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The aim of this paper is to give a classification theorem for commutative torsion filial rings.
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1. Introduction

All considered rings are associative but do not necessarily have identity. We say that
a ring R is an H-ring if all its subrings are ideals. H-rings were investigated by many
authors (see [1, 2, 9–12]). A detailed description of the structure of torsion H-rings
turned out to be one of the most difficult problems.

A classification of H-rings was obtained independently by Kruse in his
dissertation [9] and by Andrijanov in [2]. Andrijanov showed that there are sixteen
types of these rings [2, Theorem 2]. Unfortunately, the still unanswered question is
whether there exists any isomorphism between any two rings from the same class.
This problem seems complicated because a variety of parameters define these classes.

A ring R is called filial (left filial), if for any ideal (left ideal) J of R, and any
ideal (left ideal) I of J, I is an ideal (left ideal) of R. The notion of a filial ring is a
natural generalization of the notion of an H-ring. Filial rings and left filial rings were
investigated by many authors (see [5–8]). For example, Filipowicz and Puczyłowski
in [8] obtained the structure of left filial algebras over a field.

However, the problem of a classification of filial rings is much more complicated
and subtle. So far, the most important results concern the case of commutative filial
rings (see [3–5]).

The purpose of this paper is to give a complete classification of commutative torsion
filial rings. The main theorem of this work (Theorem 4.1) is a surprising analogue
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of [8, Theorem 4.3]. Nevertheless, our proof is quite different from the one in [8] and
requires fundamentally new ideas and methods.

2. Preliminary results

Throughout the paper, N and P stand for the set of all positive integers and the set
of all primes, respectively. For a ring R, we denote by N(R) the nilradical of R, and by
R+ the additive group of R. We write o(x) for the order of an element x of the group
R+. For p ∈ P we let Rp = {x ∈ R : pk x = 0 for some k ∈ N} and R(p) = {x ∈ R : px = 0}.
We say that a ring R is of bounded exponent if there exists M ∈ N such that Mx = 0 for
every x ∈ R, otherwise we say that R is of unbounded exponent. We say that a ring R is
a p-ring if R+ is a p-group for a prime number p. If R is both a p-ring and an H-ring,
we shall say that R is an H-p-ring. For a subset S of a ring R, we denote by 〈S 〉 the
subgroup of R+ generated by S , and by lR(S ) the left annihilator of S in R.

The term almost null ring was introduced by Kruse in [10]. These rings play an
important role in the study of certain H-rings.

D 2.1 [10, Definition 2.1]. We say that a ring R is almost null if for every
a ∈ R:

(i) a3 = 0;
(ii) Ma2 = 0 for some square-free integer M (M = Ma);
(iii) aR + Ra ⊆ 〈a2〉.

Clearly, every almost null ring R is an H-ring such that R3 = 0. Moreover, every
homomorphic image and every subring of an almost null ring are almost null. The
importance of this notion lies in the following proposition.

P 2.2 [10, Proposition 2.5]. A nil p-ring R of an unbounded exponent is an
H-ring if and only if R is almost null.

We begin by recalling a few well-known facts.

P 2.3 [7, Corollary 2.3]. A commutative nil ring R is filial if and only if R is
an H-ring.

L 2.4 (see [8, Theorem 3.3]). Let R be a nil H-ring such that pR = 0 for a prime
p. Then R is almost null.

R 2.5. Let C be a commutative ring with identity 1 and let A be a C-algebra.
We denote by (1C , A) the C-algebra obtained from A by adjoining an identity 1 of C.
Obviously, (1C , A)+ = C+ ⊕ A+. For any c ∈C, a ∈ A we write c + a instead of the pair
(c, a). According to this notation we have A C (1C , A) and (1C , A)/A �C. It is also
clear that if A is commutative, then the algebra (1C , A) is commutative too. Moreover,
if A possesses an identity, then (1C , A) �C ⊕ A. Note that every ring is a Z-algebra in
a natural way.

D 2.6. We say that R is a K0-ring if R is a commutative filial ring with identity,
such that N(R) , 0 and R/N(R) is a field.
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In [5] we considered K-rings, that is, noetherian K0-rings. In that paper we proved
the following result, which is important in the description of K0-rings.

T 2.7 [5, Theorem 4.3]. For a given ring R with identity 1, the following
conditions are equivalent:

(i) R is a K0-ring;
(ii) there exists a commutative almost null ring N such that N C R, pN = 0 for some

p ∈ P, R = 〈1〉 + N, o(1) = pm for some m ∈ N, and if m = 1, then N , 0.

A detailed study of a classification of K-rings, (especially the proof of [5,
Theorem 4.5]) enables us to obtain a similar classification of K0-rings.

T 2.8. The rings described in Examples 2.9–2.11 are all K0-rings (up to
isomorphism).

