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SUMMARY

Forecasting the maize yield of China’s Jilin province from 1962 to 2004, with climate conditions and fertilizer as
predictors, was investigated using multiple linear regression (MLR) and non-linear artificial neural network (ANN)
models. Yield was set to be a function of precipitation from July to August, precipitation in September and the
amount of fertilizer used. Fertilizer emerged as the dominant predictor and was non-linearly related to yield in
the ANN model. Given the difficulty of acquiring fertilizer data for maize, the current study was also tested using
the previous year’s yield in the place of fertilizer data. Forecast skill scores computed under both cross-validation
and retroactive validation showedANNmodels to significantly outperformMLR and persistence (i.e. forecast yield
is identical to last year’s observed yield). As the data were non-stationary, cross-validation was found to be less
reliable than retroactive validation in assessing the forecast skill.

INTRODUCTION

Changing climate conditions on seasonal and longer
time scales influence agricultural production. Inter-
annual variations in the Pacific sea surface tempera-
tures (e.g. from the El Niño-Southern Oscillation and
the North Pacific Gyre Oscillation) influence
Canadian wheat yield (Hsieh et al. 1999). Lobell
(2007) used the change in the daily temperature range
(i.e. difference between the daily maximum and
minimum temperatures) to estimate crop yield under
climate change. Several rice and maize crops show a
negative response in yield to increased daily tempera-
ture range, reflecting a non-linear response of yields to
temperature. Lobell & Field (2007) suggested that
simple measures of growing season temperature and
precipitation explained up to 30% or more of year-to-
year variations in global average yields for the world’s
six most widely grown crops. Improvements of soil and
fertilizer are strong influencing factors on agricultural

production; however, agricultural production is influ-
enced by climate conditions even in highly developed
countries.

Crop yields are influenced by many factors, the
most obvious being meteorological (Fortin et al.
2011) and soil conditions (Campbell et al. 1988,
1997a, b; Alvarez 2009). Topography (elevation, slope
and aspect) has significant effects onwheat yield (Yang
et al. 1998). Social–economic factors were also taken
into account in Ghodsi et al. (2012), where rainfall,
guaranteed purchasing price, area under cultivation,
subsidy, insured area, inventory, import, population
and value-added agricultural production were used as
predictors for wheat production.

Researchers have used two main types of
models –mechanistic (i.e. process-oriented) models
and empirical models – to study crop growth/yield
with respect to environmental variables. Mechanistic
models, based on eco-physiological processes for crop
growth, are best for understanding the complicated
relations between crop, soil, climate and ecology.
However, these models generally contain parameters
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that depend on the particular plant species and/or
environment, thereby requiring careful calibration.
Examples of mechanistic models for maize include
Yang et al. (2004), Liu et al. (2011) and Ma et al.
(2012). Compared to empirical models, the mechan-
istic models are more complicated to develop and,
although built on an eco-physiological process-based
framework, they are not particularly well suited for
making accurate regional-scale crop yield forecasts.

Empirical models are based on statistical methods
or machine learning methods developed from the field
of artificial intelligence. While they are generally
inferior to mechanistic models in terms of revealing
the underlying eco-physiological processes, they are
usually easier to develop and are well suited for
making regional-scale crop yield forecasts.

Among empirical models, multiple linear regression
(MLR) models are widely used for analysing climate
and soil conditions and their impact on crop yield
(Qian et al. 2009; Lobell & Burke 2010). However,
MLR lacks the general ability to model the non-linear
relationship between predictor variables and the
response variable. The rise of artificial intelligence
has introduced non-linear empirical models such as
artificial neural networks (ANNs) (Rumelhart et al.
1986; Hsieh 2009), which has begun to complement

or replace MLR models in agricultural forecasting
during the last decade or so. In general, ANN has been
found to give better predictions than MLR (Hill et al.
2002; Kaul et al. 2005; Ji et al. 2007; Dai et al. 2011;
Guo & Xue 2012; Chantre et al. 2014).

