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ON ADDITIVE OPERATORS 

N. A. F R I E D M A N AND A. E. TONG 

1. Introduction. Representation theorems for additive functional have 
been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the 
representation of additive operators. 

Let 5 be a compact Hausdorff space and let C(S) be the space of real-valued 
continuous functions defined on 5. Let X be an arbitrary Banach space and let 
T be an additive operator (see §2) mapping C(5) into X. We will show 
(see Lemma 3.4) that additive operators may be represented in terms of a 
family of "measures" {nh} which take their values in X**. If X is weakly 
sequentially complete, then {nh} can be shown to take their values in X and 
are vector-valued measures (i.e., countably additive in the norm) 
(see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be 
represented in terms of a kernel representation satisfying the Carathéordory 
conditions (see [9; 11; §4]): 

(**, r ( / ) ) = f K(x*, f(s), s) fx(ds) for each x* Ç X*. 

While these results are proved by a procedure different from the bounded 
linear operator case, corresponding results for this case are included in the 
generalization, such as the following (reformulated from [5, pp 492-494]). 

THEOREM. Let X be a weakly sequentially complete Banach space and 
T: C (S) —> X a bounded linear operator. Then there is a vector-valued measure 
fi (on the Borel sets) taking values in X so that: 

T(f)= ff(s)n(ds) for each feC(S). 

2. Preliminaries. The dual of a Banach space X will be denoted by X*. 
If x G X and x* Ç X*, then the evaluation of x* at x will be denoted by 
(x, x*)t x*(x), or x(x*) depending on the context. If two Banach spaces Xi 
and X2 are in duality, then the weak topology induced on Xi by X2 is denoted 
bycr(X1 ,X2) . 

31 denotes the class of Borel sets of a compact Hausdorff space S. M(S) 
denotes the Banach space of all regular real-valued measures defined on SS 
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with the norm of a measure given by ||/i|| = |M|(5) , where |/x| is the total 
variation of AC. The Banach space of all bounded measurable functions on 5 
under the sup norm, || — ||œ, will be denoted by B(S). 

2.1. Definition. L e t / Ç C(5). The carrier of / is the open set where/does not 
vanish and is denoted by c(/). The support of / is the closure of c( / ) and is 
denoted by s( /) . Given A C S, we say t h a t / is carried (supported) in A if 
c ( / ) C 4 (s(f)CA). 

2.2. Definition. Let T: C (5) —» X. T is /3-uniform if T is uniformly continuous 
on bounded sets. That is, for every bounded set D and e > 0, there exists 
Ô > 0 such that \\T(f) - T(g)\\ < e when / , g Ç D and | | / - g\\ < ô. T is 
additive if for each g Ç C(S), the mapping 7^: C(5) —>X defined by ^ ( f ) = 
r , ( / + g) - r (g ) s a t i s f i e s ^ + / 2 ) = Tg(fi) + r , ( / 2 ) when/i/2 = O.This 
condition is suggested by the measure-theoretic identity 

ti(F1 U f t W G ) = »(FX U G ) + MCF2 U G ) - /*(G), 

where ^ and F2 are disjoint sets. If T is additive and T(0) = 0, then/ i / 2 = 0 
implies T(f± + /2) = T(fi) + T(f2). T is bounded if JT maps bounded sets into 
bounded sets. 

2.3. Remark. If T is /3-uniform, then T is bounded. Let D be bounded, where 
I l/l I ^ 6, / G D. Choose 5 > 0 so that / i , f2 £ D and | |/i - /2 | | < Ob imply 
l l^(/ i) ~ r ( / 2 ) | | < 1. Hence, for any f £ D, iî n and r satisfy 5/2 < r = 
1/n < <5, then 

| | r ( / ) - r (o ) | |^ £ r(*r/) - T«k - l)r/) 

è £ I |r(fer/) - r ( ( * - l ) r / ) | | én< 2/5. 

T h u s / 6 D implies | | r ( / ) | | < 2/5 + | | r (0 ) | | . 

