
COUNTING COLOURED GRAPHS 

E. M. W R I G H T 

1. Introduction. A graph on n labelled nodes is a set of n objects called 
1 'nodes," distinguishable from each other, and a set (possibly empty) of 
''edges," that is, pairs of nodes. Each edge is said to join its pair of nodes, 
at most one edge joins any two nodes and no edge joins a node to itself. By 
a ^-colouring of such a graph we mean a mapping of the nodes of the graph 
onto a set of k distinct colours, such that no two nodes joined by an edge 
are mapped onto the same colour. We take k > 1. 

Following Read (1), we write Mn = Mn(k) for the number of such coloured 
graphs, Fn = Fn(k) for the number of such coloured graphs in which there 
is at least one node mapped onto each colour, and fn = fn(k) for the number 
of those graphs of the latter set which are connected. We write also T(a) = 2a 

and use X) to denote summation over all i such that 1 < i < k. Read (1) 
showed that 

(i.i) "•(» = 27J J b r ( l" ! -^4 
where £(w) denotes summation over all sets of non-negative integers st such 
that 

(1.2) £ St = n. 

Fn(k) is the corresponding sum in which every st is positive. Read also shows 
that 

(1.3) /.(*) = Fn(k) - E ( ^ Z })^rW/r(*), 

where Fx{k) = F2(k) = . . . = F*_i(*) = 0. 
If we put 

oo 5 

T(- hn)Fn{k)x* 

we have 

(1.4) ** = E 
n=k " -

and 

(1.5) (l + ^ - l + X r ( - è w 2 ) , M " ( f e ) X n . 
w=i n. 
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as remarked by Read. Hence, or directly from (1.1), we have 

(1.6) Mn(k) = £ ( * ) Fn(r). 
r=l \i / 

The series for \p and the series in (1.4) and (1.5) are convergent for all x 
and so represent integral functions. On the other hand, Read deduces (1.3) 
from the formal relationship 

n=k "• \ w = l " ' / 

in which both series diverge for all non-zero values of x. 
Read deduces from (1.4) and (1.5) respectively that 

(1.7) Fn(k) = j:(n)2^-r)FT{k-l) 
r=l \ ? / 

and 

(1.8) Mn{k) - Mn(k - 1) = Z(n)2Kn-r)Mr(k - 1) 

and uses these to compute Fn and Mn for small values of k and n. He remarks 
that Mnj unlike Fn, is a polynomial in k of degree n and this follows from 
(1.8) by induction. He uses (1.8) to calculate Mn as a polynomial in k for 
n = 1 ,2,3,4. 

If we differentiate (1.5) logarithmically with respect to x, rearrange and 
equate coefficients of xn

f we have 

(1.9) Mn(k) = E2' ("-^w{(B ; *)* - (* : } ) } 
and this expresses Mn(k) in terms of MT(k) for r < n and does not involve 
Mn(k — 1). The polynomial property of Mn(k) follows from (1.9) by induction 
even more trivially than from (1.8). Again, if we put 

Mn(k) = Ulan,!*8, 
s = l 

substitute in (1.9), and equate the coefficients of powers of k, we find the 
recurrence formula 

ans = g 2^>(» - l\T,^ - Ë12*">(n I })«„ 

for the coefficients in the polynomial Mn(k) when 5 > 1. In particular 

Similarly we can obtain 

_ cyn-l _ _ Q^wCn-l) 
Unn — *-> i^n—l,n—l — • • • — ^ 

IP-BWI-ÏV^WIK!)'-!".)}' 
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Although Fn(k) is not a polynomial in k, we have 

where Jn(k) is a polynomial of the nth degree in k such that Jo = 1 and, 
for n > 1, 

«(» +1)/„ = Yi2
{n-lKnMn +

 MJCW - «)* - «}/„. 
w=0 \ U / 

2. The main theorems. But these results are fairly trivial. Our purpose 
here is to find asymptotic formulae for the behaviour of Mn, Fn, and fn for 
fixed k as n —* oo. We define a as the least positive residue of n to modulus k. 
We use 4̂ (with or without a suffix) to denote a positive number, not neces­
sarily the same at each occurrence, which depends at most on k and on its 
suffix, if any. The notation 0 ( ) refers to the passage of n to infinity and the 
positive number involved is AH. We write K = J{1 — (1/k)}. 

We shall prove 

THEOREM 1. As n—>ca, we have 

(2.1) Mn = ( ^ ) i a " V - { g C,«- + 0(.-)}, 
where Ch = Ch(k, a) depends on k, h and the residue of n (mod k), but not 
otherwise on n. 