Maize is now the largest grain crop (inmetric tonnes)
produced in the world according to the Food and
Agriculture Organization of the United Nations
(FAOSTAT 2012). Previous studies relating climate
and maize yield involved using MLR (Lobell & Field
2007; Lobell & Burke 2010; Chen et al. 2011)
regression with a fractional polynomial model (Sun &
Van Kooten 2013) and ANN (O’Neal et al. 2002; Kaul
et al. 2005).

The purpose of the current study was to analyse how
maize yield relates to climate conditions and fertilizer
used and to improve short-range maize yield forecast-
ing by MLR and ANN models for Jilin province,
located in the north-eastern part of China (Fig. 1). With
its cold harsh climate, Jilin is limited to being a mono-
cropping agricultural region, i.e. farmers must rely on a
single crop, hence poor crop production is particularly
disastrous. Maize yield was modelled in the current
study as a function of the average monthly temperature
from April to October, accumulated precipitation from
July to August, precipitation in September and the

Fig. 1. China’s Jilin province, with temperature and precipitation data obtained near the capital Changchun (43°53′N,
125°19′E, 212m a.s.l.) (map produced from ESRI Data and Maps, ESRI 2008).
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amount of fertilizer used. The previous year’s maize
yield was also tested as an alternative predictor to
fertilizer.

DATA

Annual maize yield for Jilin province (kg/ha) from
1961 to 2004 was obtained from China Maize (2012).
Monthly temperature and precipitation data at
0·5°×0·5° resolution were obtained from the CRU
(2010) TS3.10 dataset, produced by the Climatic
Research Unit, University of East Anglia, with the
grid point closest to the provincial capital Changchun
used in the current study. Country-based fertilizer con-
sumption data were available from the International
Fertilizer Industry Association (IFA 2012). Annual total
nitrogen, phosphate and potassium fertilizer consump-
tion for China was obtained from IFA. The amount
of fertilizer used for the maize crop was obtained by
multiplying the total fertilizer used by the ratio of
maize harvested area in China to major crop harvested
area in China (FAOSTAT 2012). Fertilizer as a predictor
used in the current study was obtained by divid-
ing the amount of fertilizer used for maize by the
maize harvested area. This allowed the application
of country-based total fertilizer values to smaller, more
specific crop regions. Owing to the limitation of the
available maize yield data, the data analysis was
confined to the period 1961–2004.
Four predictors were considered: the average

monthly temperature over the growing season (April–
October), accumulated precipitation from July to
August, precipitation in September and the amount
of fertilizer used. The choice of the precipitation
predictors came from considering the correlation
between maize yield and precipitation data (both
with linear trend removed first), where the correlation
was 0·10 (May precipitation),−0·02 (June), 0·24 (July),
0·16 (August), 0·35 (September) and −0·17 (October),
with only the September precipitation being significant
(P<0·05). However, the correlation between yield and
the accumulated July and August precipitation was
0·31 (P<0·05). Moisture was not a limiting factor early
in the growing season, while precipitation late in the
growing season could have different effects than
precipitation during July and August (Sun & Van
Kooten 2013), hence the choice of using the accumu-
lated July and August precipitation and the precipi-
tation in September as two separate predictors.
The mean and standard deviation are, respectively,

15·9 and 1·2 °C for the averaged April to October

temperature, 309 and 98mm for the July to August
precipitation, 48 and 26mm for the September
precipitation, 200 and 151 kg/ha for the amount of
fertilizer and 4·13×103 and 2·13×103 kg/ha for the
maize yield. The coefficient of variation, defined as
the standard deviation divided by the mean, is 0·073
for the April–October temperature, 0·315 for the July–
August precipitation, 0·547 for the September precipi-
tation, 0·755 for the fertilizer amount and 0·516 for the
maize yield. Figure 2 shows the standardized time
series (i.e. all having zero mean and unit standard
deviation). Fertilizer and maize yield both increased
gradually with time. Temperature also showed a rising
trend, while precipitation tended to be low in the final
few years.

