
RATIONAL SURFACES WITH EXCEPTIONAL UNODES 

PATRICK DU VAL 

To Professor H. S. M. Coxeter on his sixtieth birthday 

1. Introduction. Many years ago, I denned (8) three types of exceptional 
unode on an algebraic surface, which I called C7*8, U*9, U*io, corresponding, 
on a non-singular model of the surface, to sets of six, seven, and eight rational 
curves, each of grade — 2, with the intersection patterns represented by the 
Coxeter-Dynkin graphs now usually known as E&, ET, E8: 

• • • 
i i I 
EQ EI ES 

where each dot represents a curve, and linked dots intersecting curves. In 
each case we shall denote the curves in the horizontal sequence by Si, s2, . . . 
from left to right, and the extra curve meeting s3 by s*. U*s has been known 
since Cayley (6) to be one of the possible singularities of a cubic surface; and 
Herszberg (10) and Kirby (12) showed in different ways that the equations of 
surfaces with these three types of singularity were locally of the form 

(I) z2 = x4 + ;y3; (II) z2 = y(x* + y2); (III) z2 = x* + y8 

respectively. As these singularities have been in the news again in the last few 
years in the work of Hirzebruch (11), von Randow (14), Brieskorn (4), and 
Artin (1), the last of whom rediscovered them independently, it is perhaps not 
out of place to point out that Herszberg's canonical forms are all rational sur
faces, and to study their plane mappings, and the close relation of (I) to Cay-
ley's cubic, and of (II) and (III) to each other. 

2. Consecutive base points. In a plane ir, on which all our mappings of 
rational surfaces are to be made, we consider a sequence of points 

Pu •* 2, • • • , Pn, 

consecutive on an inflected branch. On a surface II on which all these points 
are dilated, let st be the irreducible image of the neighbourhood of Pu and s* 
that of the inflexional tangent t. Then s±, . . . , 5w_i are all of grade —2, and 
su st+i intersect (i = 1, . . . , n — 1); and as t passes through Plt P2, Pz, s* 
also has grade —2, and meets s%. We thus have the intersection pattern En\ 
for n > 8, of course, the intersection matrix is not negative definite, and the 
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set of curves in question (without the exceptional curve sn) cannot be contracted 
to a point ; the cases of interest are n = 6, 7, 8. In these cases, the system of all 
curves in 7r, of order 3m, with m-tuple base points a t P i , . . . , Pn, has no free 
intersection with the neighbourhoods of P i , . . . , Pn-i, nor with t, so t ha t the 
curves Si, . . . , sn_i, s* are all fundamental to this system. Denoting by pt the 
total neighbourhood of Pu and by |/| the linear system of all lines in ir, we 
have 

Si = Pi — Pi+l (i = 1, • . . , n — 1), Sn = pm 5* = / — pi — p2-p3. 

T h e least linear combination p of Si, . . . , sw_i, 5* t ha t has non-positive inter
section with each of them, and which consequently separates out with unit 
postulation from any system to which they are all fundamental, is in the three 
cases 

si + 2s2 + 3s3 + 2s4 + s-0 + 2s* 

21 — pi — p2 — Pz — Pi — p5 — pSy 
2si + 3s2 + 4*3 + 354 + 2*5 + 56 + 2s* 
21 — p2 — pz — pi — p5 — p6 — Pi, 
2si + 4s2 + 6*3 + 554 + 455 + 356 + 257 + 35* 
3/ — pi — p2 — pZ — pi — ph — pG — Pi ~ 2pg. 

If F is the projective model of the system |/ | = (3m; m, . . . , m) , where the 
first integer in the parentheses is the order of the system and the others are its 
multiplicities a t P i , . . . , Pw , the projection of F from its unode U* is accord
ingly the projective model of | / — p\: 

\n = 6: (3m — 2 ;m — l , . . . , m — 1), 
(2) \n = 7: (3m — 2; m, m — 1, . . . , m — 1), 

[n = S: (3m — 3 ;m — 1, . . . , m — 1, m — 2). 