2.4. Definition. Let T: C(5) —> X. T is an additive operator if T is /3-uniform 
and additive. An additive functional is a real-valued additive operator. 

Clearly, bounded linear operators are examples of additive operators. How­
ever, an additive operator is generally non-linear. For example, T(f) = / 2 is an 
additive operator mapping C(5) into C(5). 

Given a closed set F and real h, let P(F, h) denote the class of continuous 
functions/satisfying 0^f^h(orh^f^0iîh^0) and/(G) = hy where G 
is an open set containing F. Briefly, P(F, h) is the class of peaks over F of 
height h. An ordering on P(F, h) is defined by / 2 ^ / i if s( /2) C s ( / i ) . Thus 
/2 ^ / i if/2 is a better fit for F. A limit taken with respect to this ordering is 
denoted by lim/. 

The following lemma is obtained in [8]. A proof for the case where T is an 
additive operator and ixn is a vector-valued measure is given in § 3. 
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470 N. A. FRIEDMAN AND A. E. TONG 

2.5. LEMMA. Let T be an additive functional on C(5). Then there is a regular 
Borel measure vnfor each real h, such that for each closed set F, 

»h(F) =limf T(f), feP(F,h). 

Utilizing the family of measures {ixh}, the following representation theorem is 
obtained [8]. 

2.6. THEOREM. T is an additive functional on C(S) if and only if there is a 
measure fx and a kernel function K{-, •) such that 

T(f)= f K(f(s),s)n{ds), 
•J s 

where 
(i) /x is a real-valued measure of finite variation, 

(ii) KQi, s) is a measurable function of s for each real h, 
(iii) K(h, s) is a continuous function of h for all s G S\N, where v(N) = 0 

(fx-a.e. s), 
(iv) for each H > 0 there exists M > 0 such that \h\ ^ H implies 

\K(Ji,s)\ ^ M for jLt-a.e. s. 

A proof of the following result is contained in [6, Lemma 18]. 

2.7. LEMMA. Let $ be an additive functional on C(S) with corresponding height 
measures {un}. If sn is a sequence of simple functions 

k(n) 

Sn
 = A , cn,iXBn,i 

and f G C(5) such that \\sn — f\\m —» 0, then 

k(n) 

Km E HcnABn.i) = * ( / ) . 
n i=\ 

The following result can be found in [3, p. 60], The family of all finite subsets 
<r of the positive integers is denoted byJ^~. 

2.8. THEOREM (Orlicz-Pettis). Let (xk) be a sequence in a Banach space X. 
Then 

(1) (#*) is sub series Cauchy in the weak topology if and only if there exists 
M > 0 such that 

\\\ k£<r II y 

(2) If X is weakly sequentially complete, then (xk) is sub series Cauchy in the 
weak topology if and only if it is sub series Cauchy in the norm topology. Thus, 
if (xk) is subseries Cauchy in the weak topology, then \ivak \\xk\\ = 0. 
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3. Height measures. In this section we shall represent an additive operator 
in terms of a family of measures {jdh}. The proofs of Lemmas 3.1-3.3 are based 
on methods in [2; 6; 8]. 

3.1. LEMMA. Let T: C(S) —> X be continuous. Fix g G C (S) and an open set [/. 
Let f be carried in U and e > 0. Then there exists / e supported in U such that 
ll/.ll ^ ll/ll and \\T(f + g)- T(f. + g)\\ < e. 

Proof. Choose S > 0 such that | | / - /«| | < 6 implies 

\\T(f + g)-T(fe + g)\\<e. 

Let V = {s: \f(s)\ < ô} ; hence Ve (the complement of V) is closed and disjoint 
from Uc. Choose disjoint open sets G and W such that Ve C. G and Uc C W. 
By Urysohn's lemma there exists w G C(5), 0 ^ w S 1, w(Vc) = 1, and 
w(Gc) = 0. Let fe = wf; hence /6 G C(5). Since G is disjoint from W, f€ is 
supported in U. Also, by definition of V, \\f - / e | | = ||(1 - w) / | | < 5. 