METHODS

MLR and non-linear regression by ANN are compared
in the current study. In MLR, the response variable
or predictand y is expressed as a linear function of the
m predictor variables xi (i=1, . . .,m)

y = a0 +
∑
i

aixi (1)

where ai (i=0, . . ., m) are the regression coefficients
determined by fitting the straight-line solution to the
data, i.e. minimizing the mean squared error (MSE)
between the modelled y estimate and the observed
y value. Since standardizing predictors are crucial
for ANN models (Hsieh 2009), all predictors were
standardized for the MLR and ANN models. The ANN
model used in the current study is the multi-layer
perceptron (Rumelhart et al. 1986; Hsieh 2004, 2009),
with one hidden layer. Here y is expressed as a non-
linear function of the form

y =
∑
j

w̃j tanh
∑
i

w jixi + bj

( )
+ b̃ (2)

where tanh denotes the hyperbolic tangent function,
and the parameters or weights, w̃j , b̃, wji and bj, are
determined by fitting the non-linear function to the
data, where a non-linear optimization algorithm is
used tominimize theMSE between themodelled y and
the observed y values. This empirical function (2) is
capable of fitting to any non-linear continuous
function to arbitrary accuracy if enough terms are
used in the summation over the index j. The number of
terms in the summation, HN, is called the number of
‘hidden neurons’.
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As there are generally multiple minima in a non-
linear optimization problem, the optimization is
commonly performed a number of times starting
from different random initial weights, yielding an
ensemble of ANN models. The final predicted value
for y from the ensemble is simply the average of all the
individual model predictions for y.

With a flexible non-linear model, it is easy to over-fit
the data during model training, i.e. fitting to the noise
in the data. An over-fitted model may fit the training
data very well, but predicts poorly when given new
data. A Bayesian regularization approach has been
successfully used in ANN models to avoid over-fitting
(MacKay 1992; Hsieh 2009). In the current study,
the code trainbr from the neural network toolbox for
MATLAB was used, which was based on the Bayesian
ANN model of Foresee & Hagan (1997).

Besides MLR and ANN, the persistence model was
also used as a benchmark or reference model. In the
persistence model, the predicted value for y at time t
is simply the observed y value of the previous year (t−1).
Data from 1961 to 2004 were used in our study, giving
predictions for the maize yield y from 1962 to 2004.

To test a model’s forecast skill, the traditional
validation methodology (O’Neal et al. 2002; Kaul
et al. 2005) used part of the data record for model
training and the remaining part for validation (i.e. for
testing the model forecast performance). Here the
cross-validation procedure (Hsieh 2009), which uses
the entire data record for validation, was used instead,
since in recent years, cross-validation has increasingly
become the new standard procedure for validation,
especially when the data record is not long. The
current data record was divided into four approxi-
mately equal segments. One segment was withheld for
forecast validation, while data from the other three
segments were used for training themodel, i.e. the data
used in forecast validation were never used in training
the model. Next, a different segment was withheld
for validation and the three remaining segments used
for training. This process was repeated until all four
segments of the data record had been used for forecast
validation, i.e. the root mean squared error (RMSE)
between the model forecasted maize yield and the
observed yield over the whole data record was
calculated by this cross-validation procedure.
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Fig. 2. Standardized annual time series (1961–2004) used in the current study: (a) maize yield of Jilin province (solid),
average temperature from April to October (dashed) and fertilizer use (dotted) and (b) precipitation from July to August
(dotted) and precipitation in September (dashed).
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The forecast validation was assessed using the RMSE
skill score (SS) with the persistence model serving as
the reference model, i.e.

RMSESS = 1−RMSE/RMSEpersist (3)
where RMSEpersist is the RMSE of the persistence model
forecasts. The RMSE SS is 1 for perfect model forecasts
and is negative when the model forecasts are worse
than those from the persistence model.

