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ON ADDITIVE OPERATORS
N. A. FRIEDMAN AND A. E. TONG

1. Introduction. Representation theorems for additive functionals have
been obtained in (2, 4; 6-8; 10-13]. Our aim in this paper is to study the
representation of additive operators.

Let .S be a compact Hausdorff space and let C(S) be the space of real-valued
continuous functions defined on S. Let X be an arbitrary Banach space and let
T be an additive operator (see §2) mapping C(S) into X. We will show
(see Lemma 3.4) that additive operators may be represented in terms of a
family of ‘“‘measures’” {u,} which take their values in X**. If X is weakly
sequentially complete, then {u,} can be shown to take their values in X and
are vector-valued measures (i.e., countably additive in the norm)
(see Lemma 3.7). And, if X* is separable in the weak-* topology, 7" may be
represented in terms of a kernel representation satisfying the Carathéordory
conditions (see [9; 11; § 4]):

«*, T()) =LK(x*, £(s), s) u(ds) for each x* € X*

While these results are proved by a procedure different from the bounded
linear operator case, corresponding results for this case are included in the
generalization, such as the following (reformulated from [5, pp 492-494]).

THEOREM. Let X be a weakly sequentially complete Banach space and
T: C(S) > X a bounded linear operator. Then there is a vector-valued measure
u (on the Borel sets) taking values in X so that:

T(f) = L_f(s) u(ds) for each f € C(S).

2. Preliminaries. The dual of a Banach space X will be denoted by X™*.
If x € X and x* € X*, then the evaluation of x* at x will be denoted by
(x, x*), x*(x), or x(x*) depending on the context. If two Banach spaces X;
and X are in duality, then the weak topology induced on X; by X is denoted
by O'(XI, XQ)

% denotes the class of Borel sets of a compact Hausdorff space .S. M(S)
denotes the Banach space of all regular real-valued measures defined on &
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with the norm of a measure given by [|u|| = [u[(S), where |u| is the total
variation of u. The Banach space of all bounded measurable functions on S
under the sup norm, || —||,, will be denoted by B(S).

2.1. Definition. Let f € C(S). The carrier of f is the open set where f does not
vanish and is denoted by c(f). The support of f is the closure of c(f) and is
denoted by s(f). Given 4 C S, we say that f is carried (supported) in 4 if
c(f) C4 () C4).

2.2. Definition. Let T: C(S) — X. T is B-uniform if T is uniformly continuous
on bounded sets. That is, for every bounded set D and ¢ > 0, there exists
6 > 0 such that ||[T(f) — T(g)|| < ¢ when f, g€ D and ||f — g|| < 5. T is
additive if for each g € C(S), the mapping T';: C(S) — X defined by T,(f) =
T, (f + g) — T(g) satisiesT,(f1 + f2) = T,(f1) + T,(f2) when fi f. = 0. This

condition is suggested by the measure-theoretic identity
p(F1\J F2 U G) = u(F1\YG) + u(F: Y G) — u(G),

where F; and F, are disjoint sets. If T is additive and 7°(0) = 0, then fif, = 0
implies T'(f, 4 f2) = T(f1) + T'(f2). T is bounded if 7" maps bounded sets into
bounded sets.

2.3. Remark. 1f T is B-uniform, then 7" is bounded. Let D be bounded, where
lIfll £ b, f € D. Choose 8§ > 0 so that fi, fo € D and |[f1 — f2|| < 6b imply
T (f1) — T(f2)|| < 1. Hence, for any f € D, if n and r satisfy §/2 < r =
1/n < 5, then

7)) — TO)|| = NE T(krf) — T((k — l)rf)!
= 2 TCef) = T(k = D] = » < 2/5.

<k=Zn

Thus f € D implies ||T(f)]] < 2/5 + ||T(0)]].

2.4. Definition. Let T: C(S) — X. T is an additive operator if T is S-uniform
and additive. An additive functional is a real-valued additive operator.

Clearly, bounded linear operators are examples of additive operators. How-
ever, an additive operator is generally non-linear. Forexample, 7°(f) = f?isan
additive operator mapping C(S) into C(S).

