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Abstract

A reverse iterated function system is defined as a family of expansive maps {T1, T2, . . . , Tm} on a
uniformly discrete set M ⊂Rd . An invariant set is defined to be a nonempty set F ⊆ M satisfying
F =

⋃m
j=1 T j (F). A computation method for the dimension of the invariant set is given and some

questions asked by Strichartz are answered.
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1. Introduction

Fractal structure is characterized by the repetition of detail at small scales. Why not
large scales as well? Motivated by this, Strichartz [4] explored two ways to carry
this out. He considered a set of expansive mappings {T j }

m
j=1 defined on a discrete

complete metric space M ⊂Rd and called it a reverse iterated function system (RIFS).
He defined the notion of an invariant set which is a union of forward orbits of fixed
points of the iterated mappings from the RIFS in [4]. A simple example is the integer
Cantor set (all positive integers which are expressible in base three using only zeros
and twos as digits) discussed by Bedford and Fisher in [1]. For the case M = Z,
Strichartz defined the dimension of invariant sets and gave a method to compute the
dimension of invariant sets for the nonoverlapping case, as well as asking some basic
questions about the case when nonoverlapping occurs.

If we extend the mappings {T j }
m
j=1 to be defined on Rd , then {T−1

j }
m
j=1 is a

contractive iterated function system (IFS). It can be expected that an invariant set of
the RIFS {T j }

m
j=1 is related to the attractor of the IFS {T−1

j }
m
j=1. By this observation,

we obtain a method to compute the dimension of the invariant set of the RIFS {T j }
m
j=1

for overlapping cases, and three questions asked by Strichartz [4] are also answered.
We first introduce some definitions given in [4]; a small modification is made.
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DEFINITION 1.1. Let M ⊆Rd be a uniformly discrete set and {T j }
m
j=1 be a family of

expansive (under some metric of Rd ) transforms defined on Rd . Assume T j (M)⊆ M
for all j :

(i) {T j }
m
j=1 is called an RIFS;

(ii) P = {x ∈ M | TJ (x)= x for some J with positive length};
(iii) a nonempty compact set F ⊆ M is called an invariant set if

F =
m⋃

j=1

T j (F);

(iv) if the union in (iii) is disjoint, F is said to be nonoverlapping;
(v) for any x ∈ M , Fx = {TJ (x) | J = j1 . . . jn with 1≤ ji ≤ m and n > 0} is called

a forward orbit of x for {T j }
m
j=1.

For any invariant set F , a basic aspect of F is how dense it is in M . Strichartz [4]
gave the following definition for the case d = 1, M = Z.

DEFINITION 1.2. For an RIFS {T j }
m
j=1 on a uniformly discrete set M ⊆Rd , let F be

an invariant set. We define its dimension as

dim F = lim
r→+∞

log(#{F ∩ Br })/ log r;

if the limit exists, where Br is the ball centered at the origin with radius r > 0.

For the case that {T j (x)= Rx + b j }
m
j=1 and F is nonoverlapping, Strichartz [4]

obtained a method to compute the dimension of F , that is, dim F =− ln m/ ln γ .
In general, however, invariant sets are overlapping. Natural questions are: how can

we deal with the overlapping cases and when does overlapping occur? Our goal in this
paper is to consider these questions. We prove the following result.

THEOREM 1.3. Let a ∈ P; if the RIFS {T j (x)= Rk j x + b j }
m
j=1 is a family of

similitudes on Rd and the IFS {S j (x)= R−k j (x − b j )}
m
j=1 satisfies the finite type

condition (FTC), then
dim Fa = dimH(K ),

where K is the attractor of the IFS {S j }
m
j=1.

Ngai and Wang [2] have given a method for the computation of dimH(K ), so our
theorem means that we have been able to compute the dimension of any invariant set
of an RIFS satisfying the conditions stated in our theorem.

We arrange the paper as follows. In Section 2, we introduce some results of
Strichartz [4]. Then we discuss the questions asked by Strichartz by connecting the
related IFS. Section 3 is devoted to considering the computation of the dimensions of
invariant sets of the RIFS {T j }

m
j=1 for overlapping cases. Theorem 1.3 is proved there.
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2. Nonoverlapping and the open set condition

The next two lemmas are easy to see.