RESULTS

A preliminary test was performed using an MLR model
of maize yield with four predictors – the averaged
monthly temperature over the growing season (April–
October), accumulated precipitation from July to
August, precipitation in September and the amount
of fertilizer used.
Owing to cross-validation dividing the data record

into four segments, the forecast validation was done
separately over four data subsets (1962–1972, 1973–
1983, 1984–1994 and 1995–2004). Since the P value
(the significance probability for rejecting the null
hypothesis) for temperature was above 0·3 in each
data subset, temperature was rejected as a predictor.
Table 1 lists the predictors used in the subsequent

MLR and ANNmodels. The model MLR1 tested maize
yield as a function of precipitation from July to August
(prcp7+8), precipitation in September (prcp9) and
fertilizer. The regression coefficients and the P values
in Table 2 show fertilizer to be a much more important
predictor than the two precipitation inputs. While the
Pearson correlation between the modelled and ob-
served yield appeared relatively high in Table 2, the
RMSE SS for MLR1was actually−0·877, indicating the
MLR to be under-performing the persistence model.
To make real-time maize yield forecasts, the

predictors need to be available in real time.

Unfortunately, fertilizer data are only available years
later. As the correlation between yield and previous
year’s yield was 0·912, the possibility of using previous
year’s yield (yield(t−1)) as a predictor was investi-
gated. Next, the model MLR2 which was identical to
MLR1 except that the fertilizer predictor had been
replaced by the previous year’s yield (Table 1) was run.
The RMSE SS improved from −0·877 (MLR1) to
−0·097 (MLR2) when yield (t−1) replaced fertilizer
as predictor. This means the MLR2 forecast perform-
ance was almost as good as the persistence model,
which was to be expected since the very small
regression coefficients and relatively large P values
found for the precipitation predictors (Table 3) in-
dicated that the MLR was essentially relying only on
yield (t−1).

To see the difference between non-linear regression
and linear regression, the ANN1 model was built with

Table 1. Predictors used in the multiple linear regression (MLR) and artificial neural network (ANN) models.
Precipitation from July to August is denoted by prcp7+8 and precipitation in September by prcp9, while t−1
denotes the previous year

Model prcp7+8 prcp9 prcp7+8(t−1) prcp9(t−1) Fertilizer Yield(t−1)

MLR1 + + +
MLR2 + + +
ANN1 + + +
ANN2 + + +
ANN3 + + +
ANN4 + + + + +

Table 2. Regression coefficients (with corresponding
P-values underneath) for the various predictors in
model MLR1, during each of the four validation
periods, with the correlation between the observed
and the model values presented in the rightmost
column. Note the listed years are the validation
years, with the model trained using data from the
non-validation years

prcp7+8 prcp9 Fertilizer Correlation

1962–1972 0·068 0·052 1·314 0·760
P NS NS <0·001
1973–1983 0·053 0·164 0·861 0·935
P NS <0·05 <0·001
1984–1994 0·186 0·208 0·971 0·910
P <0·05 <0·05 <0·001
1995–2004 0·202 0·200 0·764 0·855
P <0·05 <0·05 <0·001

NS, not significant.
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exactly the same predictors as MLR1, i.e. prcp7+8,
prcp9 and fertilizer. The number of ensemble mem-
bers was varied up to 300 :200 was found to be
enough for very stable results. The number of HN was
varied from one to five in Fig. 3, showing a maximum
RMSE SS at HN=3, although the SS was almost
constant for HN=2–5. Hence ANN1 used HN=3 and
200 ensemble members. The 95% confidence inter-
vals for the RMSE SS in Fig. 3 were calculated using the
bootstrap method of Gilleland (2010).

Figure 4(a) compares the cross-validated yield
forecasts by MLR1 and ANN1, and the observed
yield. The RMSE SS for ANN1 was 0·348, clearly
outperforming persistence, and MLR1 (SS=−0·877).

The poor performance of MLR was due to its tendency
to over-predict the yields in the early and latter parts of
the data record, and under-predict the yields during
the middle part. An explanation of this behaviour is
given in the Discussion section.