Given a closed set F and real %, let P(F, ) denote the class of continuous
functions fsatisfying0 < f < h(orkh = f = 0if 2 < 0) and f(G) = &k, where G
is an open set containing F. Briefly, P(F, k) is the class of peaks over F of
height . An ordering on P(F, k) is defined by fo < f1if s(f2) C s(f1). Thus
fo =< frif f» is a better fit for F. A limit taken with respect to this ordering is
denoted by lim,.

The following lemma is obtained in [8]. A proof for the case where T is an
additive operator and u, is a vector-valued measure is given in § 3.
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2.5. LEMMA. Let T be an additive functional on C(S). Then there is a regular
Borel measure u, for each real b, such that for each closed set F,

m(F) = lim, T'(f), f € P(F, h).

Utilizing the family of measures {u,}, the following representation theorem is
obtained [8].

2.6. THEOREM. T is an additive functional on C(S) if and only if there is a
measure u and a kernel function K (-, +) such that

T(f) = f E(f(s), s) u(ds),

where
(1) u 2s a real-valued measure of finite variation,
(ii) K (h, s) is a measurable function of s for each real k,
(iii) K (k, s) is a continuous function of k for all s € S\N, where u(N) = 0
(u-a.e. s),
(iv) for each H > O there exists M > 0 such that || £ H implies

|K(h, s)] £ M for p-ae.s.

A proof of the following result is contained in [6, Lemma 18].

2.7. LEMMA. Let ® be an additive functional on C(S) with corresponding height
measures {us}. If s, is a sequence of simple functions

k(n)
Sn = Z Cn,t1XBn,i
i=1

and f € C(S) such that ||s, — fl|l — 0, then

k(n)

im 5 peni(Bat) = ®(f).

n  i=1

The following result can be found in [3, p. 60]. The family of all finite subsets
o of the positive integers is denoted by % .

2.8. THEOREM (Orlicz-Pettis). Let (xi) be a sequence in a Banach space X.
Then

(1) (xx) s subseries Cauchy in the weak topology if and only if there exists
M > 0 such that

o]

(2) If X is weakly sequentially complete, then (x;) is subseries Cauchy in the
weak topology if and only if it is subseries Cauchy in the norm topology. Thus,
if (xx) is subseries Cauchy in the weak topology, then limy ||xx|| = 0.

Zxk

k€a

:0'65;}<M.
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3. Height measures. In this section we shall represent an additive operator
in terms of a family of measures {u,}. The proofs of Lemmas 3.1-3.3 are based
on methods in [2; 6; 8].

3.1.LEMMA. Let T: C(S) — X be continuous. Fix g € C(S) and an open set U.
Let f be carried in U and € > 0. Then there exists fe supported in U such that

fdl = Al and IT(F+ &) — T(fe+ Il < e
Proof. Choose 8 > 0 such that || f — f|| < & implies

T(f4+28) — T(fe + 2| < e

Let V = {s:[f(s)] < 8}; hence V° (the complement of V) is closed and disjoint
from U°. Choose disjoint open sets G and W such that V¢ C G and U°® C W.
By Urysohn’s lemma there exists w € C(S), 0 = w =1, w(V°®) =1, and
w(G®) = 0. Let f. = wf; hence f. € C(S). Since G is disjoint from W, f. is
supported in U. Also, by definition of V, ||f — f¢| = ||(1 — w)f|| < .

3.2. LEMMA. Let X be a weakly sequentially complete Banach space. Let
T: C(S) — X be an additive operator. Given g € C(S),h > 0, e > 0, and a closed
set F C S, there exists an open set U D F such that if f is carried in U — F and
[fll = &, then |IT(f+ &) — T@Il = «

Proof. Suppose the contrary. Then given U; D F, there exists fi* carried
in Uy — F such that

M) |T(fr*+ g) — T@Il > eand [ f1*][ = &
Thus Lemma 3.1 implies that f; can be chosen so as to be supported in U; — F
and so that

@ NT(fr+g) — T(@|l > eand || fi]| = k.
Let U, = [c(f1)]®* M Ui; hence Uy D F. Choose f.* carried in U, — F such
that (1) holds for fo*. Thus Lemma 3.1 implies that there exists f» supported in
U, — F and that (2) holds for f.. Proceeding inductively, we obtain a sequence
of disjointly supported functions (f;) satisfying

