (k) is the corresponding sum in which every s; is positive. Read also shows
that
n—1
n—1
(1.3) fa(k) = Fu(k) — Z_: <7’ _ 1)Fn—r(k)fr(k),
where Fi(k) = Fo(k) = ... = F;_1(k) = 0.
If we put

V=@ = 3T 15

we have

& T(= ") (k)X
(1.4) Y = ; ]
and

E_ = T(— 3n") My (k)"
(1.5) I+9)'=1+2 = :
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as remarked by Read. Hence, or directly from (1.1), we have

(1.6) M) = 3 <k> ).

r=1

The series for ¢ and the series in (1.4) and (1.5) are convergent for all x
and so represent integral functions. On the other hand, Read deduces (1.3)
from the formal relationship

in which both series diverge for all non-zero values of x.
Read deduces from (1.4) and (1.5) respectively that

(1.7) Fa(k) = nz:)l <’:>2’("*”F,(k -1)
and
(1.8) My(k) — My(k — 1) = f (:‘>2""‘”M,(k -1

and uses these to compute F, and M, for small values of k& and #. He remarks
that M,, unlike F,, is a polynomial in %k of degree # and this follows from
(1.8) by induction. He uses (1.8) to calculate M, as a polynomial in & for
=1,2,3,4.
If we differentiate (1.5) logarithmically with respect to x, rearrange and
equate coefficients of x*, we have

(19) M) = 22’("_’)M,(k){<n K 1>k - <’: - })} +

and this expresses M, (k) in terms of M,(k) for » < n and does not involve
M, (k — 1). The polynomial property of M, (k) follows from (1.9) by induction
even more trivially than from (1.8). Again, if we put

Mn(k) = Zl ansksy

substitute in (1.9), and equate the coefficients of powers of k, we find the
recurrence formula

n—1 n—1

nfn—1 nfn —1

Ups = Z 27(n r)( >ar’3_1 _ Z 27(n r)< >ars
r=s—1 ¥ r=s r—1

for the coefficients in the polynomial M, (k) when s > 1. In particular

n—1 in(n—1)
Qi = 2" Qprpr1 = ... = 2° .

Similarly we can obtain

(n — k) F,y(k) = §12<8—"<"-”F3<k){< Z)k - < " >}

s=l s —1
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Although F,(k) is not a polynomial in %, we have

n!

(n — k)!

where J,(k) is a polynomial of the nth degree in %k such that Jo = 1 and,
for n > 1,

& n+1
nin+ 1T, = 2 2(“_1)("‘")< " >{(n — )k — ulJ,.
u=0

Fy(k) = oI L (R),

2. The main theorems. But these results are fairly trivial. Qur purpose
here is to find asymptotic formulae for the behaviour of M,, F,, and f, for
fixed & as n —«. We define a as the least positive residue of # to modulus &.
We use 4 (with or without a suffix) to denote a positive number, not neces-
sarily the same at each occurrence, which depends at most on % and on its
suffix, if any. The notation O( ) refers to the passage of # to infinity and the
positive number involved is Ay. We write K = {1 — (1/k)}.

We shall prove

THEOREM 1. As n — o, we have

< k >%(k;l) 7, KnZ{H_—1 —h —H }
2.1) M, = Tog E"2 ;OC;,% +0om)y,

where C, = Cy(k, a) depends on k, h and the residue of n (mod k), but not
otherwise on n.
THEOREM 2. 4s n > o,
Fy~ fo~ M,
In fact,
Fo/My =14 0(™™),  fu/My =14 0@

and so (2.1) remains true, with unaltered coefficients Co, Cy, ..., tf M, 1is
replaced by F, or by fy.