\f — p\ has intersection unity with jus t one of the curves sh . . . , 5n_i, 5*, 
namely 5* for n = 6, 5X for n = 7, and 57 for n = 8. I t is clear in fact tha t 
| / — p\, as given by (2), has one variable intersection with t for n = 6, with 
the neighbourhood of P i for n = 7, and with t ha t of Pi for n = 8. This curve 
has in each case coefficient 2 in p1 and represents the line on the projected 
surface which, counted twice, is the neighbourhood of the unode. The remaining 
curves are fundamental to \f — p\, and represent respectively a binode BQ 

in the neighbourhood of £/*8, an ordinary unode Us in tha t of Z7*g, and an excep
tional unode C/*9 in t ha t of C/*io-

For general positions of the base points, for n = 6, 7, 8 there would be on II 
respectively 27, 56, 240 exceptional curves, which appear on F as rational 
curves of order m (for n = 6, m = 1 the 27 lines on the cubic surface; for 
n = 7, m = 1 the lines on the Geiser double plane which coincide by pairs in 
the bi tangents of the branch curve; and for n = 8, m = 2 the conies on the 
Bertini double cone which coincide by pairs in the t r i tangent planes of the 

a) 

n = 6: p = 

\n = 7: p = 

n = 8: p = 
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branch curve). In the present case, however, with Ph . . . , Pn consecutive on an 
inflected branch, there is only one irreducible exceptional curve, sn; the rest 
all reduce to linear combinations of this with si, . . . , s,,_i, s*; and on F there 
is only one rational curve of order m; this contains the unode, and combines 
with partial neighbourhoods of the unode to give formal equivalents of the 
remaining exceptional curves. 

We shall take a coordinate system (x, y, z) in x, with P i at (1, 0, 0) and t as 
the line z = 0. Any cubic with an inflexion at P i and / as tangent there can be 
taken, for a suitable choice of the lines X = 0, y = 0, to be 

/ = x2z - y3 + kyz2 + lzz = 0; 

and the cubics/ + z2(ax + by + cz) = 0 are those that mee t / = 0 in at least 
six coincident points at P i (seven if a = 0 and all nine if a = b = 0). Taking 
Pi, . . . , P 8 to be consecutive along x2z = y3, we accordingly define the web 
\C\: (3; 1, 1, 1, 1, 1, 1), the net \G\: (3; 1, 1, 1, 1, 1, 1, 1), and the pencil 
\B\: (3; 1, 1, 1, 1, 1, 1, 1, 1), with the bases 

\c\ 
\G\ 
\B\ 

x2z — y3, z\ yz2, xz2, 

x2z — y3, z3, yz2, 

x2z — y3, s3; 
and a second net 

\G'\: x2z - y3, ys2, xz2, 

which has simple base points at Pi , . . . , P 6 and a seventh at Pr\ (0, 0, 1). 
\B\ of course has the ninth associated base point P 9 consecutive to Pu . . . , P 8 ; 
but we regard this as unassigned, so that |2P|, \3B\ are the systems of sextics 
and nonics with eight, not nine, consecutive double and triple base points. 
\C\, \G\, \G'\ are the most general systems with the base points as specified, all 
such figures being projectively equivalent; but \B\ is not the most general 
pencil with all its base points consecutive on an inflected branch, being special 
in that all its curves are equi-anharmonic, except of course X2Z = y3 and 
Zz = 0 themselves. 

Given any symbol such as \A\ for a linear system, we denote by F(A) the 
surface which is the projective model of that system. Thus F(C) is a cubic 
surface, F{G), F(Gf) are Geiser double planes, and F(2B) is a Bertini double 
cone. 

3. The Geiser and Bertini figures. It is convenient to recall briefly the 
relations between the surfaces F{G), F(2G), F(2B), F(3B) in the general case, 
i.e. when the base points are general in position.* In the first place, l e t / = 0, 
g = 0 be any two curves of the pencil \B\: (3; 1, 1, 1, 1, 1, 1, 1, 1), and h = 0 
any curve of the net \G\: (3; 1, 1, 1, 1, 1, 1, 1) that is not in \B\. Then (/, g, h) 

*For the classical theory of the Geiser and Bertini involutions see Geiser (9), Bertini (3), 
and Baker (2); for the tacnodal quartic, the Castelnuovo surface, and the double plane, pro
jection of the Bertini double cone, see Nôther (13), Castelnuovo (5), and Conforto (7). 
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are a base for \G\, and can be taken as homogeneous coordinates in the plane 7 
that carries the Geiser double plane F(G). Any equation of degree n in (/, g, h) 
is the equation of an ^-ic curve in 7, and also (on expressing / , g, h in terms of 
X, y, z) of the curve in 7r, whose image is this curve in 7, doubled and branching 
at its intersections with the branch curve of F(G). A linear system of poly
nomials in (f, g, h) thus defines a linear system of curves in 71-, and also one in 7, 
the projective model of the former being that of the latter doubled, and 
branching along the image of the branch curve of F{G). This branch curve bG 

is the Image of the jacobian 

= d(f,g,h) _ 
Ja d(x,y,z)-U 

in 7T ; and as bG is a quartic in 7, there is an identity 
(3) jo2 = 4n(f,g,h), 

where <£4 is a quartic polynomial. T h u s ^ = 0 is a curve of \2G\. 
The octavic surface F(2G) of Castelnuovo in 56 thus has the parametrization 