O)VNT(fi+8) —T@OI>ek=1,2,...,and || fil]| = &
However, T is additive; hence

() T,(Zeecfi) = Zieo To(fi)yo €F.
The class { s e fo: ¢ € F } is bounded in C(S) because the functions (f;) are
disjointly supported and || f¢|| £ % for all k. By Remark 2.3, the class

{T <2f> -3 T,<fk>:aegr}

k€o

is also bounded. By Theorem 2.8 (1), this class is subseries Cauchy in the weak
topology. By Theorem 2.8 (2), we have lim; ||T,(fx)|| = 0, which contradicts

(3).

3.3. LEMMA. Let X be a weakly sequentially complete Banach space. Let
T: C(S) — X be an additive operator and let F be closed. Then for each real h,
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lim, T'(f) exists and is denoted by My (F). Moreover, if My > 0 satisfies ||T(f)|| =
M, for all || f|| < h, then ||\(F)|| £ M.

Proof. Let ¢ > 0. By Lemma 3.2, we can choose an open set U D Fsuch that
if g is carried in U — F, then

W) IT@I < ¢/6.
Let f; and f; be in P(F, &) and supported in U. It suffices to show that

NT(f) =TIl < e

Wehavef, =hon U; D F,i =1,2.LetG; = Uy M Us. By Lemma 3.2 we
can choose G; D F such that if v is carried in G — F, then
@) IT(fi—v) = T(fdll < ¢/3,6=1,2.
Also assume that G, C G;. Utilizing normality, choose open sets G; and G4 such
that
FCGiCGiCGs CGs CQGy

where G denotes the closure of G. By Urysohn’s lemma we can choose %; such
that #1(Gs) = 1 and %1(G5%) = 0. Also choose u; such that #,(G:°) = 1 and
#5(G3) = 0. Since G; C G1, we have 2 = w1 f; = hui, ¢ = 1, 2. Let g, = usF;,
i=1,2,and v; = f;, — (2 + g;). Since 2z and g; have disjoint -carriers,
T(z+ g) = T(@) + T(g:). Also g; is carried in U — F and v, is carried in
G, — F. Thus (1) and (2) imply

NT(f) — T S NT(f) — T(fr — o)l + [Tz + g1) — T(z+ g2l
+ T (f2 — 2) — T(f2)]
< ¢/3+ [T )| + [T (gl + ¢/3
< e

Finally, let M, be as in the statement of the lemma. Then,

1D (B = supl[[T(OI]: 1 £l = B} = M

We shall now assume that 7(0) = 0; hence T'(fi + f2) = T'(f1) + T(f2)
when f; and f; have disjoint supports. This is no loss of generalily since
T(f) — T(0) satisfies this property in the general case.

3.4. LEMMA. Let X be an arbitrary Banach space. Let T be an additive operator
mapping C(S) into X. For each h € R (R the set of reals) there is a vector-valued
function uy: B — X** such that:

(1) For each x* € X*, the mapping (x*, ur(-)): B — R is countably additive,

(2) If My > 0 satisfies ||T(F)|| £ My when || f|| Sk, then ||w|| < My;

(B)Lete > 0andb > 0.Let D = {f: || f|| £ b} and let § be as in Definition 2.2.
If B, are disjoint Borel sets, hyand ky € (—b,0), |k — k| <6,2=1,2,...,
then

) o)

E Mm(Bz') - Z “ki(Bi)‘

i= i=

< e

(We will show that 32 un; (B1) and 324 ue,; (B:) are in X**.)
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(4) Let f € C(S) satisfy || f|| < b and let ¢, 6 be as in (3). Let {B,} be a finite
sequence of disjoint Borel sets such that

f— ; hiXBi

where {h} is a sequence in (—0b,b). Then

<9,

<e

T() = 33 mi(B)

Proof. (1) Since T is an additive operator, setting x*T(f) = (T(f), x*)
defines an additive functional for each x* € X*. Hence, by Lemma 3.3, there
exists a family of regular contents x*)\;, where

N (F) = lim{a*T(f): f € P(F, hb)}.