3.2. LEMMA. Le£ X be a weakly sequentially complete Banach space. Let 
T: C (S) —^ X bean additive operator. Given g G C (5), A > 0, e > 0, and a closed 
set F C S, there exists an open set U D F such that iff is carried in U — F and 
H/ll ^h,then\\T(f + g)-T(g)\\ =S e. 

Proof. Suppose the contrary. Then given Ui D F, there exists / i * carried 
in f/i — ^ such that 

(1) l i n / i * + g) - r (g ) | | > e and H / ^ l g h. 
Thus Lemma 3.1 implies tha t / i can be chosen so as to be supported in Ui — F 
and so that 

( 2 ) | | r ( / 1 + 2 ) - r ( g ) | | > 6 a n d | | / i | | èh. 
Let Z72 = [ c ( / i ) ] c n Ui; hence J72 D F. Choose /2* carried in U2 ~ F such 
that (1) holds for/2*. Thus Lemma 3.1 implies that there exists/2 supported in 
U2 — F and that (2) holds for/2. Proceeding inductively, we obtain a sequence 
of disjointly supported functions (fk) satisfying 

(3) \\T(fk + g)- T(g)\\ > e, k = 1, 2, . . . , and | | / , | | £ A. 
However, J1 is additive; hence 

(4) r , ( £ * € . / 0 = E * € . r , ( / t ) , * G < T . 
The class {£*€*/*;: <r G «^1 is bounded in C(5) because the functions (fk) are 
disjointly supported and \\fk\\ ^ h for all k. By Remark 2.3, the class 

{r/£/*)= Z rf(/«):«r6 }̂ 
V. \kÇ.<r / k£<T J 

is also bounded. By Theorem 2.8 (1), this class is subseries Cauchy in the weak 
topology. By Theorem 2.8 (2), we have limfc | | ^ ( / f c ) | | = 0, which contradicts 
(3). 

3.3. LEMMA. Let X be a weakly sequentially complete Banach space. Let 
T: C(5) —>X be an additive operator and let F be closed. Then for each real h, 

https://doi.org/10.4153/CJM-1971-050-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-050-7


472 N. A. FRIEDMAN AND A. E. TONG 

lira/ T(f) exists and is denoted by \h(F). Moreover, if Mh > 0 satisfies | | r ( / ) | | S 
Mnfor all \\f\\ è h, then \\\h(F)\\ S Mh. 

Proof. Let e > 0. By Lemma 3.2, we can choose an open set U D .Fsuch that 
if g is carried in U — F, then 

(1) \\T(g)\\ < e/6. 
Le t / i and / 2 be in P(7?, h) and supported in U. It suffices to show that 

\\T(h) ~ r(/2)|| < e. 
We have/* = h on Vi D F, i = 1, 2. Let Gi = UiC\ U2. By Lemma 3.2 we 

can choose G2 D F such that if y is carried in G2 — F, then 
(2) | | r ( / < - i O - r ( / , ) | | < c /3 , i = 1,2. 

Also assume that G2 C Gi. Utilizing normality, choose open sets G3 and G4 such 
that 

i7 C G4 C G4 C G3 C Gs C G2, 

where G denotes the closure of G. By Urysohn's lemma we can choose u\ such 
that Ui{G\) = 1 and ^i(G3

c) = 0. Also choose u2 such that u2(G2
c) = 1 and 

u2(Gz) = 0. Since G2 C Gi, we have z — Uift = hui, i = 1, 2. Letgz- = u2Fu 

i = 1,2, and vt = ft — (z + g*). Since s and g* have disjoint carriers, 
^(s + gt) = 2" 0s) + F(gi). Also ^ is carried in U — F and vt is carried in 
G2 - F. Thus (1) and (2) imply 

l|r(/i) - T(f2)\\ s ||r(/!) - r(/x - vl)\\ + \\T(Z + gl) - r(* + g2)|| 
+ ITO2-*>2)- r(/2)|| 

<€/3 + ||r(g1)|| + ||r(g2)ll + €/3 
< e. 