(4) X0: Xn . . .: X, = j G : f: fg: fh: g>: gh: h\ 

and its equations are those that express that the matrix 

X\ X2 A3 

X2 X\ AT 5 
[_Xz X$ XQJ 

is of rank 1, namely 

Xi X, - X2> = 0, Xx X5 - X2 X, = 0, Xi X6 - X3
2 = 0, 

(5) 
X2 X5 — -X3 X\ — 0, X 2 X 6 — X 3 A 5 — 0, A 4 X 6 — AT 52 — 0, 

together with 

(6) * = Xo2-MXi, . . . , X 6 ) = 0 , 

expressing the identity (3), where 

*2(f\fgjh,g\gh,h*) = * 4 0r,g,A); 

the quadratic form \̂ 2 is of course only determined modulo the left-hand 
members of (5). The equations (5) are those of a Veronese surface F4 in the 
5 5 XQ = 0, projective model of the conies in 7; in 56 they are the equations of 
the cone T3

4 projecting VA from K0 (where Kt is the point at which all the 
coordinates vanish except Xt). F{2G) is the section of T3

4 by the quadric 
ty = 0; it projects from K0 into F4 doubled and branching along the image of 
bG, which is its section by the quadric ^ ( X i , . . . , X6) = 0; the double V4 

has the parametrization (4) with j G , X0 omitted. 
The system \G\ appears on F(2G) as a net of elliptic quartics; for instance, the 

image of h = 0 is in the 5 3 K0 Kx K2 KA: X3 = X5 = X% = 0, which cuts T3
4 

in the quadric cone Ai X4 = A2
2, and F(2G) in the section of this cone by 

\p = 0. The projection of F(2G) from a plane a in this 53 is a quartic surface 
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with a tacnode; the curve h = 0 is contracted into the tacnode (whose first 
neighbourhood is a double line with four pinch points, image of h = 0) and 
the four points in which a meets the quart ic curve h = 0 are dilated into lines, 
which form the section of the projected surface by the tangent plane a t the 
tacnode. From its tacnode this surface projects into the double plane F(G). 
In particular, if a is the plane Kx K2 KA: X0 = X% = X 5 = X& = 0, the 
projected surface has the parametr izat ion 

(7) x: y:z:t = Xd: X 5 : X0: XQ = fh: gh: j G : h\ 

and the equation, expressing the identi ty (3), 

(8) zH2 = <l>A(x,y,t). 

There are in general on F(2G) 28 curves of \G\ t h a t break up into two conies, 
images of two lines on F(G) t h a t coincide in a b i tangent of bG. If c, cf are the 
conies corresponding to the neighbourhood of P 7 , and the unique curve of |C7| 
tha t has a double point a t P 7 , the projection of F(2G) from the plane of c' 
is the cubic surface F(C), where \C\ = (3; 1, 1, 1, 1, 1, 1,0) . The conic c 
is contracted in the projection into a simple point of F(C), image of P 7 , and cf 

becomes the section of F(C) by the tangent plane a t this point. From the image 
of P 7 , F(C) projects into F(G). 

On the other hand, from the tangent plane a t the image of P 8 , F(2G) 
projects into the Bertini double cone F(2B). Each of the elliptic quart ics on 
F(2G) t h a t pass through the image of P 8 , and hence also through its com
panion point in the Geiser involution, the image of the ninth associated point 
P 9 , projects into a double line with four branch points, one of which is a t the 
projection of Pg. These are the generators of the double cone F(2B) ; it has an 
isolated branch point a t the vertex, image of P 9 , and a branch curve meeting 
each generator in three points and not passing through the vertex, i.e. a cubic 
section of the cone. If k(x, y,z) = 0 is any curve of \2B\ not passing through 
P 9 (i.e. not breaking up into two curves of \B\), F(2B) can be parametr ized as 

(9) x0: xx\ x2\ x3 = k:f2:fg: g2, 

so t h a t the equation of the cone t h a t carries it is Xi x3 = x2
2. T h e branch curve 

bB is the image of a curve of united points of the Bertini involution in w with 
which 12B| is compounded; this curve in TT is one of the system \3B\, and its 
equat ion isjB = 0, where j B is the greatest common divisor of the four jacobians 

Êiù/iii!) wjg,g*) d(k,f,g2) d(k,fjg) 
d(x}y,z) ' d(x,y,z) ' d(x,y,z) ' d(x,y,z) ' 

F (SB) can be parametrized in the form 
(10) F„: F i : . . . : F 6 = j B : fk: gk: f: fg: fg*: g», 

and among its equations are those t ha t express t ha t the matr ix 

Y1 Y3 F 4 Yf\ 
F2 F4 F5 F6J 
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is of rank 1, namely 

Fx F 4 - Y2Ys = 0, Y1 F 5 - Y2Y,= 0, Yx F6 - F 2 F 5 = 0, 
(11) 

F 3 F 5 - F4
2 = 0, F 3 F 6 - F 4 F 5 = 0, F 4 F 6 - F5

2 = 0. 