Theorem 2, which we deduce fairly simply from Theorem 1, disposes of
F, and f,. The coefficients C, are of interest. Each can be expressed in terms
of one or more multiple series. In particular,

(2.2) Cok, @) = Ei(log 2)* 2 2m) 1% VL (a),
where

_ Iy 2 93)
(2.3) L(a) = %)T<— 22 sit 57

and the sum () is over all integral values of the s;, positive, negative, or
zero, subject to the condition

(2.4) > si=a.
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It can be shown very simply that L{— @) = L(a) and that L(k 4+ @) = L(a).
Apart from a trivial factor, L(a) is a generalized theta-function and the
transformation theory of such a function may be used to obtain information
about the value of Cy(k, a). This involves a good deal of elaborate detail,
however, and we postpone it to a sequel. Here we prove more simply that
Co(k, a) differs from 1 by a very small amount.

THEOREM 3. If € = 1.33 X 107%, then
1 —e< Colkya) <1+
for kB < 1000. For k > 1000, we have
(I —e@l —1071)% < Colk,a) < (1 4+ (1 + 10712~
But Co(k, a) is not independent of a. In fact, we shall show that
(2.5) Co(2,0) = Co(2, 1).

To put it roughly, C¢(2, @) does depend on a, though only very little.

It is not surprising that M, (and F, and f,), like other enumerative functions,
should depend on the residue of n(mod k) as well as on the size of #n. For
example, the number of partitions of # into k parts can be expressed as a
sum of powers of # up to #*~!, the coefficients of which depend on the residue
of n(mod k!). But the coefficients of the larger powers, in particular #*~1, do
not depend on this residue. Again, the well-known ‘‘singular series’” in Waring’s
Problem depends on the arithmetical properties of #. But these enumerative
functions of #n are fairly small. The asymptotic expansions of the larger
enumerative functions (for example, p(n), the number of partitions of # into
any number of parts, for which p(n) ~ Bm~! exp(Biv/n)) do not have the
coefficients of their dominant terms dependent on the congruence properties
of n. Thus it is a somewhat unusual phenomenon that M,, which is very
large indeed, has Cy depending on the residue of #(mod k) but, according to
Theorem 3, only a little. The distinction between the size of #» and its arith-
metical properties, and indeed the whole of the remarks of this paragraph,
are deliberately vague. But the point involved seems in some ways the most
interesting part of the results.

3. Proof of Theorem 2. If we write #; = ks; — n and

so=1, Sp= 2 uf= 2, (ks;—m)" (m>0)

and suppose (1.2) to be satisfied we have

(3.1) Si= > (ksi—n) = k(> s:—n) =0,

(3.2) Se=k D st =2k s+ k' = kD st — kn’
and so

(3.3) BEm®— Y s =k(k—1n" — S, = 28°Kn* — S..

https://doi.org/10.4153/CJM-1961-058-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1961-058-0

COUNTING COLOURED GRAPHS 687

Since Sy > 0, we have

T(in® — 1> sh) = T(Kn® — 3672S,) < T(Kn').
and, by (1.1),

M,(k) < T'(Kn®) Z = B"T'(Kn®).

.... k-

This is true for all 2 and all #.
It follows from the definitions that

< falk) < Fu(k) < M,u(k)
for all » > k. Again, by (1.6),

e - e = 5 (#)re < £ (4 )

r=

<ol ()
<2k = 'T(Kn* = n*/ (& = B)).

If we now assume Theorem 1 to be true, we have
B.4) (M, — F)/M, < An**{1 — (1/B)Y'T{— 0’/ (k" — B))

< Ae™i,
Next, by (1.3),

R (s

< <” - 1>M,,_, M,
= \r — 1

1
n—1 " — 1
< (7 )k”T{K(n — )+ Kr?)
and, again assuming Theorem 1, we have

Mnfn < Anh@D Z < i)T{_ 2Kr(n — r)}.

Now

) <” B DT{— 2Kr(n — 1)}

< [Z]< >T( Krn)+[2%3m< 1>T(— Ksn)

< 2—Kn(1 + 2—Kn)n— + (1 + 2-Kn)n—1 _ 1
= 142" -1 <n27 ™1 4 275 < An27",
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Hence
0 < (Fy— fa)/ M, < An275" < Ae™*",
Theorem 2 follows from this and (3.4).

