
Appendix D

Dirac equation and matrices

D.1 Definition and notations

If ψ is a generic notation of a fermion field, it can be expressed in terms of the usual
annihilation and creation operators as:

ψ(x) =
∫

d3 p

(2π )32E

∑
λ

[u( �p, λ)a( �p, λ)e−i pxv( �p, λ)b†( �p, λ)eipx ] (D.1)

where the integration is over the mass hyperboloid with p2 = m2 and p0 > 0. λ is the two
possible fermion helicities. The annihilation and creation operators satisfy the
commutation relations:

[a(p), a†(p′)] = [b(p), b†(p′)] = (2π )32Eδ3(p′ − p) , (D.2)

[a(p), a(p′)] = 0 = [b(p), b(p′)] .

The fermion spinors u(p) (particle) and v(p) (anti-particle) of mass m obey the Dirac
equation:

( p̂ − m)u(p) = 0 = ū(p)( p̂ − m) ,

( p̂ + m)v(p) = 0 = v̄(p)( p̂ − m) , (D.3)

and normalized as:

ū( �p, λ)u( �p, λ) = 2m = −v̄( �p, λ)v( �p, λ) (D.4)

with:

ū = u†γ 0

v̄ = v†γ 0 ,

p̂ = γµ pµ = γ0 p0 − γ · p , (D.5)

where γµ are the Dirac matrices. In four dimensions, these matrices can be defined as:

γ5 =
(

0 1
1 0

)
γµ =

(
0 σµ

−σµ 0

)
for µ = 1, 2, 3 γ0 =

(−1 0
0 1

)
(D.6)

in terms of the Pauli matrices σ :

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(D.7)
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They obey the properties:

{γµ, γν} = 2gµν , σµν ≡ i

2
[γµ, γν] , (D.8)

and:

(γ5)2 = 1 , and γ5γµ = −γµγ5 , (D.9)

with the definition:

γ5 = iγ0γ1γ2γ3 (D.10)

or:

γ5 = 1

4!
εµνλργ

µγ νγ ργ σ . (D.11)

The Dirac matrices are (anti)hermitians:

γµ = −γ +
µ , µ = 1, 2, 3 , γ +

0 = γ0 and γ +
5 = γ5 . (D.12)

D.2 CPT transformations

The action of the operators:
C ≡ charge conjugation, P ≡ parity transformation, T ≡ time reversal ,
on the fermion field ψ(t, �r ) are:

C ψ(t, �r ) = γ2ψ
†(t, �r )

T ψ(t, �r ) = −iγ1γ3ψ
†(−t, �r )

PT ψ(t, �r ) = γ0γ1γ3ψ
†(−t, −�r )

CPT ψ(t, �r ) = γ2γ0γ1γ3ψ(−t, −�r )
= iγ5ψ(−t, −�r ) , (D.13)

where:

ψ† = ψ̄γ0 . (D.14)

D.3 Polarizations

In the evaluation of unpolarized cross-section, one has to sum over polarizations of, for
example, fermions:∑

λ

u(p, λ)ū(p, λ) = p̂ + m ,
∑

λ

v(p, λ)v̄(p, λ) = p̂ − m , (D.15)

while for polarized cross-section, one inserts the projection matrices:

u

(
p, λ = ±1

2

)
ū

(
p, λ = ±1

2

)
= 1

2
( p̂ + m)

(
1 ± γ5ŝ

2

)
,

v

(
p, λ = ±1

2

)
v̄

(
p, λ = ±1

2

)
= 1

2
( p̂ − m)

(
1 ± γ5ŝ

2

)
, (D.16)
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where: s is the polarization four-vector of the (anti-)particle with energy-momnetum p:

s · p = 0 and s2 = −1 . (D.17)

For a photon or massless vector boson, the polarization is transverse:

εµ = (0, �ε) with �p · �ε = 0 . (D.18)

For unpolarized cross-section involving (massless) photons, one has to sum over
polarizations: ∑

polar.