Additional tests weremade by varying the predictors
used in the ANN (with HN=3 and the ensemble size
kept at 200), and the RMSE SS were examined: test A
using only fertilizer gave SS=0·308, test B using
prcp7+8 and fertilizer gave SS=0·341, test C using
prcp9 and fertilizer gave SS=0·304, compared with
the original ANN1 using prcp7+8, prcp9 and fertili-
zer, giving SS=0·348. These results suggest that
precipitation in July and August was more relevant

Table 3. Regression coefficients and P-values in model MLR2 computed
for the four validation periods, with the forecast correlation score given in
the rightmost column

Years Yield(t−1) prcp7+8 prcp9 Correlation

1962–1972 0·976 −0·028 0·033 0·954
P <0·001 NS NS
1973–1983 0·900 0·011 0·048 0·902
P <0·001 NS NS
1984–1994 0·917 0·005 0·035 0·913
P <0·001 NS NS
1995–2004 0·771 0·017 0·063 0·823
P <0·001 NS NS

NS, not significant.
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Fig. 3. The root mean squared error skill score of the four artificial neural network (ANN) models as the number of hidden
neurons (HN) varied from 1 to 5 (HN1–HN5), with the 95% confidence intervals obtained from bootstrapping.
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than that in September. Additional tests using only
precipitation as predictor(s) all gave negative SS.
In ANN2, the non-linear counterpart of MLR2,

fertilizer was dropped as input, but yield(t−1) and
prcp7+8 and prcp9 were used as predictors (Table 1).
Again with an ensemble of 200 members, the HN was
varied from one to five (Fig. 3). The RMSE SS peaked
at 0·243 (when HN=2) and stayed near this value as
HN increased further to five. With HN=2, the cross-
validated yield forecasts are compared with those from
MLR2 and observed values in Fig. 4(b).
Using yield(t−1) as a predictor has the advantage of

indirectly supplying fertilizer information to the model
since fertilizer usage tends not to vary greatly from
1 year to the next. However, yield(t−1) is also affected
by the precipitation in the previous year which is
misleading for the current year’s forecast. Hence two
more ANNmodels (ANN3 and ANN4) were run to see
if this undesirable effect could be alleviated. In ANN3,
instead of using the precipitation of the current year as
predictors, precipitation of the previous year was used
(Table 1) to test whether the ANN model would be

capable of correcting for the irrelevant precipitation
information imbedded in yield(t−1). Finally in ANN4,
precipitation information was supplied for both the
current and the previous year, testing whether the
ANNmodel would be capable of alleviating the effects
of previous year’s precipitation and incorporating
current year’s precipitation. Again the highest SSs
were attained at HN=2 for both ANN3 and ANN4
(Fig. 3). Compared with the SS of 0·243 for ANN2,
ANN3 had 0·274 and ANN4, 0·276, suggesting that
the ANN model was capable of alleviating the effects
of previous year’s precipitation imbedded in yield
(t−1). Since the 95% confidence intervals for all the
ANN models in Fig. 3 were above 0, all the ANN
models significantly outperformed the reference
model (i.e. persistence forecasts).

As the non-linear relations found by an ANN model
are generally much harder to understand than the
linear relations found by MLR, ANN has often been
described as a ‘black box’ approach. Fortunately, for
the current problem with relatively few predictors and
only one response variable, some of the simpler non-
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Fig. 4. Maize yield forecasts by multiple linear regression (MLR) and ANN v. observed yield (1962–2004), where in (a) the
predictors used were prcp7+8, prcp9 and fertilizer and in (b) with fertilizer replaced by the previous year’s yield.
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linear relations can be visualized – in particular, how
the yield varies as a function of a single predictor while
the other predictors are held constant at their mean
values. Of course, non-linear interactions involving
two or more predictors cannot be visualized by this
simple approach.

With ANN2, Fig. 5(a) shows the yield to be almost
a constant function of prcp7+8 (as the other two
predictors, prcp9 and previous yield, were held
constant). Yield was also nearly a constant function
of prcp9 (not shown), indicating very weak depen-
dence of the ANN model on either prcp7+8 or prcp9
alone. In Fig. 5(b), the yield was roughly a linear
function when the predictor yield(t−1) was low and
became nearly constant when yield(t−1) was high.
A similar functional shape was found in Fig. 5(c) with
fertilizer as the sole varying predictor using ANN1,
thus confirming that yield(t−1) could roughly replace
fertilizer as input. The very non-linear functional form
of Figs 5(b) and (c) confirms that ANN and MLR gave

very different forecast results. In Fig. 5(d ), the MLR1
with fertilizer as the sole varying predictor is shown. As
the results in Fig. 5 were obtained by cross-validation,
i.e. forecasts were made for the four data subsets
separately, the MLR1 results in Fig. 5(d ) are seen
coming from four different straight-line solutions.
Compared with Fig. 5(c), the MLR1 forecasted yield
values were too high at the high end (and also too high
at the low end) as noted before in Fig. 4(a).