LEMMA 2.1. For any x ∈ M, Fx is a finite set if and only if Fx = {x}, and so
T j (x)= x for all j .

LEMMA 2.2 [4]. The system {T j }
m
j=1 is an RIFS defined on a uniformly discrete set

M ⊂Rd .

(i) There exists an invariant set F ⊆ M if and only if P 6= ∅.
(ii) The set P is finite.
(iii) Any invariant set F is a union of forward orbits of points in P.

In the following, we consider a self-similar RIFS defined on some uniformly
discrete set M ⊂Rd :

T j (x)= R j x + b j , j = 1, 2, . . . , m, (2.1)

where {R j }
m
j=1 are similar matrices with expansive ratios {γ j > 1}mj=1, and a self-affine

(or self-similar) RIFS:

T j (x)= Rx + b j , j = 1, 2, . . . , m, (2.2)

where R is an expanding matrix (which may be an affine or a similar matrix), b j ∈Rd .

DEFINITION 2.3. The following two iterated function systems

S j (x)= R−1
j (x − b j ), j = 1, 2, . . . , m, x ∈Rd , (2.3)

S j (x)= R−1(x − b j ), j = 1, 2, . . . , m, x ∈Rd , (2.4)

are called the dual IFSs of (2.1) and (2.2), respectively.

(i) We say that an RIFS satisfies the open set condition (OSC) if its dual IFS does.
(ii) We say that an RIFS satisfies the FTC (see [2]) if its dual IFS does.

REMARK. Since it is required that {T j }
m
j=1 satisfies

⋃m
j=1 T j (M)⊆ M for some

uniformly discrete set M ⊆Rd , so not all families of expansive transforms on Rd

belong to the family of RIFSs.
Both (2.3) and (2.4) are families of contractive transforms (IFS) defined on Rd . Let

K be the attractor of these IFSs [2].
It is easy to see the following.

LEMMA 2.4. For the RIFSs (2.1) and (2.2), P ⊂ K .

If R j ∈ Md(Z), b j ∈ Zd and M = Zd , Strichartz asked the following questions
in [4] for the case that d = 1.
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(1) Does there exist an RIFS of the form (2.1) with a nonoverlapping invariant set
but such that the images of Zd overlap?

(2) Is it possible for such RIFSs to have both overlapping and nonoverlapping
invariant sets?

(3) Is it possible for such RIFSs to have an overlapping invariant set but with just a
finite number of overlaps?

For (3), we have the following result which answers one aspect of the question.

PROPOSITION 2.5. For the RIFS (2.2) defined on a uniformly discrete set M ⊂Rd ,
assume that a ∈ P is a fixed point of some T j (1≤ j ≤ m) and Fa is an infinite set.

(i) The set Fa is nonoverlapping if and only if the dual IFS (2.4) satisfies the OSC.
(ii) If Ti (Fa) ∩ T j (Fa) 6= ∅, then Ti (Fb) ∩ T j (Fb) is infinite for any b ∈ P.

PROOF. (i) Assume z ∈ Ti (Fa) ∩ T j (Fa)(i 6= j), then there exist I, J so that
z = Ti (TI (a))= T j (TJ (a)). Since a = Tl(a) for some Tl , without loss of generality,
we assume |I | = |J | = n. Note that

Ti (TI (x))= Rn+1(x − a)+ T j (TJ (a)), T j (TJ (x))= Rn+1(x − a)+ T j (TJ (a)),

we have Ti I = T j J , so the OSC implies i I = j J , a contradiction.
Conversely, assume that Fa is nonoverlapping. Let I = i1i2 . . . in , J = j1 j2 . . . jn .

If I 6= J , then inin−1 . . . i1 6= jn jn−1 . . . j1.
Since SI = T−1

in in−1...i1
, SJ = T−1

jn jn−1... j1
and

SI (x)= R−n(x − bin − Abin−1 − · · · − An−1bi1),

SJ (x)= R−n(x − b jn − Ab jn−1 − · · · − An−1b j1).

Note that Fa is nonoverlapping, and Tin in−1...i1(a) and T jn jn−1... j1(a) belong to a
uniformly discrete set M , hence there exists a constant c > 0 such that

‖x − S−1
i1i2...in

◦ S j1 j2... jn (x)‖ = ‖Tin in−1...i1(a)− T jn jn−1... j1(a)‖ ≥ c,
∀I 6= J ∈6n, n > 0, x ∈Rd .