Finally, let Mh be as in the statement of the lemma. Then, 

| | X » ( 7 0 l | â s u p { | | r ( / ) | | : | | / | | ^ A } SMh. 

We shall now assume that T(0) = 0; hence T(fi + f2) = T( / i ) + T{f2) 
when / i and f2 have disjoint supports. This is no loss of generality since 
T(J) — T(0) satisfies this property in the general case. 

3.4. LEMMA. Let X be an arbitrary Banach space. Let T be an additive operator 
mapping OS) into X. For each h Ç R (R the set of reals) there is a vector-valued 
function nh: Se —» X** such that: 

(1) For each x* Ç X*, the mapping (x*f iih(-)): & —>R is countably additive, 
(2) If Mh > 0 satisfies \\T(f)\\ ^ Mh when \\f\\ ^ h, then \\»h\\ ^ Mh; 
(3)Lete > Oandb > O.LetD = {/: | | / | | ^b} and let Ô be as in Definition 2.2. 

If Bt are disjoint Borel sets, ht and kt £ (—b, b), \ht — kt\ < 5, i = 1, 2, . . . , 
then 

E M*.-(Bi) - Ë M*i(S0 < €. 

(W ê w/// ^o«; /Âa/ 11T=i Vhi(Bi) and 2S=i V/a(Bi) are in X**.) 
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(4) Letf G C(5) satisfy \\f\\ ^ b and let e, ô be as in (3). Let {Bt} be a finite 
sequence of disjoint Borel sets such that 

/ - Z h iXBi < « , 

where {ht} is a sequence in ( — b,b). Then 

\T(f) - Ê /%(#*) 

Proof. (1) Since T is an additive operator, setting x*T(f) ~ (T(f),x*) 
defines an additive functional for each #* G X*. Hence, by Lemma 3.3, there 
exists a family of regular contents x*\hl where 

x*\h(F) = \imf{x*T(f):fe P(F,h)}. 

As in [6], [1, p. 209, Theorem 3], can be utilized to extend x*\h uniquely to a 
regular Borel measure x*jjLh. Given x* G X*, we define fxh(B) by setting 

(3.4.1) (PH(B),X*) = (**/*»)(£). 

If h and B are fixed, we verify that ixh(B) defines a bounded linear functional 
on X*. Boundedness is immediate: if 11T(f)\ | g Mh for a l l / of norm less than or 
equal to h, then 

(3.4.2) | (x*nh) (B)\ = sup{ | (x*nh) (F)\: F is a closed subset of B] 

S sup{ I (x*T)(f):f G P(-F, h), where F is a closed subset 
of B] 

£\\*?\\Mh. 

To verify linearity, we have, for closed sets F: 

liA(F)(ciXi* + c2x2*) = lim/(ci*i* + c2x2*)T(f) 

= l im / ( (c i* 1 *) r+ (W2*)r ) ( / ) 

= iim/(^ixi*)r(/) + iim/fex2*)r(/) 
= C i ( * l % ) ( F ) +C 2 (X 2 * M , ) (F) 

= C l ^ ( F ) ( X i * ) + C2tMh(F)(x2*). 

Thus, 

(cixi* + c2x2*)fxh(F) = diih(F) (pcf) + c2nh(F)(x2*) 

Since x*/*fc is regular, linearity holds also for all Borel sets. 
(2) It is immediate from (3.4.2) that the total variation of x*nh is less than 

\\*fi\\Mh. Hence, \\fxh\\ = sup{||/*»(B)||: B G 3S) Û Mh. 
(3) We first show that £ , /*»,(£,) G X**. Let M > 0 satisfy \\T(f)\\ £ M 

whenever | | / | | ^ 1. It suffices to show that: 

£ |0*»*(BO,«*)I £2M||**||. 
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Clearly, £ * | (/**,-(-B<), x*)\ = a + b, where 

a = s u p | ( y ) Hhi(Bi),x*J'>*£#", where (jjLhi(Bt),x*) > 0 if i £ a} , 

6 = s u p | ( - £ /^(B,) ,**j:<r 6 ^ f where 0*^(5,),**) < 0 if i € cr | . 

