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NON-LINEAR PREDICTION PROBLEMS FOR

ORNSTEIN-UHLENBECK PROCESS

SHEU-SAN LEE

§ 0. Introduction

We shall discuss in this paper some problems in non-linear prediction
theory. An Ornstein-Uhlenbeck process {U(t)} is taken to be a basic
process, and we shall deal with stochastic processes X(t) that are trans-
formed by functions / satisfying certain condition. Actually, observed
processes are expressed in the form X(t) = f{U(t)). Our main problem is
to obtain the best non-linear predictor X(t, τ) for X(t + τ), τ > 0, assum-
ing that X(s), s < t, are observed. The predictor is therefore a non-linear
functional of the values X(s), s < t.

Non-linear prediction theory that discusses how to obtain such non-
linear predictors has been considered in various situations. For instance,
I. I. Gihman and A. V. Skorohod (cf. [1], § 8, Chapter IV, Vol. I) have
considered optimum mean square predictor of X(t + τ), τ > 0, assuming
that the basic process V(s), s < t, itself is observed. As is well-known
the predictor X(t, τ) is given by the conditional expectation:

( 1) X(t, τ) = E{X(t + τ) I aXV)} , aXV) = σ{V(s); s<t}.

While A. M. Yaglom [5] has discussed the optimum mean square pre-
dictor assuming that Markov process V(t) is transformed by a function
/ with inverse f~ι and that X(s) = f(V(s)), s < t, axe observed.

In this case, it holds evidently that

2 X(t, τ) = E{X(t + τ)\X(s); s < t} = E{X(t + τ) \X(t)}

= E{X(t + τ) I V(t)} = E{X(t + τ) \ V(s); s < t} .

Yaglom's situation coincides with ours in the sense that the X(s) are
assumed to be given for s < t. In this case, too, the predictor (2) coin-
cides with (1) actually, because / is invertible.

Received May 24, 1982.

173

https://doi.org/10.1017/S002776300002050X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002050X


174 SHEU-SAN L2E

We now clarify the best non-linear predictor of X(t + τ), τ > 0, which

is the main topic of this paper. Now let &t{X) be the least σ-field

generated by X(s); s < t, and let X(t, τ) be the Jf

ί(X)-measurable random

variable for which

(3) E\X(t + τ)-X(t,τ)f

attains the minimum of E\X(t + τ) — Yf, Y being J^CSQ-measurable random

variable with finite variance. Such a random variable X(t, τ) always exists

and it is called the best non-linear predictor of X(t + r), τ > 0. Evidently,

it is given by the conditional expectation:

(4) X(t9τ) = E{X(t + τ)\at(X)}.

It depends on the properties of the basic processes and on the structure
.A

of the function /whether the explicit value of X(t, τ) can be given or not.

We shall discuss how to obtain the best non-linear predictor X(t, τ)

of X(t + τ), τ > 0, by means of the observed values X(s), s < t, here the

process {X(s)} is a new process transformed from Ornstein-Uhlenbeck

process {U(s)} by the function /, namely {X(s)} = {f(U(s))}.

As is mentioned above, the explicit form of X(t, τ) depends on the

structure of function /. Therefore our discussion will be restricted to

the following several cases: (l)-(4). In each case we are able to obtain

the exact value of the predictors.

(1) The function / has a single valley (peak) and is not symmetric

(cf. Theorem 1).

(2) The function / has a single valley (peak) and is symmetric on

a bounded interval (cf. Theorem 2).

(3) The function / is symmetric on ( — 00,00) (cf. Theorem 3).

(4) The function / has several valleys (peaks) (cf. Theorem 4).

We have hopes that similar results would be obtained in more general

cases where the basic processes are taken to be a multiple Markov process.

Such an approach will be discussed in separate paper.

ACKNOWLEDGEMENT. I am very grateful to Professor I. Kubo for

having given me kind help for writing this paper.

§ 1. Background

We will take a canonical Ornstein-Uhlenbeck process {U(t)} as the

basic process, and will assume regular condition on /. By a canonical
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PREDICTION PROBLEMS 175

Ornstein-Uhlenbeck process we mean a Gaussian process with continuous

paths, with expectation zero and with covariance E{U(t + τ)U(t)} = e~lτI.