THEOREM 2. As n—>^>, 

Fn~fn~Mn. 

In fact, 

Fn/Mn = 1 + 0(e-An2), fn/Mn = 1 + 0{e~An) 

and so (2.1) remains true, with unaltered coefficients C0, C\, . . . , if Afw is 
replaced by Fn or by fn. 

Theorem 2, which we deduce fairly simply from Theorem 1, disposes of 
Fn and fn. The coefficients Ch are of interest. Each can be expressed in terms 
of one or more multiple series. In particular, 

(2.2) Co(&, a) = F(log 2f{k-1)(2ir)-Uk-1)L(a), 

where 

and the sum J^((a)) is over all integral values of the sit positive, negative, or 
zero, subject to the condition 

(2.4) X) St = a. 
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I t can be shown very simply t h a t L{— a) = L(a) and t h a t L(k + a) = L(a). 
Apar t from a trivial factor, L(a) is a generalized theta-function and the 
transformation theory of such a function may be used to obtain information 
abou t the value of Co(&, a). This involves a good deal of elaborate detail , 
however, and we postpone it to a sequel. Here we prove more simply t h a t 
Co(k, a) differs from 1 by a very small amoun t . 

T H E O R E M 3. If e = 1.33 X 10~6, then 

1 - e < Co(k, a) < 1 + e 

for k < 1000. For k > 1000, we have 

(1 - e)( l - 10-12)* < Co(k, a) < (1 + €)(1 + 10-12)*. 

Bu t Co(fe, a) is not independent of a. In fact, we shall show tha t 

(2.5) C0(2, 0) * C0(2, 1). 

T o pu t it roughly, Co(2, a) does depend on a, though only very little. 
I t is not surprising t h a t Mn (and Fn and f n ) , like other enumerat ive functions, 

should depend on the residue of n(mod k) as well as on the size of n. For 
example, the number of part i t ions of n into k pa r t s can be expressed as a 
sum of powers of n up to n1c~1, the coefficients of which depend on the residue 
of w(mod k\). Bu t the coefficients of the larger powers, in par t icular nk~l, do 
not depend on this residue. Again, the well-known ' 's ingular series" in War ing ' s 
Problem depends on the ar i thmetical properties of n. Bu t these enumera t ive 
functions of n are fairly small. T h e asymptot ic expansions of the larger 
enumerat ive functions (for example, pin), the number of par t i t ions of n into 
any number of par ts , for which p(n) ~B0n~l exp(Bi\/n)) do not have the 
coefficients of their dominan t te rms dependent on the congruence propert ies 
of n. T h u s it is a somewhat unusual phenomenon t h a t Mn, which is very 
large indeed, has Co depending on the residue of ?z(mod k) bu t , according to 
Theorem 3, only a little. T h e distinction between the size of n and its ar i th­
metical properties, and indeed the whole of the remarks of this paragraph, 
are deliberately vague. But the point involved seems in some ways the most 
interesting par t of the results. 

3. Proof of T h e o r e m 2. If we write ut = kst — n and 

s0 = It Sm = X) w? = X) fat ~ n)m (m > 0) 

and suppose (1.2) to be satisfied we have 

(3.1) S1 = £ (kst -n) = k(Y,Si - n) = 0, 

(3.2) So = k2y%2 s* — 2kn^2 st + kn2 = k2^ s2
t — kn2 

and so 

(3.3) k2(n2 - 2 s2
t) = k(k - l)n - S2 = 2k2Kn2 - S2. 

https://doi.org/10.4153/CJM-1961-058-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-058-0


COUNTING COLOURED GRAPHS 

Since S% > 0, we have 

T(\n - i £ *î) = T(Kn2 - \k~2S2) < T(Kn2). 

and, by (1.1), 

Mn{k) < T(Kn2)J^~^ : = knT(Kn2). 
(W) ^ i ! . . . 5ft! 