Without loss of generality, assume that a satisfies ( ^ ( 5 ^ ) , x*) > 0 for all 
i G a. We will show that 

(3.4.3) £ G^-CB,),**) èM\\x*\\. 

For the fixed x* and a-, choose closed subsets Ft of 2?* so that 

D l G ^ t f W ) . * * ) ! < 6 / 2 

and so that (M»,-(^,), #*) > 0. Choose disjointly supported functions 

/ , € PCF,,*,) 
so that £ , 6 , | (jihl(Ft) - T(ft), x*)\ < t/2 and so that (T(ff), «*) è 0 for all 
i 6 <r. L e t / = J^t&fi- Since T is additive, T(f) = £ i £ , r ( / , ) . We have: 

£ o«»,(5,),**) ^ E IO*»,(5,\F,),**)|+2: io*«( ,̂),«*)i 

^ e/2+ E IU,(F,) - T(ft),x*)\ + E |(r(/,),**)| 

fen/,).**) 

< e x* 

^ 6 + 

^€ + r(/)||**|| 
g e + M\\x*\\. 

Since e is arbitrary, this proves (3.4.3). 
We now show that | |L<MA,(-BI) — M*,(-B,)|| < e. I t suffices ' to Verify that 

if a is a finite index set and x* G X*, then 

(3.4.4) E f e W - f t , ^ ) , ^ 

Let e' > 0 be arbitrary. As before, we choose disjoint closed subsets Ft C Bt 

so that 

23 IfaiiBWt), **) | < € ' /4 and £ 1 ( ^ ( 2 ^ ) , **) | < e'/4. 

Choose disjointly supported functions/, G P(F, , &,) andg, £ P (^ , , £,) so that: 

Wfi-giW <s, 

E I0»»,(̂ ,),«*) - (Hf,),**)| < «74, 

E I0*.,(F,),**) - (r(g,),«*)| < e'/4. 
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By the triangle inequality, we have: 
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(3.4.5) ( E ^(Bù - M*,(S0,**) < «' + ( E T(fi) ~ T(gt),x*) 

W r i t e / = £«€»/< and g = I ^ f f ^ . Then, | | / — g|| < 5 so that 

Z mû - E r(gO 
Thus, 

i& te* 
\T(f) - T(g)\\ < e. 

(E H/0 r(g ,),**) 1**11-
Applying this to (3.4.5) and observing that e' is arbitrary, we obtain (3.4.4). 

(4) Let fn be a sequence of step functions converging in the uniform norm 
t o / . For any x* £ X*, Theorem 2.6 yields limw x*T{fn) = x*T(f) so that T(f) 
is the limit of T(fn) in the weak topology. By (3) above, the sequence T(fn) is 
also Cauchy in the norm topology and so must converge to T(f) in the norm. 
And, if g is any step function such that | | / — g|| ^ 5 , then limn | | /n — g\\ ^8 
and so by (3) above, lim» \\T(fH) - T(g)\\ g e. Thus \\T(f) - T(g)\\ g €> as 
required. 

Lemma 3.4 suggests the following definition of a non-linear integral. 

3.5. Definition. Let F be a Banach space and Z C F*. Let pui 3§ -+ Z such 
that (y, Vh(')) is countably additive for each y £ F. For each € > 0 and & > 0 
there exists 5 > 0 such that if Bt are disjoint, hu kt £ ( — 6, &), |fe* — fe*| < 5, 
1 ^ i ^ n, then 

(3.5.1) < €. 

J> 

DC Vhi(Bi) ~ 2 M*»(-Bi) 
II 1 = 1 i = l II 

Given a simple function/ = JZJLi &*XB,> define 

(/<*/* = L **<(Pt). 

Given/ Ç B(S), le t / n be a sequence of simple functions such that 

II/-/.II-0. 
By (3.5.1) we may define 

Jfdfx = lim jfndn. 