In the Sb F 0 = 0, (11) are the equations of a rational ruled quart ic surface P 4 

with directrix line L\ L2 (where Lt is the point a t which all the coordinates 
except Yi vanish) ; in 5 6 they are those of the cone A3

4 projecting P 4 from L0. 
F (SB) lies on A3

4 and projects from the vertex L 0 into P 4 doubled; this double 
P 4 is parametrized by (10), with the omission oljB and F 0 ; and as this linear 
system is compounded with the Bertini involution, the double P 4 is also a model 
of this involution; P 4 is the projective model of the system of all rational cubics 
on the Bertini double cone, and the total branch curve of the double P 4 consists 
of the directrix line L\ L2j image of the vertex of the cone, together with a 
curve, image of bB on F(2B) and of j B = 0 in T, which meets each generator 
three times and does not meet the directrix line L\ L2, and is thus the residual 
section of P 4 by a cubic primal through any three generators. As this curve is 
the projection of the prime section F 0 = 0 of F (SB), F(3B) is the residual 
section of A3

4 by a cubic primal through any three generating planes. T h e pencil 
\B\ appears on F (SB) as a pencil of plane cubics in the generating planes of 
A3

4, each with an inflexion a t the vertex L 0 and inflexional tangent in the direc
trix plane L0 P i L2; L 0 is a simple point of the surface, whose tangent plane 
L0 Li L2 has three-point contact, i.e. every prime through the plane cuts the 
surface in a curve with a triple point a t L0 (breaking up in fact into three curves 
of \B\), and every curve on the surface passing simply through L 0 either is 
inflected there or has L 0 P i L2 as osculating plane. 

An impor tant special case arises when P 8 is chosen on the jacobian curve 
j G = 0 of \G\. In this case P 9 is consecutive to P 8 , the curves of \B\ all touch 
each other here, except t ha t one of them, which we take to be g = 0, has a 
double point a t P 8 and does not pass through P 9 . This means tha t in y, g = 0 
touches bG a t / = g = 0. Thus gh = 0 is a curve of |2P| , not passing through 
P 9 , and can be taken as our curve k = 0; gh, p, fg, g2 are a base for |2P| , which 
is thus compounded with the Geiser involution, i.e. the Geiser and Bertini 
involutions are the same in this case. The curve g = 0 is fundamental to 
12B|, and j B = gja\ in the parametrizations 

(12) x0: xi: x2: x3 = gh: f2: fg: g2, 

(13) F 0 : F i : . . . : F6 = gjG: fgh: g2h: f: f2g: fg2: g* 

of F(2B), F(SB), taking (/, g, h) merely as coordinates in y, we see tha t the 
Bertini cone is the projective model of the conies in y, with a simple base point 
a t / = g = 0 and another consecutive to it on g = 0, and P 4 is tha t of the cubics 
in 7, with a double base point a t / = g = 0 and a simple one consecutive to 
it on g = 0. F (G) is the projection of F(2B) from (0, 1, 0, 0) , represented by 
the exceptional curve g = 0; this is a double point of bB, which projects into bG. 
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4. The cubic surface and the tacnodal quartic surface (I). For the 
treatment of these it is convenient (for the present section only) to modify the 
coordinate system (x, y, z) in 7r, SO that the rational cubic X2Z = y3 becomes 
2x2z = y3. We accordingly parametrize the cubic surface F(C) in the form 

(14) x: y: z: t = xz2: yz2: z8: y3 — 2x2z, 

when its equation is easily seen to be 

(15) z2t + 2x2z - y3 = 0. 

This has a unode at (0, 0, 0, 1) with tangent cone z2 = 0. Since 

x: y: z = x: y: z, 

the mapping on IT is the obvious one by projection from the unode. As (15) 
can be written 

(zt + x2)2 = x4 + y3t, 

F(C) projects from (0, 0, 1,0), the image of Pr: (0, 0, 1) in 7r, into the Geiser 
double plane F(Gf), with branch curve x4 + y3t = 0; this is a rational quartic, 
with a triple point at (0, 0, 1), at which is one branch of order 3 with tangent 
y = 0, and only simple points consecutive to it; and the curve has four-point 
contact with t = Oat (1, 0, 0). 