This is true for all k and all n. 
It follows from the definitions that 

0 < / n ( * ) < Fn(k) <Mn{k) 

for all n > k. Again, by (1.6), 

Mn(k) - Fn(k) = Z ( * W ) < i;(j)Af.(f) 

<(4_1).r{i„.(1__i_)}|(*) 

If we now assume Theorem 1 to be true, we have 

(3.4) (Mn - Fn)/Mn < Ani(*-*{1 - (l/k)}nT{ - W/tf - k)} 

< Ae~An\ 

Next, by (1.3), 

< Z("_ jyr{^(w-r)2 + &2} 

and, again assuming Theorem 1, we have 

Mn 

Now 

ë(»_;)r|-2KrO,-r)| 

<i:e:i)n—,+T('7i)^--) 
< 2-Xre(i + 2~Kn)"~1 + (1 + 2~Kn)n~1 - 1 

= (1 + 2~Kn)n - 1 < n2-Kn{\ + 2-Kn)n-1 < An2~Kn. 

https://doi.org/10.4153/CJM-1961-058-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-058-0


688 E. M. WRIGHT 

Hence 

0 < (Fn -fn)/Mn < AnTKn < Ae~An. 

Theorem 2 follows from this and (3.4). 

4. Proof of Theorem 1. Next we prove Theorem 1. We write 

nl 
P = P(Si, $2, . . . , Sk) = i T • 

Sil . . . Sh\ 

By (1.1) and (3.3), we have 

(4.1) T{- Kn2)Mn = Z PT(- ±k~2S2) = £ ' + E ", 
(n) 

where X/ includes all those terms for which \kst — n\ < nJ for every i. For 
every term in X " , we have \kst — n\ > WÂ for at least one value of i and 
so 52 > n1. We have then 

(4.2) T,"<n-Ani)Z"P(si,...,sh) 

<T{~ An1) E P = knT(- An1). 
(n) 

Now we consider any term of X/, so that st > An for every i. By Stirling's 
formula, for n > A, 

H-l 

log («!) = (» + J) log n - » + i log (2TT) + X <*»"* + 0(»~*) 

and so 

logP = (n + i ) log n - Z (** + i ) log s, - i ( * ~ 1) log (2ir) 

Also 

(w + 4) log W - Z (si + | ) log 5i 

= (n + 4) log^ - E (5, + i ) log (n/É) - Z 
i 

= - i(k - 1) log n + (n + \k) log k - X . 
1 

where 

_ V" (~ 1) J ^m-l j Sm I 

^ 2 wm_1 l 2 ( w - l )"1" * w ( w - 1 ) / ' 

since Si = 0 by (3.1). Again 
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n\rrh - £ sT) = 1 - * » £ {1 + (W i /«)j-A 

-i-4+£<-1K"*-V)f'} 
and so 

Hence, if we take i î odd, 

(4.3) logP = (n + 1*) log k-h(k- 1) log (2xn) 

+ E d»»T* + 0{n-*(l + SB+i)}, 

where 

dn = lLv(k,h,tn)Sm 

is a polynomial in the w* of degree at most A + 1. Now 

expfË1^»-*) = 1+ ËA»"*, 
where 

a - J£. n (S)' 
the sum being taken over all partitions of ft, a typical partition being into Wi 
parts 1, ni2 parts 2, and so on, and the product over every different part c 
in the partition. Thus Dh is a polynomial in the ut of degree at most 2ft and 

(4.4) A < i 4 f t ( l +S2h). 

Hence, by (4.3), 

(4.5) E •«<- $) - pï$m;fî+<^/-*)}. 
where 

F ; = £ 'sMr(- |ft"252) 
and 

We write 

FW = 7W(») = E 5 m r ( - jr252) 
((n)) 

with the notation introduced in (2.3). The sum is certainly convergent and 
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(4.6) \Vm - V'm\< E JSJTX- hk^S,) 

< Am E , tm+kT{- At) < AmT(- An1"). 
On* 

We see that, when m > 0, 

Sm(sh 52, . . . , sh\ n) = YL ( ^ - w)m = X) {̂ Ow — 1) - (w - &)T 

= Sm(sx — 1, s2 - 1, . . . , sk — 1; » — k) 

and so, when m > 0, 

(4.7) Vm(n) = F w ( » - &), 

from which it follows that 

(4.8) \Vm(n)\ < max |7TO(a)| < A. 
\a\<%k 

We write 

Jo = Vo, Jn = Mn) = E 2 ? A r ( - è r 2 5 2 ) , 
((«)) 

the convergence of the last sum following from that of V0 and F2^ by (4.4). 
Also 

\Jh- J'h\ <AhT(-An1/4) 

by (4.4) and (4.6). Hence, by (4.1), (4.5), and (4.8), 

(4.9) Mn = (2Tn)-^k~1)kn+hkT(Kn2)\HJ2 Jnn~h + 0(n~H) \. 
\ n=o / 

We can show, just as for Vm(n) in the last paragraph that Jh(n) = Jh(n — k) 
and so \Jh(n)\ < Ah. (4.9) is now Theorem 1 with 

Ch = C„(k,n) = kH\og2f*-x\2T)-i°c-1)Jn 

and Ch(k, n) = Ch(k, a), if a is any residue of n(mod k). 
By (3.2) and (2.3), 

Jo(n) = Vo(n) = L(n). 