As in [6], [1, p. 209, Theorem 3], can be utilized to extend x*\; uniquely to a
regular Borel measure x*u,. Given x* € X*, we define u,(B) by setting

(3.4.1) (un(B), x*) = («*un) (B).

If # and B are fixed, we verify that u,(B) defines a bounded linear functional
on X*. Boundedness is immediate: if ||T°(f)|| £ M, for all f of norm less than or
equal to /%, then

(3.4.2) |(x*us) (B)| = sup{|(x*us) (F)|: F is a closed subset of B}
supf{|(«*T)(f): f € P(F, k), where F is a closed subset

of B}

A

lIA

To verify linearity, we have, for closed sets F:
wn(F) (crxr™ 4 coxo®) = limg(crxr® + cox2*)T(f)
= lim((cwer*) T + (c2x2*)T) (f)
lim(c1:*) T (f) + lim (cox2*) T (f)
C1 (xl*ﬂh) (F) + ¢ (xz*ﬂh) (F)
cipn(F) (£1%) + copn (F) (x2%).

I

Il

Thus,
(cxxr™ + coxos®)un(F) = caun(F) (x1*) + Coptn (F7) (302*)

Since x*u; is regular, linearity holds also for all Borel sets.

(2) It is immediate from (3.4.2) that the total variation of x*y; is less than
||x*|| M. Hence, ||us|| = sup{||u(B)||: B € B} £ M,

(38) We first show that 3, uy; (B;) € X**. Let M > 0 satisfy ||T(f)|| = M
whenever || f|| = 1. It suffices to show that:

Zl; | (i (Ba), x*)| < 2M|[ac*]|.
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Clearly, 3¢ | (s, (B2), x*)| = a + b, where

= SUP{(Z pas (B1), x*>30 €EF, where (uy;(B1),x*) > 01if ¢ € U} ,

i€o

b = sup{(—z u,,i(Bi),x*):u €%, where (u;(By),x*) <0ifi ¢ a} .
i€o

Without loss of generality, assume that ¢ satisfies (uz; (B;), x*) > 0 for all
t € 0. We will show that

(3.4.3) ZGI (uni (B1), &*) = M||«*|].
For the fixed x* and o, choose closed subsets F; of B; so that

1_26” [(uns (B \F1), 8*)| < ¢/2

and so that (us; (F;), *) > 0. Choose disjointly supported functions
so that 3 e | (uni (F2) — T(f1), x*)] < ¢/2 and so that (T'(f;), x*) = 0 for all
1€ 0. Let f =2 ;¢ fi Since T is additive, T'(f) = X e T(f:). We have:

1262 (un:i (Bi), x*) = % I(Mhi(Bi\Fi)! x*)l +i€2‘, l(/"hi(Fi)rx*)I
S e/24 ; | (s (Fs) — T(f2), %) + ; [(T(f1),5*)]

e+ (Z T(fi),x*>

i€a
e+ T(f)|[«*||
e+ M]Jx¥]].
Since e is arbitrary, this proves (3.4.3).

We now show that [|20; un; (Bi) — me; (Bo)]| < e It sufﬁces—'.toiverify that
if o is a finite index set and x* € X*, then

A

A IIA

< e[lx*”

(3.4.4) ‘(Z pni(Bi) — mes(Ba), x*)

i€o
Let ¢ > 0 be arbitrary. As before, we choose disjoint closed subsets /; C B;
so that

ZE [(un: (Bi\F:), x*)| < ¢/4  and Zej [ (s (BAF,), &*)| < € /4.
Choose disjointly supported functions f; € P(F;, ;) and g, € P(F;, k;) so that:

[[fi— gl <6,
Zze; [ (as (F o), x*) — (T(f2), x*)| < €/4,

Z | (urs (F2), &%) — (T(ga), x*)| < € /4.
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By the triangle inequality, we have:

(3.4.5) '(Z i (Be) — i (BY), x*)

i€o

<ot |(S 700 - 16 )

i€o

Write f = > ;e fiand g = X i¢, gi. Then, || f — g|| < § so that

Z T(f) — Z T(gz)” =|IT(f) =T <e

i€o i€o

Thus,

= ¥l

(%700 - ra.»)

i€o

Applying this to (3.4.5) and observing that ¢ is arbitrary, we obtain (3.4.4).