_ 1 d(xz\yz\yz - 2x\) _ • , _ , 
Jo'-(S d(x,y,z) ~Z{XZ y h 

the image of the point (1, /x, /x3) of X2Z = y3 is the point (/z3, /x4, — 1) of 

x4 + y3t = 0; 

the factor z8 in jG> corresponds only to partial neighbourhoods of the point 
(0, 0, 0, 1) on F(C), and also on F(G'). 

The surface (I) in the homogeneous form 

(16) zH2 = x4 + xH 

is a quartic with a tacnode at (0, 0, 1, 0) (with tangent cone t2 = 0), from which 
it projects into the same double plane F(G'). It is equivalent to F(C) under the 
birational transformation 

x: y: z: t = xt: yt: zt + x2: t2, 

x: y: z: t = xt: yt: zt — x2: t2, 

which is regular at (0, 0, 0, 1) and does not affect the nature of the singularity 
there. Its parametrization is accordingly 

x:y:z:t = xz2{yz- 2x2z): ys2(y3 - 2x2z): z*(y3 - x2z): (y3 - 2tf2£)2. 

The relation between the two surfaces is best understood by noting that both 
are projections of the same Castelnuovo surface F(2G/) from different planes, 
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both skew to the tangent 5 3 of r3
4 at the unode of F(2G'), so that in both cases 

the projection maps IV onto 5 3 regularly at this point. As the parametrization 
of F(G') is 

t: x: y = ys — 2x2z: xz2: yz2 = f: g: h say, 

that of F(2Gf) is 

X0: Xx: . . . : X6 = z3(y3 - x2z): (y3 - 2x2z)2: xz2(y* - 2x2z): 

yz2(y* - 2x2z)\ x2zA: xyz*: y2z\ 

and it is the section of IV, with equations (5), by the quadric 

(17) Xo2 = X, Xe + X,2 

expressing the identityjV2 = fh3 + g4. As 

x: y: z: t = X2: Xz: X0: Xi, 

the surface (I) is the projection of F{2G') from the plane 

Xo = X\ = X<L = Xz = 0; 
and as 

x: y: z: t = X2: Xz\ X0 - XA: Xi, 

F(C) is its projection from the plane X0 — X± = Xi = X2 = X3 = 0. The 
53 Xi = Xi — Xz = 0 meets T3

4 in the quadric cone X4 X6 = X$2, and meets 
the quadric (17) in the pair of planes X0 = ± X 4 ; hence it meets F{2G') in two 
conies c, c'', one in each of these planes, which touch each other and the plane 
Xo = 0 at i£4. Thus F(C) is the projection of F(2Gf) from the plane of the conic 
c', and the conic c is contracted in the projection to the point (0, 0, 1,0) on 
F(C), the image of Pr in TT. (I), on the other hand, is the projection of F{2G') 
from a plane which meets it in four points at K±, consecutive along the section 
of the surface by X0 = 0, which is the image of jV = 0. The linear system of 
sextics 

X*s2(y3 - 2x2z) + >xyz2(yz - 2x2z) + i>z*{yz - x2z) + p(y* - 2x2z)2 = 0 

of which the surface (I) is the projective model has accordingly six double base 
points Pi , . . . , P6 , consecutive along the inflected branch of y3 = 2x2z at 
(1, 0, 0), and one double and four simple base points P ; , Qi, . . . , QAl con
secutive along the cuspidal branch of y3 = X2Z at (0, 0, 1). The curve y3 = 2x2z 
is fundamental to this system, and represents the tacnode of (I), whose first 
neighbourhood consists of two coincident lines, images of this curve and of the 
neighbourhood of P ' in 7r, and of the conies cf, c on F(2Gf). 

5. The tacnodal quartic surface (II). We now return to the coordinate 
system of §2 in it, and define 

(18) f = x2z - y3, g = z\ h = yz2 
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as a base for \G\. The jacobian of these, omitting a numerical factor, is j = xz5, 
so that 

(19) f = fg* + gh*. 

The branch curve of the Geiser double plane F(G) thus consists of the rational 
cubic b: fg2 + hz = 0, which has a cusp at g = h = 0 with tangent g = 0, 
and an inflexion a t / = h = 0, with tangent/ = 0; together with the line g = 0, 
which is the unique line on F(G), image of s7. The involution I with which \G\ 
is compounded is that whose pairs are interchanged by the harmonic homology 
(x, y, z) <-» ( — ff, y, z), and its loci of united points are X = 0 and the neighbour
hood of P\\ (1, 0, 0). The former corresponds to the curve b, the image of 
(0, 1, JJL) in 7T being ( —1, ju3,/z2) in 7; the latter, on II, appears as a linear 
combination of sh . . , 57, 5*, and on any surface, such as F(G), on which all 
these are contracted except s7, it appears as the image of s7, in this case the line 
g = o. 