(2.5)

Choose a bounded invariant open set O of {Si }
m
i=1, let

N = sup
n>0

sup
I∈6n

#{J ∈6n
| SI (O) ∩ SJ (O) 6= ∅}.

Since

SI (O) ∩ SJ (O) 6= ∅ ⇐⇒ O ∩ S−1
I SJ (O) 6= ∅

⇐⇒ O ∩ (O − Tin in−1...i1(a)+ T jn jn−1... j1(a)) 6= ∅.

Let Bδ(x0) be a ball contained in O with radius δ < c/2, then all of the balls of

{Bδ(x0)− Tin in−1...i1(a)+ T jn jn−1... j1(a) | SI (O) ∩ SJ (O) 6= ∅,

J = j1 j2 . . . jn ∈6
n
}
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are disjoint for any given n and I = i1i2 . . . in ∈6
n , and contained in

O1 = {x ∈Rd
| ‖x − y‖ ≤ |O| for some y ∈ O},

where |O| is the diameter of O . Using (2.5) shows that N <+∞. Hence, there is an
integer n0 and I ∈6n0 such that

N = #{J ∈6n0 | SI (O) ∩ SJ (O) 6= ∅}. (2.6)

Fix this I , let

V =
+∞⋃
n=1

⋃
J∈6n

SJ (SI (O)).

It is easy to see that V is a bounded nonempty open set. Furthermore, it is an invariant
open set of the dual IFS.

If Si (V ) ∩ S j (V ) 6= ∅ for some i 6= j , then there exist τ, σ such that

Si (Sτ (SI (O))) ∩ S j (Sσ (SI (O))) 6= ∅. (2.7)

Let |τ | = n, |σ | = k. Without loss of generality, we can assume n ≥ k, then τ I can
be written as τ I = τ1τ2 with |τ1| = k + n0. Since O is invariant, so Si (Sτ (SI (O)))
⊆ Si (Sτ1(O)) (see (2.7)) implies

Si (Sτ1(O)) ∩ S j (Sσ (SI (O))) 6= ∅.

Hence,

{J ∈6n0+k+1
| S j (Sσ (SI (O))) ∩ SJ (O) 6= ∅}

⊇ {(iτ1)} ∪ {( jσ J ) | J ∈6n0, SI (O) ∩ SJ (O) 6= ∅}.

Hence, #{J ∈6n0+k+1
| Si (Sτ (SI (O))) ∩ SJ (O) 6= ∅}> N by (2.6) and i 6= j , it

contradicts the definition of N .
Therefore, Si (V ) ∩ S j (V )= ∅ for all i 6= j , that is, the dual IFS (equivalently the

RIFS) satisfies the OSC.
(ii) Assume z ∈ Ti (Fa) ∩ T j (Fa), i 6= j . Note that a is a fixed point of some

Tl , the above proof implies that Ti (TI (a))= T j (TJ (a)) for some I = i1i2 . . . i p,
J = j1 j2 . . . jp. Since Ti TI (x)= R p+1(x − a)+ Ti I (a), T j TJ (x)= R p+1(x − a)
+ T j J (a). Hence, Ti I = T j J and so Ti (Fb) ∩ T j (Fb)⊇ Ti TI (Fb) for all b ∈ P . Since
Fa is infinite, by Lemma 2.1, Fb is also infinite, so Ti (Fb) ∩ T j (Fb) is an infinite set. 2

The following example answers question (3) in another aspect.

EXAMPLE 2.6. Let T1(z)= 9z + 2, T2(z)= 9z − 8, T3(z)= 9z − 18, and T4(z)
= 9z − 36.

Then the dual IFS is

{S1(x)= 1
9 (x − 2), S2(x)= 1

9 (x + 8), S3(x)= 1
9 (x + 18), S4(x)= 1

9 (x + 36)}.
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It is easy to see that the dual IFS {S j }
4
j=1 satisfies the OSC with respect to the invariant

open interval V = (− 1
4 ,

9
2 ).

For this RIFS, 1 is the fixed point of T2, so F1 is nonoverlapping by
Proposition 2.5(i).