We may regard Jf dix as a non-linear integral with respect to the family of 
measures, ix = {ixn: h £ R}. 

3.6. THEOREM. Let T: C(S) —»X, where T is additive and X is an arbitrary 
Banach space. Then there exists ju = {fxh\ as in Definition 3.5 with Z = X** 
such that 

(3.6.1) r(/)= jfdn, /€C(S). 
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Proof. Let /x be the family as in Lemma 3.4. Then (1)^(3) of Lemma 3.4 
imply that fi satisfies Definition 3.5 and (3.6.1) follows from (4). 

3.7. LEMMA. Let T: C(S) —>X, where T is additive and X is a weakly 
sequentially complete Banach space. Then ixh: Se —» X and fxh is countably additive 
in the norm of X. 

Proof. Since (x*, fih(F)) = (x*, \h(F)) for every x* G X*, we have nh(F) = 
\n(F). By Lemma 3.3, \h(F) G X, and so nh(F) € X. I t remains to verify that 
Hn(B) G X for every Borel set B. It is sufficient to show that 

lxh(B) = lim{fify(F): F is a, closed subset of B} 

in the norm topology (we order the net {ph(F)} by setting /xa(ft) < /za(ft) 
if and only if ft C ft). 

Suppose the contrary. Then, there is an e > 0 such that 

(3.7.1) \\»h(B\F)\\ > € for any closed subset F C B. 

We construct, inductively, a sequence of disjoint closed sets {Fi\ so that 
\\n(Ft)\\ > e/2 for a l i i . 

Since (3.7.1) holds when F = 0, we have ||/x^(5)|| > e. Choose a unit vector 
x* G X* so that (x*, fxh(B)) > e/2. Since (x*, /*&(•)) is a regular Borel measure, 
we can find a closed subset ft C -^ so that (x*, ju/>(ft)) > e/2. Thus 

| |M*CFI)|| > e/2. 

Assume now that disjoint closed subsets Fi, . . . , Fn oi B have been chosen 
so that ||/x*(ft)|| > e/2 for i = 1, 2, . . . , n. Set 

^ = U ft. 

Then F is closed and (3.7.1) applies, so that (x*, ixn{B\F)) > e/2 for some unit 
vector x*. Since (x*, /xaO)) *s a regular Borel measure, choose a closed subset 
Fn+1CB\F such that (x*, /xft(ft+1)) > e/2. Thus, | |MA(F„+I)|| > e/2. This 
completes the induction. However, the set 

)%2 Vh(Fi) : <T is any finite setf 

is bounded in the norm by \\ixh\\. Since | | ^ ( f t ) | | > e/2, Theorem 2.8 is 
contradicted. 

Finally, to show that fih is countably additive in the norm, we observe that 
since ixh is X-valued, part (1) of Lemma 3.4 proves that whenever {ft} is a 
sequence of disjoint Borel sets, then 

/J U Bt) = £ /**(B«), 

where convergence is taken in the weak topology on X. By Theorem 2.8, the 
series £i^«oo MaCft) converges in the norm. 
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3.8. THEOREM. Let T: C(S)-*X be an additive operator and X weakly 
sequentially complete. Then there exists /x = {jjLh} as in Definition 3.5 with Z — X 
such that 

T(f)= jfd», / € C ( 5 ) . 

The theorem follows by combining Lemma 3.7 with Theorem 3.6. 

We note that the measures fih: B —» X** determine linear operators 
Th: B(5) —* X** as follows. If/ = Yiiâtân CtXBi is a step function, we set 

TnU) = Z cMBt). 

It is easy to check that Th(f) is well-defined. Moreover, 

I IW) | |* E Nlk(5«)| |g| | /IUIkll. 

Hence, we have defined Tn to be a bounded linear operator on the dense 
subspace of step functions. Since X** is Banach, we may therefore uniquely 
extend Th to the space B(5) so that | |r^|| = ||jtift||. It is also easy to check that 
(**, Th(f)) =Jf(s)x*»h (ds) for / 6 B(5). 