The corresponding Castelnuovo surface F(2G) has accordingly the para-
metrization 

(20) X0: Xi\ . . . : X6 = xz5: (x2z - y3)2: z3(#2z - y3): yz2(*2z - y3): 
z6: yz5: y2z4 

by substitution from (19) in (4). Its equations are these of IV in the form (5), 
together with that of a quadric primal ^ : 

X o2 = X2 X± + X5 X6 

expressing the identity (19). The unode U*Q is at Kly since any linear combina
tion of the expressions on the right of (20), except (x2z — y3)2, is divisible by 
z2, and the remaining factor, a linear combination of #Z3, X2Z2 — y3z, #2yz — y4, 
Z4, yz3, y2Z2, represents a general curve of the system (4; 2, 1, 1, 1, 1, 1, 1), as 
required by (2). The tangent Sz to T3

4 at Ki is spanned by the generator Kx K0 

and the tangents Kx K2, Kx Ks to V\ i.e. it is the 5 3 X4 = X5 = X6 = 0. 
The plane K± K-0 K§: X0 •= Xi = X2 = X3 = 0 is skew to this S3, and from it 
IY projects into 5 3 regularly at Ku so that the unode U*Q at this point is not 
affected. The projected surface has the parametrization 

x: y:z:t = Xz: X2: X0: Xx = fh: fg: j : f2 

= yz2(x2z - y3): zz(x2z - y3): xz5: (x2z - y3)2 

and the equation 
z2t2 = xzy + y3t 

expressing the identity (19). This, however, is the homogeneous form of the 
equation (II). Thus the surface (II) is the projection of F(2G) from the plane 
Ki K$ K$. 

The S3 Ko K4 K5 i£6: Xi = X2 = Xz = 0, cuts F(2G) in the quartic curve 
of intersection of the quadric cones Xb

2 = X± X$ (the section of F3
4) and 

Xo2 = X5 X% (the section of ^ ) . This is the image of the double l ine / = 0 on 
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F (G) j and is a rational quartic with a cusp at i£4; putting x: y: z = M3: M2- 1 
in (20), we get 

Z 0 : X i : . . . : X 6 = M
3: 0: 0: 0: 1: ju2: /x4. 

The plane X0 = 0 in this 53 meets the curve in three coincident points at K± 
and one at KQ. It thus meets F(2G) in three points at KA and one at i£6. The 
section of F(2G) by X0 = 0 is of course the image of the branch curve of F(G), 
and consists of a conic c, image of the line g = 0 on F(G) and of 57 on II, given 
by 

Xo = X2 = XA = Z 5 = 0, Xx: Z 3 : X6 = f2: fh: h\ 

and the sextic curve, image of b on F(G) and of x = 0 in w, 

Xo = 0, Xn... : X6 = 1: r3: r2: r6: r5: r4 (r = 2/y), 

with a cusp at i£x. i£4 is on the latter curve, and is the image of Pr in ir; KQ is 
on the former, and is the image of P8 . The linear system of sextics 

tyz2(x2z - y3) + nzHx2z - y3) + vxz* + P(x2z - y3)2 = 0 

whose projective model is the surface (II) has thus seven double base points 
and one simple one Pi, . . . , P8 , consecutive on the inflected branch of y3 = x2z 
at (1, 0, 0), and three simple base points P ' , Qi, P , consecutive on x = 0 at 
(0 ,0 ,1) . 

6. The quintic surface (III). It is clear that the surfaces (II), (III) are 
very closely related, as we should expect from the fact that U*w has a U*9 

in its first neighbourhood. On the one had, applying the ordinary dilating sub
stitution of (x, xy, xz) for (x, y, z) in affine coordinates to z2 — x5 + j 3 , we 
obtain (on removing the factor x2 for the neighbourhood in Sz of the double 
point) z2 = x3 + xyz, which is (II), merely with x, y interchanged. On the 
other hand, the surface F (SB) = P(9; 3, 3, 3, 3, 3, 3, 3, 3), on projection from 
its unode £/*io, gives, as we have seen in §2, the surface P(6; 2, 2, 2, 2, 2, 2, 2, 1), 
which is also the projection of F(2G) = P(6; 2, 2, 2, 2, 2, 2, 2) from K6, the 
image of P8 . This surface has on it two lines /, V, the images of Si, s8; in the 
projection from P(2G), / arises from the unique conic c on F(2G), and V 
from the neighbourhood of K&; in the projection from P(3P), / arises from the 
neighbourhood of the unode, and /' from the unique exceptional curve on 
F(3B), wrhich is, as we shall see, a plane cubic with a cusp at the unode. The 
surface lies on a cone projecting a ruled cubic from a point, which is equally 
the projection of IV and A34, the plane that arises from the neighbourhood of 
the projecting point being the directrix plane and a generating plane in the two 
cases; and the surface P(6; 2, 2, 2, 2, 2, 2, 2, 1) is the residual section of this 
cone by a cubic primal through two generating planes. 