The Ornstein-Uhlenbeck process [U(t)} is not only a Gaussian sta-

tionary process but also a strong Markov process together with {U( — t)}.

These properties will play important roles in the later discussion.

The semi-group {Tτ; τ > 0} of U(t) is given as follows

( 5 ) (Tτf)(x) = £ f(y)[2π(l - β"20]"1/2 exp

provided the integral exists.

LEMMA 1. ( i ) E{X(t + τ)\at(U)} = (Tτf)(U(t)),

St{U) = σ{U(s); s<t},

(ϋ) x(ί, r) = E{(τrf)(U(t)) iaxx)}.

Proof, (i) is clear from the Markov property of U(t). (ii) is also

obvious since we have (i) and

X(t, r) = E{X(t + τ)\at(X)} = E{E[X(t +

Our approach will be illustrated by the following three examples.

EXAMPLE 1. If / is a strictly monotone function, then we see that

&t(X)> since the σ-ίields generated by a single random variable

U(t) and by X(t), respectively, coincide with each other for each t. The-

refore we easily verify

( 6) X(t, r) = (TtfKU(£» = {Tτf){f-\X(t))) .

Such cases have been discussed by Yaglom [5], Zabotina [6] and others.

EXAMPLE 2. Let Hn(x) be the Hermite's polynomial of degree n

defined by

exp isx - Is2} = Σ -^rHM ,
I 2 J n=o n\

and put X(t) — Hn(U(t)). If n is odd, then although the σ-fields generated

by U(t) and X(t) respectively, do not coincide with each other for each

t, we can still show 36%{JJ) = &t(X), and hence the best non-linear pre-

dictor of X(t + τ) and the mean square error are given as follows

( 7) X(t, τ) = e— X(t) , σ\τ) = (1 - e~^)n\ .

https://doi.org/10.1017/S002776300002050X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002050X


176 SHEU-SAN LEE

Generally, if the equality @t{U) — &t(X) holds, then the best non-

linear predictor X(t, τ) is represented by using an explicit function

(Tτf)(U(t)), namely

However the value of U(t) is not always determined by means of observed

values X(s) — f(U(s)) for s < t. We are therefore interested in the cases

where the value of U(t) is determined from observed values under suitable

conditions for /, so as the predictor is obtained explicitly.

EXAMPLE 3. We shall then discuss a case where &t(U) Φ &t(X) but

(8) X(t,τ) = (Tτf)(U(t))

does hold. For instance, let n be an even number in Example 2. Then

we can show that @t{U) Φ &t{X) but (8) does hold, actually (7) does hold

(cf. Theorem 3 and Example 5). The mean square error of the best non-

linear predictor given by (8) is

with a = (1 - e-'ψ\

The canonical Ornstein-Uhlenbeck process can be canonicalϊy repre-

sented (with respect to the past and to future, respectively) by some

canonical Brownian motion Bit) and Bit) in such a way that

( 9) U(t) = V^e-1 Γ eλdB(λ) = /2V Γ e'λdB{λ) .

Here it is noted that

U(t) - U(s) = V2[B(t) - B(s)] - Γ U(r)dr

(10) Js

t

^ - B(t)] + £ U(r)dr .

PROPOSITION 1. // the function f is differentiable and T= T(ω) (<oo)

is a stopping time of U(t)9 then

(11) O(T, ω) = lim sup f{U<£] " / ^ ^ _, = \f'(U(T))\
riτ 2V|r — Γ|loglogl/|r — T\

https://doi.org/10.1017/S002776300002050X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002050X


PREDICTION PROBLEMS 177

holds. Moreover, if T is a stopping time of the time reversed Ornsteίn-

Uhlenbeck process {U(—t)}, then also

O(T, ω) = lim sup ^ A T O ) - / ( T O ) = \f(jj{T))\ .
r\τ 2V|r — T| log log 1/1 r — T\

Proof. By using the law of the iterated logarithm for Brownian

motion:

(12) lim sup-^^^-^'Ί^- = 1 ,
r-s V2|r — s | loglogl/ |r — s\

the formula (10) and the strong Morkov property imply the formula (11).

§2. The best non-linear prediction problem for functions with

single valley

Now, we assume that the function / is continuous on (—00,00),

strictly monotone decreasing (resp. increasing) and differentiable on

(—00, 0) (resp. on (0, 00)) and that / is normalized as /(0) = 0.