To summarize, we have the following. 

3.9. THEOREM. Let T: C(S)—>X be an additive operator. Then there are 
bounded linear operators Th: C(S) —>X** so that 

(1) If Mh satisfies \\T(f)\\ g Mh whenever | | / | | g h, then ]\Th\\ g Mh, 
(2) For each f e C(S),x* <E X*, 

(x*,Th(f))= J/(5)**M»(d5), 

(3) //A" is weakly sequentially complete, then Th is a weakly compact operator. 

Proof. (1) and (2) have been proven above. 
(3) If X is weakly sequentially complete, Lemma 3.7 shows that fih: 38 —» X 

is countably additive in the norm. Applying [5, p. 493, Theorem 3] yields the 
result. 

We note that if T: C(5) —» X were a bounded linear operator, then it can be 
verified that 

(**, T(f)) = f f(s)x*m(ds) for / € C(5). 

Therefore, by (2) of Theorem 3.9, T = T\. And, if X is weakly sequentially 
complete, then (3) of Theorem 3.9 yields the well-known result (see [5, p. 494, 
Theorem 6]) that T is weakly compact. 

4. Kernel representation. Let T: C(5) —» X be an additive operator. 
We shall extend Theorem 2.6 by constructing a kernel representation for T 
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for the case where X* is separable in the a(X, X*) topology and the family of 
measures {nh} corresponding to T is X-valued. 

4.1. LEMMA. There exists a finite positive measure m and a family of measurable 
functions {K(x*, h, s)} such that 

x*nh(B) = f K(x*, h, s) m(ds), B£@. 

Proof. Let {xn*} be a countable dense net in X* under the a(X, X*) topology. 
Given x* € X*, there exists a subsequence xni* such that for each h, 

Let \xn*nh\ denote the variation of xn*fjih and | | x / ^ | | = |ffre*/z&|(S). Define a 
finite measure mh by setting 

(2) mh(B) = Zn=i \xn*nh\(B)/2n\\xn*nh\\. 
Choose a countable dense set of reals \hk) and define 

(3) m(B) = £*- iw w (B) /2* . 
Thus m is a, finite positive measure defined on ^ . Suppose that m(B) = 0; 
hence mhk(B) = 0 for each &. Thus (2) implies that \x^ixhk\(B) = 0 for each k 
and w. By (1), we have x*fj,hk(B) = 0 for each k. As in [4, Lemma 16], it can 
be shown that x*fj,n(B) is a continuous function of h. Hence {hk} dense in R 
implies that x*/jih(B) = 0 for each h and x*. 

Thus each measure x*nh is absolutely continuous with respect to m; hence 
the conclusion follows by the Radon-Nikodym theorem. 

We shall now show that the kernels can be chosen as to be continuous in h. 
The proof in [2, Lemma 11] only verified convergence in measure. 

4.2. LEMMA. There exist kernels Ki(x*, h, s) which are continuous in h for 
rn-a.e. s such that 

x*nh(B) = I Ki(x*, h, s) dm. 
J B 

Proof. Fix a <b and x*. We shall verify that K(x*, h, s) is uniformly 
continuous for rational h G [a, b] for a.e. s. Suppose the contrary. Then the set 
where K(x*, h, s) is not uniformly continuous may be written as 

CO CO 

A = U H An,„ 
n=l t=l 

where 

An,t= U {s:\K(x*,h,s) -K(x*,k,s)\ > 1/n}. 
0<h-k<l/t, 
h,k ra t ional 

Now m(A) > 0 implies that there exists n such that An = Cu=iA7lyt has 
positive measure. Let r = m(An) and e = r/2n. Choose 8 > 0 such that 
| | / - g\\ < Ô implies | s * r ( / ) - x*T(g)\ < e. Choose t such that 1/t < Ô. 
Now AHtt Z) An\ hence m(Antt) ^ r. 
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Antt can be expressed as a disjoint union of countably many sets Bj, where 
5 G Bj implies that there exists rational hj and kj such that 0 < hj — kj< 8 
and 

(1) \K(x\ hjy s) - K(x*, kJy 5)| > 1/n. 
We may remove the absolute value sign in (1) by interchanging hj and kjt 

still having 0 < \hj — kj\ < 8. Choose / so large that 
( 2 ) m ( U / - i £ i ) > r / 2 . 