As P8 is in the neighbourhood of P7, which as we have seen represents a 
constituent of the branch curve of P(G), we have the special case envisaged at 
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the end of §3. I t is easily verified t h a t \2B\ has the base gh, f2, fg, g2, where 

/ , g, h are still given by (18) ; and the jacobians by threes of 

gh = yz5, f2 = (x2z - y3)2, fg = zz(x2z - y3), g2 = zQ 

with respect to (x, y, z) have the greatest common divisor gj = XZS. T h e para-
metrization (12) of the Bertini double cone F(2B) is thus 

(21) x0: xi\ x2: xd = yz5: (x2z — y 3 ) 2 : z3(x2z — y 3 ) : zQ. 

T h e branch curve is obtained by put t ing x = 0 in this, and is the rational 
sextic curve 

x0: Xi: x2: x3 = r5: 1: — T3: r6 (r = z/y), 

the section of the Bertini cone x2
2 = X\ x3 by the cubic cone 

Xo3 + x2 Xz2 = 0. 

I t has a triple point a t (0, 1, 0, 0) , with a double point consecutive to it 
along Xo = Xz — 0. T h e double cone projects from (0, 0, 0, 1), the point 7 = 0 0 
of the branch curve and image of Pf in 7r, into the double plane 

(22) x0: xi: x2 = gh: f2: fg 

and the branch curve into the quintic 

x0: xi: x2 = r5: 1: — r3, 
whose equat ion is 

x2
5 + x0

3Xi2 = 0, 

still with a triple point a t (0, 1, 0) and a double point consecutive to it along 
xo = 0. This plane quintic has also a cusp of the second kind a t (1, 0, 0 ) , 
with two double and one simple point consecutive on x± = 0. Also, as the point 
(0, 0, 0, 1) from which we project is on the branch curve of the double cone, 
the line x± = 0 into which it is dilated by the projection is a const i tuent of the 
branch curve of the double plane; the total branch curve of the la t ter is thus 

(23) xi(x2
5 + x0

3xi2) = 0, 

a sextic with two consecutive triple points a t (1, 0, 0) , as we expect for the 
plane projection of any Bertini double cone. 

T h e parametr izat ion (13) of F (SB) becomes 

(24) F 0 : 7 i : . . . : F 6 = xz*: yzb(x2z - y 3 ) : yz8: (x2z - y3)3: z3(x2z - y3)2: 

z6(x2z — y3): z9, 

and the projection of F (SB) from L 3 has the parametr izat ion 

F 0 : F i : F 2 : F 4 : F 5 : F 6 =j:fh: gh: f2: fg: g2 

= Xo: X3: A j : Z i : X2: X^ 

by (4), and is thus the same surface as the projection of F(2G) from K6. 
L 3 is accordingly the unode £/*io on F (SB). 
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If A3
4 is parametrized as 

(25) F0: Fx: . . . : F6 = w: uv: v: uz: u2: u: 1, 

the generating planes are u = constant, v = °° is the directrix plane, and (for 
general u, v) w = 00 at the vertex L0. Comparing this with (13), we have 

« = f/g, v = h/g, w = j/g2> 

so that the equation of F(SB), expressing the identity (19) in terms of these 
parameters, is 

(26) w2 = u + vz. 

Denning now the four cubic forms 

#0 = Fo2F3 - F4 F5
2 - Fx3, *x = F0

2F4 - F3 F6
2 - Fx2F2, 

$2 = Fo2F6 - F4 F6
2 - Fx F2

2, $3 = Fo2F6 - F5 F6
2 - F2

3, 

we see that the general linear combination 

X$o + M$I + v§2 + p$3 = 0 

of these is the equation of a primal cutting A34 in the surface 

(W2 — U — Vz) (\UZ + {JU2 + VU + p) = 0 , 

consisting of F (SB) together with a general set of three generating planes; and 
the equations of F (SB) can be taken to be (11), together with $0 = $3 = 0. 