(4) Let f, be a sequence of step functions converging in the uniform norm
to f. For any x* € X*, Theorem 2.6 yields lim, x*T'(f,) = «*T (f) so that T'(f)
is the limit of T'(f,) in the weak topology. By (3) above, the sequence T'(f,) is
also Cauchy in the norm topology and so must converge to 7°(f) in the norm.
And, if g is any step function such that || f — g|| £ §, then lim, || f, — g|| <&
and so by (3) above, lim, ||T'(f,) — T(g)|| £ e Thus |[|[T(f) — T(@)|| S ¢ as
required.

Lemma 3.4 suggests the following definition of a non-linear integral.

3.5. Definition. Let ¥ be a Banach space and Z C Y*. Let us: & — Z such
that (y, ua(+)) is countably additive for eachy € Y. Foreache > 0and b > 0
there exists & > 0 such that if B; are disjoint, &y, k; € (=0, 0), |h: — k| < 3,
1 =17 =< n, then

(3.5.1)

n n

Z #hi(Bi) - Z #ki(Bt)

i= i=

<e

Given a simple function f = > i kixz;, define

ffd# = Z"; .U'hi(Bi)'

Given f € B(S), let f, be a sequence of simple functions such that
[l f = fall = 0.

ffdu = 1i7an ff,, du.

We may regard f fdu as a non-linear integral with respect to the family of
measures, 4 = {uz: b € R}.
3.6. THEOREM. Let T: C(S) — X, where T is additive and X is an arbitrary

Banach space. Then there exists u = {us} as in Definition 3.5 with Z = X**
such that

(3.6.1) () = [fan  fecs).

By (3.5.1) we may define
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Proof. Let u be the family as in Lemma 3.4. Then (1)~(3) of Lemma 3.4
imply that u satisfies Definition 3.5 and (3.6.1) follows from (4).

3.7. LEmMMA. Let T: C(S) —» X, where T is additive and X 1is a weakly
sequentially complete Banach space. Then uy: B — X and py is countably additive
wn the norm of X.

Proof. Since (x*, u, (F)) = (x*, M(F)) for every x* € X*, we have u,(F) =
M (F). By Lemma 3.3, M\, (F) € X, and so us(F) € X. It remains to verify that
un(B) € X for every Borel set B. It is sufficient to show that

un(B) = lim{w,(F): Fis a closed subset of B}

in the norm topology (we order the net {u,(F)} by setting us(F1) < us(Fo)
if and only if F; C Fy).
Suppose the contrary. Then, there is an ¢ > 0 such that

(3.7.1) [lun(B\F)|| > e for any closed subset F C B.

We construct, inductively, a sequence of disjoint closed sets {F;} so that
[w(F)|| > €/2 for all <.

Since (3.7.1) holds when F = @, we have ||u,(B)|| > e. Choose a unit vector
x* € X*so that (x*, u,(B)) > ¢/2. Since (x*, un(+)) is a regular Borel measure,
we can find a closed subset F; C B so that (x*, u,(F1)) > ¢/2. Thus

lua(F)| > €/2.

Assume now that disjoint closed subsets Fy, ..., F, of B have been chosen
so that ||us(F)|| > ¢/2fori =1,2,..., n. Set
F= \ F,.
1=isn

Then Fis closed and (3.7.1) applies, so that (x*, u,(B\F)) > ¢/2 for some unit
vector x*. Since (x*, u,(-)) is a regular Borel measure, choose a closed subset
F,i1 C B\F such that (x*, un(Fre1)) > /2. Thus, ||un(Fus1)|] > /2. This
completes the induction. However, the set

{Z un(F;): ¢ is any finite set}
i€o
is bounded in the norm by [[us||. Since ||ux(F.:)|| > €¢/2, Theorem 2.8 is
contradicted.

Finally, to show that u, is countably additive in the norm, we observe that
since py is X-valued, part (1) of Lemma 3.4 proves that whenever {B,} is a
sequence of disjoint Borel sets, then

,u;.< U -Bi> = 2, m(By),

1S i< 1< i<eo

where convergence is taken in the weak topology on X. By Theorem 2.8, the
series Y 1<i<o un(B:) converges in the norm.

https://doi.org/10.4153/CJM-1971-050-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-050-7

ADDITIVE OPERATORS 477

3.8. THEOREM. Let T: C(S) —» X be an additive operator and X weakly
sequentially complete. Then there extsts u = {un} as in Definitton 3.5 with Z = X
such that

() = [fau  fecs.