LEMMA 2. Putting θ = inf {u> 0; f(ύ) φf( — u)}, we have the following:

( i ) If θ = 0, then for any ε > 0 there exist u and U in the neigh-

bourhood D — {u; \u\ < ε} such that

f(u)=f(ύ), \f'(u)\.φ\f'(fi)\, " > 0 , B < 0 .

(ii) If 0 < θ < 00, then for any ε > 0 there exist u and ΰ in the

neighbourhood D = {u; 0 < f(ύ) — f(θ) < ε} such that

f(u) = f(u)9 \f'(u)\Φ\f'(π)\, u > 0 , u < o .

(iii) If θ — 00, then for any u, f(u) = f( — u) holds, namely the func-

tion f is symmetric.

We are going to discuss our prediction problems dividing them into

three cases, 0 = 0, 0 < # < o o , θ — 00, by virtue of the lemma above.

For h > 0 the inverse image of the function / consists of two points

with different sign; denote by f+\h) the positive one and by fz\h) the

negative one. Moreover, we define a stopping time T(h, t, ώ) of the time

reversed Ornstein-Uhlenbeck process {£/( — t)} for h > 0 by

(13) T(h) = T(h, t, ω) = s u p {q; X(q) = h,q<t).

If θ = 0, then we can choose a positive monotonical sequence hn j 0

such that
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(14) \ntΛK))\ Φ \Πf-Λhn))\

holds for each n, by Lemma 2 (i).

THEOREM 1. If θ — 0, then U(t) is 3&t(X)-measurable and the best non-

linear predictor of X(t + τ), τ > 0, is given by

X{t, τ) = (TTf)(U(t)) .

Actually, if X(t) = 0, then the value of U{t) is equal to zero. If

X(t) > 0, then taking a sequence {hn} as above and choosing n with

hn < X(t), we are given the value of U(t) by

f Λ W » i f ° < Γ < Λ « *> ω>> *>)
\f~ΛX(t)) if O(T(hn91, α>), ω) = \Πfz\hn))\ .

Proof of Theorem 1. We assume that for a fixed £ the values {X(r);

r < t} are observed. By the conditions of this theorem and Lemma 2 (i)

there exists an hn which satisfies (14). Let T(hn, t, ω) be the stopping

time defined by (13). Then by using the Proposition 1 we have

(15) O(T(hn, t, ω), ω) = \f'(U(T(hn)))\ .

Thus from (14) and (15) the values of U(T(hn)) are determined as follows

\f-\K) if O(T(hn, t, ω), ω) =
u(T(hn)) ^ _ w . f

Then the question is how to determine the value of U(t) by means

of the value U(T(hn)). If X(t, ω) > 0 and hn is chosen so as to hold

hn < X(t,ω), then by the definition of the T(hn, t, ω), X(r) does not pass

through the point zero in the time interval (T(hn), t). Hence if U(T(hn))

> 0 « 0 ) , then U{t) > 0 « 0 ) . Namely

ίfΛX(t)) if u(T(hn)) = fι\hn),

\fz\X{t)) if U(T(hn)) = fz\K).

Therefore, the value of U(t) is uniquely determined by the observed

values of X(r) for r < t. Hence U(t) is ^XX)-measurable. Thus

X(t, τ) = E{(Tτf)(U(t))\^t(X)} = (Trf)(U(t)) .

The above results are also valid when the graph of the equation

= f(%) involves parallel counter parts.
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COROLLARY. Suppose that the function f is continuously differentiable

on (—oo,oo) except at a point u0, strictly monotone in both sides of the

point vQ respectively and not symmetric (with respect to v0) in any neigh-

bourhood of the point uo Then &t{X) —λβtt(U) holds and the best non-

linear predictor of X(t + τ) = f(U(t + τ)), τ > 0, is given by

THEOREM 2. // 0 < θ < oo, then the best non-linear predictor of

X(t + τ), T > 0, is given by

X(t = ί(Zf)(U(t)) ifωeW,
9 mTf)(f~ΛX(t))) + (Tτf)(fz\X(t)))] iΐω^W,

where W = {ω; X(s, ω) > f(θ)9 T(0, t, ω) < 3s < t} and Γ(0, t, ω) is given by

(13). The value of U(t, ω) is given by (18) for ωeW.