ε∗
µεµ = −gµν . (D.19)

D.4 Fierz identities

In some calculations, it is useful to arrange products of fermion bilinears using Fierz
identities. Denoting by ψi the field of a fermion i , one has in four dimensions:

(ψ̄1ψ4)(ψ̄3ψ2) = 1

4

∑
µ

(ψ̄1γµψ2)(ψ̄3γ
µψ4) . (D.20)

Similar relation can be obtained by the substitution:

ψ4 → γνψ4 , ψ2 → γρψ2 , (D.21)

and by using the decomposition:

γµγν = 1

4

∑
σ

(T r γµγνγσ )γ σ . (D.22)

A typical Fierz rearrangement is the one of weak four-fermion operator:

(ψ̄1Lγ µψ2L )(ψ̄3Lγµψ4L ) = −(ψ̄1Lγ µψ4L )(ψ̄3Lγµψ2L ) (D.23)

where:

ψi L ≡ 1

2
(1 − γ5)ψi . (D.24)

Additional relations can be obtained by using:

(σµ)αβ(σµ)γ δ = 2εαγ εβδ . (D.25)

D.5 Dirac algebra in n-dimensions

The (anti)-commutation properties of the Dirac matrices in four dimensions given in
Eq. (D.8) are maintained, but the algebra becomes:1

γµγ µ = n1 = gµνgµν ,

γµγαγ µ = (2 − n)γα ,

γµγαγβγ µ = 4gαβ1 + (n − 4)γαγβ ,

γµγαγβγγ γ µ = −2γγ γβγα − (n − 4)γαγβγγ . (D.26)

1 See also the discussions in Section 8.2 for different aspects of dimensional regularization.
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The traces in n dimensions can be chosen to be the same as in four dimensions. The usual
properties are:

T r 1 = 4 (D.27)

and:

T r (γ µ1 . . . γ µm ) = 0 for m odd ,

T r (γ µ1 . . . γ µm ) = −T r (γ µm γ µ1 . . . γ µm−1 )

+ 2
m−1∑
i=1

(−1)i+1T r (γ µ1 . . . γ µi−1γ µi+1γ µm−1 ) gµi µm . (D.28)

Therefore, one can deduce:

T r γµγν = 4gµν ,

T r γµγνγργσ = 4(gµνgρσ − gµρgνσ + gµσ gνρ) ,

T r γλµνρστ = gλµTνρστ − gνλTµρστ + gλρTµνστ − gλσ Tµνρτ + gλτ Tµνρσ , (D.29)

with:

γλµνρστ ≡ γλγµγνγργσ γτ , Tµνρσ ≡ T r γµγνγργσ . (D.30)

The definition of γ5 is more delicate in n-dimensions. There are many definitions in the
literature (see e.g. [116] and the review in [2]). These definitions are good if the
corresponding Green’s functions satisfy constraints imposed by the Ward identities, and
do not induce unphysical anomalous term [116,119], which cannot be absorbed in the
Lagrangian counterterms. The most convenient and unambiguous definition is the one
encountered in four dimensions, which is either the one in Eq. (D.10) or the one in Eq.
(D.11), although the one in Eq. (D.10) does not exist for n < 4. In both cases, the most
important properties are:

(γ5)2 = 1, γ
†
5 = γ5, and γ5γµ = −γµγ5 . (D.31)

and:

[γ5, σµν] = 0 and γ5σµ,ν = i

2
εµνρσ σ ρσ . (D.32)

The traces involving γ5 are:

T r γ5 = 0 ,

T r γ5γµγν = 0 ,

T r γ5γµγνγργσ = 4iεµνρσ ,

T r γ5γλγµγνγργσ γτ = 4i[gµλενρστ − gλνεµρστ + gµνελρστ + gστ ελµνρ

− gρτ ελµνσ + gρσ ελµντ ]
T r γ5γµ1 . . . γµm = for m odd . (D.33)

Finally, in order to complete the presentation of the Dirac algebra in n dimensions, it is
also useful to remind the hermiticity:

γ 0γ µγ 0 = (γ µ)† , γ 0γ5γ
0 = −γ

†
5 = −γ5 , (D.34)
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and the parity properties:

CγµC−1 = −γ T
µ Cγ5C−1 = γ T

5 ,

CσµνC−1 = −σ T
µν C(γ5γµ)C−1 = (γ5γµ)T , (D.35)

where C is the charge conjuguate operator normalized as:

C2 = −1 . (D.36)

D.6 The totally anti-symmetric tensor

The totally anti-symmetric tensor has the same definition as in four dimensions:

εµνρσ =
⎧⎨
⎩

0, if two indices are equal
−1, if µνρσ = 0123
+1, if µνρσ = 1230 ,

(D.37)

while one can choose its properties as:

εµναβερναβ = −(n − 3)(n − 2)(n − 1)gρ
µ ,

εµναβερσαβ = −(n − 3)(n − 2)
(
gρ

µgσ
ν − gρ

ν gσ
µ

)
,

εµναβερστβ = −(n − 3)

∣∣∣∣∣∣
gρ

µ gσ
µ gτ

µ

gρ
ν gσ

ν gτ
ν

gρ
α gσ

α gτ
α

∣∣∣∣∣∣ (D.38)
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