4. Proof of Theorem 1. Next we prove Theorem 1. We write

n!
P = P(S1,SQ,...,S,C) = El—'._,_s_h'
By (1.1) and (3.3), we have
(4.1) T(— Kn)M, = 3 PT(= 372Sy) = S/ 4+ 37,
(n)

where 3"/ includes all those terms for which |ks; — n| < #* for every i. For
every term in Y.”, we have |ks; — n| > n* for at least one value of ¢ and
so S > n. We have then

(4.2) S T(= AnY S "Plsyy ..y sn)
< T(— An) S P = "T(— And).

(n)

Now we consider any term of > ', so that s; > A4, for every <. By Stirling’s
formula, for n > 4,

H—1
log (n!) = (n + ) logn — n + Llog 2m) + 2, e + 0(n™)
=1
and so
logP = (n+ 3logn — D, (si+ %) logs; — (B — 1) log (27)
H—1
+ hZ_:l (™ — 2 s 4+ o).
Also
(n+ Hlogn — 32 (si+ %) log s,
=+ ¥logn — 3 (si+ %) log (n/k) — El
= 3k —Dlogn+ (n+ ) logh — X,
1

where

|

1

o

_ (_ l)m_Z val Sm
N ,;2 n"! {2(m - 1) + km(m — 1)}'

since S; = 0 by (3.1). Again
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nh(n—-h _ Z S?h)

1—F2 {1+ /)™
h - mm+h_1 Sm
=1—k{k+mzzjl(—1)< 1 >—,—n}

and so

- - M = m B—1\ S,
n”—Zsi"=—5——ﬁ——Z=(—l) <m2——1 >7¥ﬁ-

n m=1

Hence, if we take H odd,
4.3) logP = (n+ k) logk — L(k — 1) log (27n)

H—-1
+ ; ™ + O{n (1 + Sus1)},

where

htl

dh = Z Zi(k, h‘y m)Sm

m=0

is a polynomial in the %, of degree at most # + 1. Now

H—1 e
exp(éd,,rf") =1+ hZ=ID,,n_”,

dcmc
=z (%)

the sum being taken over all partitions of %, a typical partition being into m,
parts 1, m, parts 2, and so on, and the product over every different part ¢
in the partition. Thus D, is a polynomial in the u; of degree at most 2k and

(4.4) D, < An(1 + San).
Hence, by (4.3),

S kn+%k H—1 Jl JI V'
(4.5) > ’PT<— Qﬁ) = Wﬁ——ﬁ{z j + 0<'L-I—_H—2H>}y

where

h=0 n
where
V= X 'SaT(~ 37Sy)
and
Jo= Vi, Ji= 22 'Dal (= 3&7°Se).
We write

Vi = Van) = 2 SpT(— 3£7%8,)
()

with the notation introduced in (2.3). The sum is certainly convergent and
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(4.6) Ve = Vil < 20 |SulT(— 3£7°Sy)

Se2>n?
< Ap 20 T (= Al) < AT (= An'™).
t>nz
We see that, when m > 0,
Su(st, Say vy siyn) = 0 (ks —n)" = 2 {k(s; = 1) — (n — E)}™
=Su(si—1,s2—1,...,8, — 1;m — k)

and so, when m > 0,

(47) Vm(n) = Vm(n - k),
from which it follows that
(4.8) |[Va(n)| < max |V,(a)| < 4.
lal <3k
We write

Jo= Vo Jo= Ju(n) = > DT (— 3E°S,),

((n))

the convergence of the last sum following from that of V, and Vs, by (4.4).
Also

| Ty — Tl < A,T(— An'')
by (4.4) and (4.6). Hence, by (4.1), (4.5), and (4.8),

H—1
(4.9) M, = (27m)"f<’~“”k"+%k:r(1<n2){ > T+ O(n_”)}.
h=0

We can show, just as for V,,(n) in the last paragraph that J,(n) = J,(n — k)
and so |J,(n)| < 4. (4.9) is now Theorem 1 with

Cr = Culk, n) = F(log 2)¥* " (2m) V7,

and Cy(k, n) = Cy(k, a), if a is any residue of n(mod k).
By (3.2) and (2.3),

Jo(n) = Vo(n) = L(n).
Hence, by (4.7), L(n) = L(a) and (2.2) follows.