The theorem follows by combining Lemma 3.7 with Theorem 3.6.

We note that the measures p,: B — X** determine linear operators
Th: B(S) — X** as follows., If f = 3 1<i<. €1xa; is a step function, we set

Th(f) = I;én citn(By).

It is easy to check that 7%, (f) is well-defined. Moreover,

LD s 2 ledd ua@BIN < {15 1l Hsall

Sisn

Hence, we have defined 7, to be a bounded linear operator on the dense
subspace of step functions. Since X** is Banach, we may therefore uniquely
extend T, to the space B(S) so that ||T%|| = ||ual|. It is also easy to check that
&*, Ta(f)) = [ f()x*un (ds) for f € B(S).

To summarize, we have the following.

3.9. THEOREM. Let T: C(S) — X be an additive operator. Then there are
bounded linear operators Ty: C(S) — X** so that

(1) If My satisfies ||T(f)|| £ M, whenever ||f|| £ b, then ||Th|| £ M,,

(2) For each f € C(S), x* € X*,

&, T = [£6) xtun(as),
(3) If X is weakly sequentially complete, then T is a weakly compact operaior.

Proof. (1) and (2) have been proven above.

(3) If X is weakly sequentially complete, Lemma 3.7 shows that u;: & — X
is countably additive in the norm. Applying [5, p. 493, Theorem 3] yields the
result.

We note thatif 7: C(S) — X were a bounded linear operator, then it can be
verified that

(@*, () = [ f()x*uma(ds) for f € C(S).

Therefore, by (2) of Theorem 3.9, 7' = T1. And, if X is weakly sequentially
complete, then (3) of Theorem 3.9 yields the well-known result (see [5, p. 494,
Theorem 6]) that 7" is weakly compact.

4. Kernel representation. Let 7: C(S) — X be an additive operator.
We shall extend Theorem 2.6 by constructing a kernel representation for T°
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for the case where X* is separable in the ¢ (X, X*) topology and the family of
measures {u;} corresponding to T is X-valued.

4.1. LEMMA. There exists a finite positive measure m and a family of measurable
Sfunctions {K(x*, h, s)} such that

x*u,(B) = LK(x*, h, s) m(ds), BecXA.

Proof. Let {x,*} be a countable dense net in X* under the ¢ (X, X*) topology.
Given x* € X*, there exists a subsequence x,,;* such that for each #,

(1) lim; %, *pa (B) = «*w(B), B € Z.
Let |x,*us| denote the variation of x,*u, and ||x,*us|| = [%.*us| (S). Define a
finite measure m, by setting

(2) mp(B) = =1 [ * | (B)/2"[[oc*ua |-
Choose a countable dense set of reals {#;} and define

(3) m(B) = Xx=1mn(B)/2".
Thus m is a finite positive measure defined on %. Suppose that m(B) = 0;
hence my, (B) = 0 for each k. Thus (2) implies that |x,*us|(B) = 0 for each k
and z. By (1), we have x*u,, (B) = 0 for each k. As in [4, Lemma 16], it can
be shown that x*u,(B) is a continuous function of %. Hence {#%;} dense in R
implies that x*u,(B) = 0 for each % and x*.

Thus each measure x*u; is absolutely continuous with respect to m; hence
the conclusion follows by the Radon-Nikodym theorem.

We shall now show that the kernels can be chosen as to be continuous in #.
The proof in [2, Lemma 11] only verified convergence in measure.

4.2. LEMMA. There exist kernels K, (x*, h, s) which are continuous in h for
m-a.e. s such that

x*u,(B) = LKl(x*,h, s) dm.

Proof. Fix a < b and x*. We shall verify that K(x*, &, s) is uniformly
continuous for rational 2 € [a, b] for a.e. s. Suppose the contrary. Then the set
where K (x*, k, s) is not uniformly continuous may be written as

A= U ﬂ An.t!
n=1 t=1
where
Ay = U {s:|[K@* h,s) — K(x*, &k, s)| > 1/n}.