However, for 0, the fixed point of T31, we have T3(F0) ∩ T4(F0)= {−18} and
Ti (F0)

∩ T j (F0)= ∅ for the other cases of i 6= j .
This shows that, if a ∈ P is not a fixed point of some Ti (i = 1, 2, . . . , m), Fa

may be overlapping even if the RIFS satisfies the OSC, that is, the conclusion of
Proposition 2.5(i) does not hold without the assumption that a ∈ P is a fixed point
of some Ti (1≤ i ≤ m).

PROOF. Let b1 = 2, b2 =−8, b3 =−18 and b4 =−36.

CLAIM 1. If Ti1i2...in (0)− 2= T j1 j2... jp (0) and p > 0, then i1 = 1, j1 = 3 and

Ti2...in (0)= T j2... jp (0)− 2. (2.8)

Since p > 0, so Ti1i2...in (0)− 2= T j1 j2... jp (0) implies that n > 0 and

9Ti2...in (0)+ bi1 − 2= 9T j2... jp (0)+ b j1 .

Hence, 9|(bi1 − 2− b j1), this means that i1 = 1 and j1 ∈ {3, 4}. If j1 = 4, then
the above equality implies Ti2...in (0)= T j2... jp (0)− 4, so 9|(bi2 + 4− b j2), which is
impossible. Hence, j1 = 3 and (2.8) hold.

CLAIM 2. If Ti1i2...in (0)− 2= T j1 j2... jp (0), then T j1 j2... jp (0)= 0.

Assume Ti1i2...in (0)− 2= T j1 j2... jp (0) and p > 0. If n = 1, Claim 1 implies
that i1 = 1, j1 = 3 and so T j2... jp (0)= 2, hence T j1 j2... jp (0)= 0. Assume that the
conclusion is true for n < k. For the case n = k > 1, Claim 1 implies that i1 = 1,
j1 = 3 and

T j2... jp (0)− 2= Ti2...ik (0).

Use Claim 1 repeatedly, we have j2 = 1, i2 = 3 and

Ti3...in (0)− 2= T j3... jp (0).

Hence, T j3... jp (0)= 0 by induction. Therefore, T j1 j2... jp (0)= 0 by j1 = 3, j2 = 1.
We now turn to prove the conclusion of the example. Assume z ∈ Ti (F0) ∩ T j (F0).

Without loss of generality, we can assume i > j . Then there exist I, J such that
Ti (TI (0))= T j (TJ (0)). Hence,

9TI (0)+ bi = 9TJ (0)+ b j , (2.9)

so 9|(bi − b j ). Note that i > j , we have i = 4 and j = 3. Therefore, Ti (F0)

∩ T j (F0)= ∅ for other cases of i 6= j .
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If i = 4 and j = 3, then (2.9) implies

TI (0)− 2= TJ (0).

The result of Claim 2 implies TJ (0)= 0, so T3(TJ (0))=−18. Therefore T3(F0)

∩ T4(F0)= {−18} by noting that T3(0)= T41(0)=−18. The proof is complete. 2

For general case, we do not know whether a general conclusion as in the above
example is true. We have the following conjecture.

CONJECTURE. If the RIFS (2.2) satisfies the OSC, then Ti (Fa) ∩ T j (Fa) is finite for
any distinct i, j and a ∈ P .

For questions (1) and (2), we have the following two examples.

EXAMPLE 2.7. Suppose T1(z)= 4z, T2(z)= 4z − 3, T3(z)= 4z − 24, and T4(z)=
4z − 27. Then the images of Z overlap. It is easy to see that P = {0, 1, 8, 9} and F0,
F1, F8 and F9 are nonoverlapping by Proposition 2.5(i), since the dual IFS

{S1(x)= 1
4 x, S2(x)= 1

4 (x + 3), S3(x)= 1
4 (x + 24), S4(x)= 1

4 (x + 27)}

generates a tile [0, 3] ∪ [6, 9] and so satisfies the OSC. However, the invariant set
F1 ∪ F9 is overlapping, since T13(9)= 48= T221(1).

This example shows that all forward orbits of points in P are nonoverlapping does
not imply that a union of some of them is nonoverlapping or that the images of Zd

under T j are nonoverlapping. We have answered questions (1) and (2).
Furthermore, we have the following example.