The generating planes of A34 trace on F (SB) a pencil of plane cubics, with a 
simple base point at L0, which is an inflexion on each of them; these are the 
images of the pencil \B\, and they are all equi-anharmonic, being given by (26) 
for each constant value of u, except those in the planes u = °° : L0 Lx L3, and 
u = 0: LoL2L6. These are both cuspidal, as putting F 2= F 4= F 5= F6 = 0 in 
$0 = 0we have Y0

2YZ = F13, and putting Fx = F3 = F4 = F5 - 0 in 3>3 = 0 
we have Y0

2YQ = F2
3. The former is the unique exceptional curve on F (SB), 

image of s8, and its cusp is at the unode L3; the latter is the image of / = 0, 
and is not exceptional, but has virtual genus 1 on the surface; its cusp is at L6, 
the image of P ' , and corresponds to the cusp of / = 0 in ir, the mapping of 
F (SB) on IT being regular here. 

The tangent S% to A34 at the unode L3 is spanned by the generating plane 
L0 Li L3 and the tangent L3 L4 to the curve n = v = 0. It is thus the S3 

Y2= Yb= Y6 = 0. 

The plane L2 L5 L6: F0 = Y\ = F3 = F4 = 0 is skew to this 53, so that the 
projection of A34 onto 53 from this plane is regular at L3. The projected surface 
can be parametrized as 

(27) *: y: z: t = F4: Y1: Y0: Y3 = fg:fgh: gj:f 

= z3(*8z — y3)2: yz5(x2z — y3): xza: (x2z — y3)3 
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and its equation, expressing the identity (19), is 

(28) zH* = x5 + yH\ 

the homogeneous form of (III). Thus the surface (III) is the projection of 
F (SB) from the plane L2 L5 L6. 

The section of F (SB) by the prime F0 = 0 is the image of the branch curve 
of F(2B), of the partial branch curve b of F(G), and of the line X = 0 in w. 
Putting X = 0 in (24) we find the parametrization of this curve: 

(29) F0: Y^. ... : F6 = 0: r5: r8: 1: r3: r6: r9 (r = */?)» 

so that it has a triple point at L3 with a double point consecutive to it on L3 L4. 
The plane L2 L5 L6 meets this curve in four consecutive points at r = oo, 
the point L6, image of P ' , since any linear equation in (F0, Fi, F3, F4) is by 
(29) at most quintic in r. Thus the linear system of nonic curves 

(30) \zz(x2z - y3)2 + nyz5(x2z - y3) + vxzs + P(x2z - y3)3 = 0 

of which (III) is the projective model, as well as its eight double base points 
Pi, . . . , P 8 consecutive on the inflected branch of X2Z — y3 = 0 at (1, 0, 0), 
has four simple base points P ' , Ci, P , Rf consecutive on x = 0 at P ' : (0, 0, 1). 

The surface (III), being a quintic surface with plane sections of genus 4, 
must have a double curve of total order 2; and as the surface is rational, it 
must have singularities which debar it from having an effective adjoint plane. 
In fact, it is evident from (28) that the line x = t = 0 is a cuspidal edge of the 
second kind, the plane t = 0 cutting the surface in two double lines and a simple 
line, all consecutive. This is the image of the neighbourhood of the final simple 
base point Rf of the mapping system (30), and is the only line on the surface. 
/ = 0 is fundamental to the system (30), and with the neighbourhoods of P r , 
Qiy R represents a triple point of the surface at (0, 0, 1,0), from which it 
projects into the double plane with branch curve xbt + ^3/3 = 0, which is the 
same as the projection of F(2B) from the image of P r , as comparing (21) with 
(27), 

x: y: t = fg: gh: f2 = x2: x0: Xi. 

The tangent cone at this triple point is /3 = 0. The dilating transformation 

x: y: z: t = x'y': y'z'\ z'2: y't', 

x'\ y'\ z': t' = xz: y2: yz: zt 

maps the neighbourhood of (0, 0, 1,0) on the plane y' = 0 (with singularity of 
the mapping on the line y' = z' = 0) and in particular the point consecutive 
on x = t = 0 on the point (0, 0, 1,0), and the line consecutive in the plane 
/ = 0 on the line y' = t' = 0. It transforms the surface (III) into the surface 
P : 
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on which the line y' = tf = 0 is a cuspidal edge with the tangent plane t' = 0 
at all its points. Thus (III) has not only the two consecutive double lines in the 
plane x = 0, and the triple point (0, 0, 1,0), but a double line in the neighbour
hood of (0, 0, 1,0) in the tangent plane t = 0; and these are sufficient to reduce 
the genus of the surface to 0. It may be noted that it has a further triple point 
consecutive to (0, 0, 1, 0) on x = t = 0, and further singularities in the neigh
bourhood of this; but the detailed analysis of these hardly seems worth while. 
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