While cross-validation is the standard procedure
for assessing forecast skills for short data records, the
reported skills may still be inflated compared with
true out-of-sample forecast validation (Shabbar &
Kharin 2007). To mimic a real-world forecasting
setup, a retroactive validation was tested in which
the first 15 years (1962–1976) were used to train the
first model and then yield was predicted for 1977;
the window was then extended forward by a year,
i.e. the model was trained with the first 16 years
(1962–1977), and yield was predicted for 1978; this
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Fig. 5. Maize yield from ANN as a function of a single predictor (as other predictors are held constant at their mean
values), with the varying predictor being (a) prcp7+8, (b) yield(t−1) and (c) fertilizer. In (d ), the MLR1 yield is shown as a
function of fertilizer. ANN1 was used in (a) and (c) and ANN2 in (b). The straight line in (b) is when the current yield
equals the previous year’s yield.
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process was repeated until forecasts were made for
1977–2004. The four models ANN1–ANN4 were
rerun under retroactive validation with HN=1–5 and
ensemble size of 200. With 20 RMSE SSs computed
(for the four models times five HN values), all 20 ANN
SSs turned out positive, indicating better performance
than persistence – in contrast, all the corresponding
MLR SSs were negative. However, the retroactively
validated ANN SS were lower than those from the
cross-validated SS. For instance, for ANN4, the highest
cross-validated SS was 0·276 for HN=2, but the
highest retroactively validated SS was only 0·112 for
HN=1. However, the cross-validated SS was calcu-
lated over the years 1962–2004, but the retroactively
validated SS was over 1977–2004. The highest retro-
actively validated SSwas 0·136 for ANN2withHN=1,
with the 95% bootstrap confidence interval being
[0·045, 0·199], v. a SS of −0·092 for MLR, with a
confidence interval of [−0·258, 0·007]. Hence, under
retroactive validation, despite the lower SS, ANN
continued to significantly outperform persistence
and MLR.

DISCUSSION

Forecasting the maize yield of Jilin province, with
climate conditions and amount of fertilizer as pre-
dictors, was investigated using MLR and ANNmodels.
Datasets from 1962 to 2004 were divided into four
segments with three used for model training and one
for forecast validation, giving cross-validated forecast
skills, where the RMSE SSs were in reference to
persistence forecasts. Yield was set to be a function
of precipitation from July to August (prcp7+8),
precipitation in September (prcp9) and fertilizer
used. The ANN1 SS (=0·348), being positive, indicates
better performance than persistence, while the
MLR1 SS (=−0·877), being negative, indicates worse
performance than persistence. In ANN1, the dominant
predictor was fertilizer and between the two precipi-
tation predictors, prcp9 seemed to have less impact.
As fertilizer data are not available for real-time yield

forecasting, models using previous year’s yield, yield
(t−1), instead of fertilizer were tested, with ANN2 SS
being 0·243 and MLR2 SS being −0·097. When the
two precipitation variables from the previous year
were also added as predictors, the ANN SS increased
slightly to 0·276 in ANN4.
When the forecasted yield was plotted as a function

of a single varying predictor (with the other predictors
held constant), the yield was clearly a very non-

linear function of the fertilizer and yield(t−1), thus
explaining why the ANN greatly outperformed
the MLR. Future work is to build an operational
maize yield forecast model (without using the weak
prcp9 predictor), so useful forecasts can be issued to
farmers/managers in September, well before the
harvests in mid-October. Another potential improve-
ment is to add satellite-measured vegetation indices as
additional predictors in the ANN model (Jiang et al.
2004; Panda et al. 2010).