Proof. Since 0 < θ < oo, by Lemma 2 (ii) we can choose a monotone

decreasing sequence {hn} such that hn \ f{θ) as n -> oo and

(16) ΠfΛK)) Φ -Πfz\hn))

holds.

Since for any ω e W there exists s satisfying X(s9 ω) > f(θ), T(0, t, ω)

< s < t, by the continuity of the path, there exists n such that

(17) T(0, t, ω) < T(hn, t,ω) <t .

Moreover by the Proposition 1 we have

O(T(hn, t, ω), ω) = \f'(U(T(hn)))\ for every n, a.e. ω

andlhence the value of U(T(hn)) is determined by

{f~\K) if O(T(hn\ ω) = \f'(f-ΛK))\ ,

Furthermore by using the arguments similar to the proof of The-

orem 1, we obtain

f/;ι(X(ί)) if O(T(hn), ω) - \fVl\hn))\ , ω 6 W ,

if O(Γ(Λll),ω) = |//(/: ι(Λ.))l, ^eW.(18, W - K

Therefore the value of U(t) is uniquely determined in terms of the

observed values X(r) for r < t under the condition W that there exists
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s such that X(s) > f(Θ) and T(0, t,ω)<.s<t. Namely under this condi-
tion U(t) is ^(JίO-measurable. However, since

= (Tτf)(U(t))Xw + XweE{(Tτf)(U(t))\^t(X)} ,

we have

(19) X(t,τ) = (TJ)(U(t)), ωeW.

If ω $ W, i.e. X(s, ω) < f(θ) for any 5 in the time interval (T(0, t, ω), t],
then during (T(0, t, ω), t], U(s) stays within the interval [—θ, θ], on which
the function / is symmetric with respect to the axis of the ordinate.
Although the value of U(s) is not uniquely determined by the value of
X(s), the best non-linear predictor of X(t + r), τ > 0, under the condition
Wc is given by

X(t, r) = E{(Trf)(U(t)) I ^e(X)}

= E{(TTf){U(t))Xwc\@t{X)} ίoxωξW.

To complete the proof of the theorem it is sufficient to show that

E{(τtf)( urn*. I a m = \{{TM u(t) i) + {τtf){ - \ u(t) \)}%w<.

Since W e 3§t(X), the Xwc(ω) is J'ί(X)-measurable so is the right-hand side
of (21). Therefore for any G e &t(X), we must show

(22) h

= ±{(Trf)(\U(t)\) + (TtfX-\U(t)\)}Xw<dP(ω) .
JG 2

It can be shown by noting the strong Markov property of U(t), the sym-
metry of the probability measure of Ornstein-Uhlenbeck process starting
from the origin.

THEOREM 3. // θ — oo, then the best non-linear predictor of X(t + τ),
τ > 0, is given by

t, τ) - (Tτf)(U(t)) = (TTf)(f-+\X(t))) = (Ttf)(fzKX(t))) .

Proof. Since f(u) — f(—u) holds for any u, it is easy to verify

(Γ,/X«) = (Γ,/)(-u) = (Γ,/X|«D .

Hence we have

https://doi.org/10.1017/S002776300002050X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002050X


PREDICTION PROBLEMS 181

X(t, τ) = E{{Tj)(U{t))\®t(X)} = E{(Ttf)(U(t))\f(U(s)); s < t]

= E{(T,f)(\U(t)\)\\U(s)\; s<t} = (Tτf)(\U(t)\)

= (TJ)(-\U(t)\) = (Tτf)(f-AX(t))) = (T,fXf-ΛX(ff)) •

EXAMPLE 4. Set

_ ί-au if u < 0 ,

~ t&u if u > 0

with a ψ b, ab> 0, and put X(£) = f(U(t)). Then we can easily have
θ = 0, and hence we obtain

, r) = (TJ)(U(t)) = &L+^>?- exp {-

+ (b - a)e-*

where

Φ(r) = -A_ Γ exp (-tλdy and ^ = Vf ^~er^ .