5. Proof of Theorem 3. We now evaluate Cy(k, @) and L(a), which are
defined by (2.2) and (2.3). We suppose (2.4) satisfied and write

. k—1
T,=as-'—Zsi O<L<r<k—2), Ti-1 = a.

i=r+1

We can prove by induction on 7 that, for 1 <7 < 2 — 1, we have

) s Sn o seiGHDs = T4 TS
(0.1) ! Sk+ 12:151’— Z::l 'L(i—l—l) +7+1'
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For » = 1, (5.1) reduces to
si+s1=3@2si — T0)° + 377,

which is true since
k—1

T1=a— Esi=51—|—sk.

=2

If we assume (5.1) true for » = R — 1, its truth for » = R follows provided
that

R(R+ sy ={(R+ 1)spg — Te})* + RT2 — R+ 1)T7y

and this is a trivial consequence of the fact that I’ = Tr—1 + Sz.
If we put » =k — 1 in (5.1), we have

Z S% = 212141(31' + 3%')2 + (az/k),

where
k—1
PO T TR R § ,
Hence
(5.2) L(a) = ((Za):)T{—% 2 si+ 3(@*/k))
@, k—1
T ﬁ:F_mT{“ ;Az(sz-l-yi)}

We have thus eliminated s;.
We now take x > 0 and write

Wit y) = >0 e W) = W, 0).

s=—o0

An application of Poisson’s formula (2) gives us

5.3) W(x, y) = <x> {1 + 22 exp<— ——‘f)eos 21rty}

If we put y = 0 in this, we have
W(x) = (x/x) W (x?/x).

It follows that
2

(5.4) |<§)W(x ) — 1' 22 exp< —t> lcos 2ty|
22 exp<

l:a K

We now write
X = A;log 2, B{ = W(1r2/xi) —_ 1,
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so that, by (5.4), we have
1-B;< (xz/ﬂ')’}W(xi, y) <1+ B
We have then, by (5.2),

© k—1
L(a) = Z W (x1, yl)T{_ ZZAi(Si + yi)z}
89,83,+.,8k—1=—00 i=
r 1 o ( k—1
< (—) 1+B) 2 T{— EAi<s¢+yi>2},
X1 S1eeees Sk—1=—co =2
since Bj is independent of y; and so of sq, ..., sx—1 and all the terms in the

last sum are positive. Continuing this process step by step, we find that

k—1
L(a) < @ T (x7*(1 + B)}.
i=1

Now

l 2k—l
[T = g2y~ ] 4, = HOED—

and so

7(—1) k—1
Co(k, a) = kﬂ(l"gf) L@) < [] a + B).
i=1

A precisely similar argument, with inequality signs reversed, shows that

Co(k,a) > i:i (1 — By).
The B, are very easy to compute. We find that
B, = 1.3097 X 10-¢, B, = 1.1374 X 10-®
and so on; in particular,
Bago < 10712
Theorem 3 follows quite simply from the calculations.
On the other hand, if 2 =2 and s; + 52 = a,
si+s:— 30" = 3051 — )" = 3251 — a)’
and so

L@) = 2, g=G—do? _ W(log 2, — 1a).

$=—co
Hence

2 2

log 2 =
Co(2,a) = (_og > W(log2, — 3a) =1+ 2 E exp(— —;zgw2>cos mma
m=1
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by (5.3) and so
© 9 1 2 2
e - 62, = 4% o - L)

> 4exp(— 7°/log 2) > 2.6194 X 107"

(2.5) follows and we observe also that Co(2,0) and C,(2, 1) differ by very
nearly as much as Theorem 3 allows.
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