EXAMPLE 2.8. Suppose T1(z)= 4z, and T2(z)= 3z + 2. Then T1(Z) ∩ T2(Z) is
infinite. It is easy to see that P = {0,−1}, F−1 is nonoverlapping, but T1(F0) ∩

T2(F0)= {8}.

3. Dimensions of invariant sets

We consider the dimensions of invariant sets of the RIFS (2.1) in this section. By
Lemma 2.2, we need only consider a forward orbit Fa with a ∈ P .

For the RIFS (2.1) and the dual IFS (2.3), let γ j > 0 be the expansive ratio of T j .
Define

γ =max
j
{γ j },

3k = {I = i1i2 . . . in ∈6
n
| γ−1

i1i2...in
≤ γ−k < γ−1

i1i2...in−1
, n > 0}, ∀k ∈N,

3̃k = {I = i1i2 . . . in ∈6
n
| in . . . i2i1 ∈3k, n > 0}, ∀k ∈N,

Nk = #{SJ | J ∈3k}, ∀k ∈N.

We first consider nonoverlapping forward orbits.
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THEOREM 3.1. For an RIFS defined in (2.1), let Fa be a forward orbit with a ∈ P. If
Fa is nonoverlapping, then its dimension is the solution of

m∑
j=1

γ−αj = 1, (3.1)

that is, dimH(K )= dim Fa .

PROOF. Strichartz has proved the result when R j = R for all j and mentioned the
general result in [4]. For completeness, we give a proof here.

Since Fa is nonoverlapping, let µ be the counting measure on Fa , then

µ(E)=
m∑

i=1

µ◦T−1
j (E), ∀E ⊆ Fa . (3.2)

Consider the dual IFS {S j (x)= R−1
j (x − b j )}

m
j=1, there is a unique nonempty

compact set K such that K =
⋃m

j=1 S j (K ). Since a ∈ K , so R−1
J (a − bJ )= T−1

J (a)

∈ K , ‖R−1
J bJ‖ ≤ 2|K | for all J . Hence, there exists a constant c > 0 such that

‖R−1
J bJ‖< c for all J , where RJ = R j1 R j2 . . . R jn and

bJ = b j1 + R j1b j2 + R j1 R j2b j3 + · · · + R j1 R j2 . . . R jn−1b jn .

Since
T−1

J (Br )= R−1
J (Br − bJ ),

so
Bγ−k−1r−c ⊆ T−1

J (Br )⊆ Bγ−kr+c, ∀J ∈3k . (3.3)

By the definition of 3k , the identity (3.2) implies

µ(Br )=
∑
J∈3k

µ ◦ T−1
J (Br ).

Use relation (3.3), then∑
J∈3k

µ(Bγ−k−1r−c)≤ µ(Br )≤
∑
J∈3k

µ(Bγ−kr+c), ∀k > 0. (3.4)

Since
∑m

j=1 γ
−α
j = 1, by the definition of 3k , it is easy to show that

∑
J∈3k

γ−αJ = 1. Since γ k
≤ γJ < γ

k+1 when J ∈3k , we have

γ kα
≤ #3k < γ

(k+1)α. (3.5)

For each large r > 0, let k = k(r) ∈N be such that γ k+l
≤ r < γ k+1+l , where l > 0

is a fixed integer satisfying γ l−1 > c, then (3.4) and (3.5) implies

α ≤ lim inf
r→+∞

log µ(Br )

log r
≤ lim sup

r→+∞

log µ(Br )

log r
≤ α.
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Therefore,

lim
r→+∞

log µ(Br )

log r
= α. 2

We now consider overlapping forward orbits.

LEMMA 3.2. If the dual IFS (2.3) satisfies the FTC, then

dimH(K )= lim
k→+∞

log Nk

log γ k ,

where dimH is the Hausdorff dimension and K is the attractor of the dual IFS (2.3).

PROOF. Note that Nk is equal to |Vk | defined in [2, p. 2]; by [2, Lemma 3.2] and the
proof of [2, Theorem 1.1], we see that the limit

lim
k→+∞

log Nk

log γ k

exists and

dimH(K )= lim
k→+∞

log Nk

log γ k . 2

THEOREM 3.3. Let a ∈ P, if the RIFS (2.1) satisfies the FTC and there is a matrix R
and integers k j > 0 such that R j = Rk j for all j , then

dim Fa = dimH(K )= lim
k→+∞

log Nk

log γ k .