EXAMPLE 5. Set X(t) = f(U(t)) = β\U(t)\, β ψ 0. Then we obtain

X(t, r) = (TJ)(U(t)) = J^βδ exp f —ie-

E X A M P L E 6. S e t X(t) = f(U(t)) = (U(t))n, n=l92,>-. T h e n w e o b t a i n

ί>/21 / r, \

X(t, τ) = (Tj)(U(t)) = Σ ( o

n J exp {-τ(n -

§ 3. The best non-linear prediction problem with several peaks

We have discussed the prediction problem for a simpler function /
in Section 2. We now extend Theorem 1 for more general function /.
x ŝsume that the function / is continuously differentiate on (— oo, oo)
except at finite points {al9 a2, , an) and that / is strictly monotone on
each interval (aκ, aκ+1), K = 0, 1, 2, , n, where a0 — — oo, an + ι = oo.
Moreover assume that the function / is not symmetric in any neighbour-
hood of the points an namely for any ε > 0 there exist uκl and uκ2 in the
neighbourhood Dκ = {u; \u — aκ\ < ε}, K = 1, 2, , n, such that
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(23) f(ugί)=f(uκ2), \f'(uκί)\Φ\f'(uκ2)\9 uκί<aκ<uκ2.

As in Section 2, under these conditions, the predictor is given by

X(t, τ) = (T,f)(U(t)) ,

and the algorithm to determine the value of U(t) is seen.

For simplicity we shall consider only the case where the function /

possesses one maximal value and one minimal value: /maXimai = /(<*i)> /minimal

= f(a2). Divide the region (—00,00) of u into three intervals: Ix =

(—00, αj, I2 = (au a2] and J3 = (a2, 00). Denote by f} the restriction of /

to Ij and define fj1 on the interval Iά. Then of course, —00 = a0 < fίXx)

<<*i< fϊXx) <oί2< fs(x) < a3 = 00.

We suppose that X(r), r < t, are observed. Once we know the interval

Ij to which U(r) belongs at a given time r (< t), then we can immedi-

ately determine the value of U(r) by the value of X(r) in such a way

that

U(r) = / XXίr)).

In view of this we will first show that there exists at least one

random time point tQ(<t) such that the interval Ij including U(t0) is

determined at the time. Secondly, we will show that we can trace the

intervals which include U(s) after the time t0 by observing X(s), tQ < s

< t.

By the property of the function / there exist h* and jG such that

\f'(fϊW))\Φ\f'(f7W*))\, jΦh.

For instance, if either f(a2) > f(a0) = lim^...^ f(u) or f(a^) < f(az) =

lim^^ f(ύ) holds, then we may take Λ* in such way that

f(a2) > A* > f(a0) or /(«,)< A* < f(aΆ) .

Even in the contrary case we can choose A* which satisfies the above

condition.

For the A* define a stopping time !Γ(A*, ί, ω) by

T(A*) = T(h*9 t, ω) = sup {q; X(q) = A*, g < *},

then by the property of Ornstein-Uhlenbeck process we can easily see

that T(A*, t, ω) > —00. Therefore by using the argument similar to that

in the proof of the Theorem 1 we can determine the value of
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in particular we know the interval which includes U(T(h*)).

Suppose that at a given time r ( < t) the interval including U(r) is

known, say Iό. If the value X(s) hits f(aό) at a time earlier than /(^_i)

after the time r, then we can know which I3 or Ij+1 does include U(s)7

for s in the time interval between r and the first hitting time to the set

{f((Xj-i), f(aj + ι)} after the above hitting time to f(as\ by a similar way to

the proof of Theorem 1 observing the variations of X at points h such

that (23) holds with h = f{u3^ = f(uj2). Namely, the value of U(s) is

determined for any s in the above time interval. In the complementary

case, the value of U(s) is similarly determined for any s in the time in-

terval between r and the first hitting time to {/(αJ _2), /"(<*/)} after the first

hitting time to /(α^-i) after r.

We have thus known the value of U(r) at the time r = T(/ι*). Then

applying the above discussion recursively, we can determine the value

of £/(s), T(/ι*) < s < t, especially the value of U(i), in terms of X(s)} s < t.

Thus we see that U(t) is J^PQ-measurable, and hence we have proved

the following theorem.

THEOREM 4. // the function f satisfies the condition explained in the

b egίnnίng of this section. Then for X(t) = f(U(t)) the equality &t(X) —

&t(U) valid is and the best non-linear predictor of X(t + τ), τ > 0 is given

by

X(fi, τ) = (Tτf)(U(t)).
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