Hence, by (4.7), Lin) = L(a) and (2.2) follows. 

5. Proof of Theorem 3. We now evaluate C0(k, a) and L(a), which are 
defined by (2.2) and (2.3). We suppose (2.4) satisfied and write 

> - i 

Tr = a'— X) st (0 < r < k — 2), 7V_i = a. 
i=r+l 

We can prove by induction on r that, for 1 < r < h — 1, we have 

( 5 J ) -Sk+ hSi~ U *(* + !) + r -+ l" 
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For r = 1, (5.1) reduces to 

sl + sl = |(25i- ro ' + ïîl, 
which is true since 

fc-i 

Ti = a — "22 St = si + sk. 
i==2 

If we assume (5.1) true for r = R — 1, its truth for r = R follows provided 
that 

R(R + 1 ) 4 = {(R + l)sB -TR}2 + RT% - (R + l ) 7 l _ ! 

and this is a trivial consequence of the fact that TR = TR-\ + sR. 
If we put r = k — 1 in (5.1), we have 

5 > î = T,2Ai(si + yi)
2+ (a2/k), 

where 

Hence 

(5.2) 

At = » + l 
y» = -

T, 1 

A2 
I \ T = I E 4 - ] 

2* ' "" * + l * ' + i \ ^ « . i 

L(o) = I r | - i S 4 + i ( a
2 A ) ) 

((a)) 

•)•}• T, T<- YsAiist + y 
s\ ,...,sk-i=—co v i = l 

We have thus eliminated j * . 
We now take x > 0 and write 

W(pc, y) = Ë É T * ^ 2 , W(x) = Wfo 0). 
S=—oo 

An application of Poisson's formula (2) gives us 

(5.3) W(x,y) = ( ^ ) 2 | l + 2 Ç i e x p ( v ^ 

If we put 3/ = 0 in this, we have 

W(x) = (7r/x)^(7r2/x). 

It follows that 

2.2 
7T / 

cos 2irtyï. 

(5.4) ( j )V(* ,y)- I cos 2^3/1 

WTe now write 
xt = 4 «log 2, Bt = TF(TT2A0 - 1, 

1. 
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so that, by (5.4), we have 

1 - Bt < (xi/w^Wixu yt) <1+Bt. 

We have then, by (5.2), 

L{a) = £ W(xuyi)T<- TAiisi + ytf} 
S2,Sz,...,Sk-l=—oo \ i=% J 

\%l/ Sl,...,Sk-l=—co \ 1=2 / 

since Bx is independent of j \ and so of s2, • • . , ̂ *-i and all the terms in the 
last sum afe positive. Continuing this process step by step, we find that 

L(a)< T^UlxlHl+Bi)}. 
t = i 

Now 

n*i = (iog2)*-in^i = 
k~l "-1 ife(log2)'-1 

1=1 1 = 1 

and so 

2 * - i 

Co(*f a) = F\^f) L(a) < IT (1 + Bt). 

A precisely similar argument, with inequality signs reversed, shows that 

k-l 

Co(*,a) > I I (1 -Bt). 
i = i 

The Bt are very easy to compute. We find that 

Bi = 1.3097 X 10-6, B2 = 1.1374 X 10~8 

and so on; in particular, 

£200 < 10-1 2 . 

Theorem 3 follows quite simply from the calculations. 
On the other hand, if k = 2 and Si + s2 = #, 

s\ + si — | a 2 = i(Si — s2)
2 = i(2si — a) 2 

and so 

CO 

L(a) = £ 2- ( s- ' a ) 2 = W(log2, - \a). 
S=—co 

Hence 

C0(2,a) = (^)V(log2, - *a) = 1 + 2 ] £ « ? ( - j^jcosm™ 
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by (5.3) and so 

C . ( 2 , 0 ) - C . ( 2 , l ) - 4 | o e x p ( - S ^ ^ ) 

> 4 e x p ( - 7r2/log2) > 2.6194 X HT6. 

(2.5) follows and we observe also that Co(2, 0) and C0(2, 1) differ by very 
nearly as much as Theorem 3 allows. 
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