0<n—k<1/t,
h,k rational

Now m(4) > 0 implies that there exists #» such that 4, = N1 4, has
positive measure. Let » = m(4,) and e = 7/2n. Choose & > 0 such that

||f — g|l <& implies [x*T(f) — x*T(g)] < e. Choose ¢ such that 1/ < 4.
Now A,,; D A,; hence m(4,,,) = r.
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A,,. can be expressed as a disjoint union of countably many sets B, where
s € B; implies that there exists rational %; and k; such that 0 < &, — k; < §
and

(1) lK(x*r hfy S) - K(x*o kj) S)I > l/n'
We may remove the absolute value sign in (1) by interchanging %, and k;,,
still having 0 < |k; — k;] < 8. Choose J so large that

(2) m(Us_1 By) > r/2.
Thus (1) and (2) imply that

(3) T (% (By) — "u (B} = it [s; (K(x*, by 8) —
K(x* kj, s))dm > 1/n-r/2 = e

Now we can approximate B, by a closed subset F; with respect to x*u,; and
x*ug;. We can then choose a peak f; € P(Fy, 1) so that x*T (&,f,) and x*T (k,f;)
approximate x*u,; (F;) and x*p; (F,). Since F; C B; and the B, are disjoint,
it is possible to choose f; with disjoint supports. Let

J

J
f= 12_31 hsf; and g£= ; kifs
Then ||f — g|| < 1/t < & and the left side of (3) is approximated by
*T(f) — «*T(g).

This contradicts the choice of 8. Thus K (x*, £, s) is uniformly continuous for
rational » € [a, b] for a.e. s.

Proceeding as in [2], we considera = #,b =n+ 1,n = 0, 1, +2,...to
conclude that K (x*, £, s) is uniformly continuous for rational # € [n, n + 1]
for all # for a.e. s. We now define K;(x*, &, s) = K(x*, h, s) for rational #.
If & is irrational, then we choose rational %; — % and define K;(x*, k,s) =
lim; K (x*, h;, s). An argument similar to the above implies that K (x*, k, s) =
K;(x*, k, s) for a.e. s, when x* and % are fixed.

4.3. THEOREM. Let T: C(S) — X be an additive operator. Assume that X* is
separable in the (X, X*) topology and the family of measures {us} corresponding
to T are X-valued. Then for each x*,

1) x*T°(f) = f K (x*, f(s), s)H (x*, 5) m(ds), where

(2) m is a measure of finite variation defined on B ;

3) K(x*, h, s) is a measurable function of s for each h;

(4) K (x*, h, s) is a continuous function of h for m-a.a. s;

(5) For each b > 0 there exists B > 0 such that |h| < b implies that

|K (x*, b, s)| £ B for m-a.a.s;

(6) H(x*, s) is a measurable function of s and du = H (x*, s)m(ds) defines a
measure p with finite variation;

(7) For each f € C(S), the right side of (1) defines a continuous linear functional
on X* in X.

Conversely, if (2)—(7) hold, then there exists an additive operator T satisfying(1).
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Proof. As in [2], it follows from Lemma 4.2 that K; = KH, where K and H
satisfy (3)—(6). As in [2; 4], it is verified that (1) holds.

Conversely, fix f € C(S). By (7) there exists 7(f) € X such that (1) holds
for each x*. It remains to verify that T is an additive operator from C(S) into
X. Let us fix *. Then (2)-(6) imply that x*T'(f) is an additive functional on
C(S). This follows as in [2]. The Hahn-Banach theorem now implies that T is
additive on functions with disjoint support. We now veri{y that T is 8-uniform.
Let € > 0, b > 0, and consider || f|| = b and ||g|]| < b. By the Hahn-Banach
theorem it suffices to show that there exists 6 > 0 such that

(8) IIf — gll <& implies [x*(T'(f) — T(2))| < ¢, |[x*]] = 1.

Let B, = {«*: (8) holds for§ = 1/z}. Then B, is convex and (7) implies that
B, is closed. Since x*T'(f) defines an additive functional, we have

U B, = X*
n=1

The Baire category theorem now implies that some B, has non-empty interior.
The existence of § follows by a standard argument.
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