Besides real-time harvest yield forecasting, ANN
models will also be valuable in future crop yield
projection under climate change. Climate change is
commonly studied by complicated global climate
models (GCM) under various emission scenarios. Their
coarse spatial resolution does not allow them to be
used directly in projecting local crop yields in future
climate conditions. Instead dynamical downscaling or
statistical downscaling techniques are used to project
from the coarse resolutionGCM results to local climate
change and crop yield change. In a comparison of
downscaling techniques in the projection of local
climate change and wheat yields in New SouthWales,
Australia, Luo et al. (2013) found that statistical
downscaling outperformed dynamical downscaling
for most of the climate variables. Furthermore, Gaitan
et al. (2013) found that ANN outperformed MLR in
statistical downscaling of temperature in terms of daily
variability and annual climate indices over southern
Ontario and Quebec, Canada.

There are two lingering questions from the
current study: (i) why were the MLR forecasted yield
values too high near the end of the data record and
also too high near the beginning (Fig. 4(a)) and (ii) why
were the SS of the ANN models considerably lower
when retroactively validated than when cross-
validated?

To understand the MLR behaviour, Fig. 6 illustrates
schematically the type of non-linear relation between
fertilizer and yield, i.e. the yield becomes saturated
with increasing fertilizer. The linear model clearly
over-predicts the yield at high and low fertilizer values
(corresponding to the later and earlier parts of our data
record), and under-predicts for the intermediate
fertilizer values, as seen in Fig. 4(a). Furthermore,
under the cross-validation procedure used in the
current study, to validate the last quarter of the data
record where much fertilizer was applied, the earlier
data with less fertilizer were used for training the
model. During forecast validation, the linear model
was actually extrapolating to the high fertilizer regime,
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giving even more excessively high forecasted yields in
Fig. 6(b) than in Fig. 6(a).

The ANN model behaves very differently from the
MLR model during extrapolation. The tanh(z) function
used by ANN is bounded by the asymptotes ±1 as its
argument z?±1. In Eqn (2), the ANN being a finite
sum of tanh functions will remain bounded even if a
predictor xi becomes arbitrary large in magnitude,
while the MLR will not.

Hence the ANN extrapolates more gently than a
linear function, which means that under the circum-
stances of Fig. 6(b), ANNwill tend to give lower values
than the extrapolated MLR solution and hence agree
better with the true non-linear relation. Thus, fortui-
tously, the bounded functional shape of the ANN
model gave ANN an advantage over MLR in the
current study where extrapolation occurred.

During retroactive validation, extrapolation is al-
most eliminated since the forecast model is trained
with all data available at the time of the forecast. The
fortuitous extrapolation advantage of the ANN model
was thereby essentially removed, and the retroactively
validated ANN SSs were lower than the cross-
validated SSs. Hence, the current study serves as a
caveat that with non-stationary time series, cross-
validated SSs may be inflated when extrapolation is
involved during the cross-validation process. In the
current case, even with the lower SS from retroactive
validation, the ANN models were significantly out-
performing persistence and MLR.

While there had been a fair number of studies
showing ANN to outperform MLR in agricultural yield
forecasts, the current study highlighted a subtle and often
overlooked issue of forecast validation. In earlier studies,
the standard validation procedure involves using part of

the data record for model training and part for model
validation. In recent years, cross-validation, which uses
the entire data record for validation, has become the
new standard, especially when the data records are not
long. However, in the current study, with non-stationary
data, cross-validation inflated the SSs of the ANN due to
extrapolation. Unlike cross-validation, retroactive vali-
dation does not suffer from extrapolation, although it
cannot validate forecasts for the entire data record (e.g.
in the current case, the first 15 years were used for the
initial model training and not validated).

The rapid economic development in China during
the current study period made it possible to greatly
increase fertilizer use which increased the maize yield.
The world’s largest agricultural product exporters
belong to highly developed countries where fertilizer
impact for yield might be saturated and the influence of
fertilizermay not be as large as seen in the current study.
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