Thus (1) and (2) imply that 
(3) ZU {*%,(*/) - *%,(B,)} = XUSB, (*(**, h„ s) -

£(**, kjt s))dm> 1/n • r /2 = e. 
Now we can approximate Bj by a closed subset jpy with respect to x*/xfti and 

*̂Mfci- We can then choose a peak/., G P( /^ , 1) so that x*T(hjfj) and x¥T{kjfj) 
approximate x*nhj(Fj) and x*fxkj(Fj). Since i^ C -S; and the 2^ are disjoint, 
it is possible to choose fj with disjoint supports. Let 

j J 

f = E *i/ i and g = S *i/i-

Then | | / — g|| < 1/t < 8 and the left side of (3) is approximated by 

x*T(f) - x*T(g). 

This contradicts the choice of 8. Thus K(x*, h, s) is uniformly continuous for 
rational h Ç [a, b] for a.e. 5. 

Proceeding as in [2], we consider a = n, b = n + 1, ^ = 0, ± 1 , ± 2 , . . . to 
conclude that K(x*, h, s) is uniformly continuous for rational h Q. [n, n + 1] 
for all n for a.e. s. We now define i£i(#*, h, s) — K(x*, h, s) for rational h. 
If h is irrational, then we choose rational hi—^h and define Ki(x*, h,s) = 
lim* i£(x*, &*, s). An argument similar to the above implies that K(x*, h, s) = 
i£i(x*, &, s) for a.e. 5, when x* and & are fixed. 

4.3. THEOREM. Let T: C(S) —* X be an additive operator. Assume that X* is 
separable in the v(X, X*) topology and the family of measures {nh} corresponding 
to T are X-valued. Then for each x*, 

(1) x*T(f) = j K(**J(s), s)H(x*, s) m(ds)} where 
(2) m is a measure of finite variation defined on 38 ; 
(3) K(x*, h, s) is a measurable function of s for each h; 
(4) K(x*,h, s) is a continuous function of h for m-a.a. s; 
(5) For each b > 0 there exists B > 0 such that \h\ ^ b implies that 

\K(x*, h, s)\ SB for m-a.a. s; 

(6) H(x*, s) is a measurable function of s and dfx = H{x*, s)m(ds) defines a 
measure \x with finite variation; 

(7) For eachf 6 C (5), the right side of (1) defines a continuous linear functional 
on X* in X. 

Conversely, if (2)-(7) hold, then there exists an additive operator T satisfying(1). 
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Proof. As in [2], it follows from Lemma 4.2 that K\ — KH, where K and H 
satisfy (3)-(6). As in [2; 4], it is verified that (1) holds. 

Conversely, fix/ Ç C(5). By (7) there exists T(f) £ X such that (1) holds 
for each x*. It remains to verify that T is an additive operator from C(5) into 
X. Let us fix x*. Then (2)-(6) imply that x*T(f) is an additive functional on 
C(5). This follows as in [2]. The Hahn-Banach theorem now implies that T is 
additive on functions with disjoint support. We now verify that T is /3-uniform. 
Let e > 0, b > 0, and consider | | / | | ^ b and \\g\\ g b. By the Hahn-Banach 
theorem it suffices to show that there exists b > 0 such that 

(8) | | / - g|| < 8 implies \x*(T(f) - T(g))\ < e, ||**|| = 1. 
LetBn = {x*: (8) holds for 8 = 1/n). Then Bn is convex and (7) implies that 

Bn is closed. Since x*T(f) defines an additive functional, we have 

U Bn = X*. 
7 1 = 1 

The Baire category theorem now implies that some Bn has non-empty interior. 
The existence of 5 follows by a standard argument. 
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