PROOF. Without loss of generality, we assume that there exist a1, a2, . . . , ad ∈ Fa to
be a linearly independent set.

By Lemma 3.2, we only need to show that

lim inf
r→+∞

log Nk

log γ k ≤ lim inf
r→+∞

log(#{Fa ∩ Br })

log r

≤ lim sup
r→+∞

log(#{Fa ∩ Br })

log r
≤ lim sup

k→+∞

log Nk

log γ k . (3.6)

Assume that the dual IFS (2.3) satisfies the FTC with respect to bounded invariant
open set V . Assume, without loss of generality, γ =max{γ j } = ϑ

k1 , where ϑ > 1 is
the expansive ratio of the matrix R.

Similar to (3.3), there is a constant c > 0 independent of k such that

TJ (a) ∈ Bγ kc, ∀J ∈ 3̃k .

Since R j = Rk j and TJ (x)= RJ (x − a)+ TJ (a), by the assumption

γ =max{γ j } = ϑ
k1, k1 = max

1≤i≤m
{ki }.
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If J ∈ 3̃k , then TJ (x)= Rkk1+r (x)+ TJ (a) for some integral r satisfying 0≤ r < k1,
so

#{TJ | J ∈ 3̃k, TJ (a)= z} ≤ k1, ∀z ∈ Zd .

Therefore,

#(Fa ∩ Bγ kc)≥
Nk

k1
.

This means that

lim inf
k→+∞

log Nk

log γ k ≤ lim inf
r→+∞

log(#{Fa ∩ Br })

log r
. (3.7)

For any fixed ε ∈ (0, ϑ − 1), let

Mε = ε
−1 max{‖b j‖ : 1≤ j ≤ m},

then

‖T j (x)‖ ≥ γ j‖x‖ −max{‖b j‖ : 1≤ j ≤ m}

≥ (ϑk j − ε)‖x‖ ≥ (ϑ − ε)k j ‖x‖> ‖x‖, if ‖x‖> Mε.

If J = j1 j2 . . . jn ∈3k , then γ j1 j2... jn ≥ γ
k . Hence,

‖TJ (x)‖ ≥ (ϑ − ε)
k1k
‖x‖> ‖x‖, if ‖x‖> Mε.

Note that we have assumed that γ =max γ j = ϑ
k1 , that any z ∈ Fa ∩ BMε(ϑ−ε)

kk1 can

be written as z = TJ (b) for some b ∈ BMε ∩ Fa and that J ∈6∗ with γJ < γ
k+1.

Hence, there exist J1 ∈
⋃max{ki }

j=0 6 j , J2 ∈
⋃k

j=0 3 j such that J = J1 J2, where

30 =6
0
= ∅. Let Q = #(

⋃max{ki }

j=0 6 j ), N0 = #(BMε ∩ Fa), then

#({Fa ∩ BMε(ϑ−ε)k
})≤ N0 Q

k∑
j=1

N j . (3.8)

From Lemma 3.2, we see that

lim sup
k→+∞

log
∑k

j=1 N j

log γ k = lim sup
k→+∞

log Nk

log γ k .

Therefore, (3.8) implies

lim sup
r→+∞

log(#{Fa ∩ Br })/ log r

= lim sup
k→+∞

log(#{Fa ∩ BMε(ϑ−ε)
kk1 })

log(Mε(ϑ − ε)kk1)

≤
log ϑ

log(ϑ − ε)
lim sup
k→+∞

log Nk

log γ k , ∀ε ∈ (0, ϑ − 1).
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Let ε→ 0,

lim sup
r→+∞

log(#{Fa ∩ Br })

log r
≤ lim sup

k→+∞

log Nk

log γ k .

This relation and (3.7) imply (3.6), and we complete the proof. 2

COROLLARY 3.4. For the RIFS (2.2) and a ∈ P, assume that R is a similar expansive
matrix with a similar ratio γ > 1. If the RIFS satisfies the OSC, then the dimension of
Fa is log m/log γ .

For an RIFS (2.2) satisfying the OSC, a forward orbit may overlap, but this corollary
indicates that it will not have too many overlaps.
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