E 2.9 (see [5, Example 1]). Let n ∈ N, p ∈ P and let N be a commutative
almost null ring such that pN = 0. If n = 1 then we additionally assume that N , 0.
Then N is a Zpn -algebra with a natural external multiplication

k ◦ a = ka for k ∈ Zpn , a ∈ N,

and the ring (1Zpn , N) is a K0-ring.
Let m ∈ N and let M be a commutative almost null ring such that pM = 0. If m = 1

then we additionally assume that M , 0. Then (1Zpn , N) � (1Zpm , M) if and only if
n = m and N � M.

E 2.10 (see [5, Example 2]). Let p be any prime and m ≥ 2 be a positive
integer, and let t0 ∈ Zp \ {0}. Denote by P the Zpm -algebra generated by 1, x with
the relations px = 0, x2 = t0 pm−1 · 1. Every element of P can be written as k + lx for
uniquely determined k ∈ Zpm , l ∈ Zp, and P is a filial ring.

Let B be a Zp-algebra such that B2 = 0. Then B is a P-algebra with external
multiplication

(k + lx) ◦ b = kb for k ∈ Zpm , l ∈ Zp, b ∈ B.

By Theorem 2.7, the ring (1P, B) is a K0-ring. Notice that, if in [5, Example 2] we
replace |B| by dimZp B, and use the same arguments, then for p = 2, t0 = 1 and for fixed
m ≥ 2 and fixed B there a exists uniquely determined (up to isomorphism) ring (1P, B),
whereas for fixed p ≥ 3, m ≥ 2 and B there exist exactly two (up to isomorphism) rings
(1P, B). One of them can be obtained by setting t0 = 1. The other one can be obtained
by taking t0 as an arbitrary nonresidue modulo p.

E 2.11 (see [5, Example 3]). Let p be an odd prime and m ≥ 2 be a positive
integer and let t0 ∈ Zp \ {0}. Denote by P the Zpm -algebra generated by elements
1, x, y with the relations xy = yx = px = py = 0, x2 = t0 pm−1 · 1, y2 = αx2, where −α is
a fixed nonresidue modulo p. Every element of P can be written as k · 1 + l1x + l2y for
uniquely determined k ∈ Zpm , l1, l2 ∈ Zp. From Theorem 2.7 it follows that P is a filial
ring.
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Let B be a Zp-algebra such that B2 = 0. Then B is a P-algebra with natural external
multiplication

(k + l1x + l2y) ◦ b = kb for k ∈ Zpm , l1, l2 ∈ Zp, b ∈ B.

By Theorem 2.7, the ring (1P, B) is a K0-ring.
Let C′ be a Zp-algebra with basis {x1, x2

1, y1} and the relations x1y1 = y1x1 = x3
1 =

0, y2
1 = βx2

1 for a nonresidue −β modulo p. Let s0 ∈ Zp \ {0}. Denote by P′ the
Zpm′ -algebra generated by the elements 1, x1, y1 with the relations x1y1 = y1x1 = px1 =

py1 = 0, x2
1 = s0 pm′−1 · 1, y2

1 = βx2
1.

If (1P, B) � (1P′ , B′), then replacing |B| by dimZp B in [5, Example 3] and using the
same arguments we obtain m = m′, P � P′ and B � B′.

Conversely, assume that m = m′ and let g : B→ B′ be an isomorphism of rings.
Then there exists a nonzero γ ∈ Zp such that β = γ2α, because both −α and −β are
nonresidues modulo p. It is well known that {u2 + v2∆ : u, v ∈ Zp} = Zp for a nonzero
∆ ∈ Zp. So, there exist l1, k1 ∈ Zp such that t0 ≡ s0(l21 + k2

1γ
2α) mod p. Moreover,

there exists γ′ ∈ Zp such that γ · γ′ ≡ 1 mod p. Set l2 = −αγk1, k2 = γ′l1. One can
easily check that a function F : (1P, B)→ (1P′ , B′) given by

F(U · 1 + V x + Wy + b) = U · 1 + (Vl1 + Wl2)x1 + (Vk1 + Wk2)y1 + g(b),

where U ∈ Zpm , V, W ∈ Zp, is an isomorphism of rings.
This shows that for fixed m ≥ 2 and B there exists a uniquely determined (up to

isomorphism) ring (1P, B). We obtain this ring by setting, for instance, t0 = 1 and
taking −α as an arbitrary nonresidue modulo p.

A ring R is strongly regular if a ∈ Ra2 for every a ∈ R. It is well known that all
strongly regular rings are von Neumann regular, and for commutative rings this two
properties coincide. The class of all strongly regular rings S form a radical in the sense
of Kurosh and Amitsur. One can easily check that every strongly regular ring is filial.

L 2.12. Every K0-ring R is S-semisimple.

P. Assume that S(R) , 0. Then N(R) ∩ S(R) = 0 and (N(R) ⊕ S(R))/N(R) is a
nonzero ideal in the field R/N(R). Hence N(R) ⊕ S(R) = R. But R is a ring with
identity, so N(R) is also a ring with identity, which is a contradiction. �

3. Useful lemmas concerning idempotents in filial rings

L 3.1. Let R be a commutative filial ring containing a nil ideal I such that I is a
p-ring. Then, for every idempotent e ∈ R, eI = 0 or ei = i for every i ∈ I.

P. Suppose the lemma does not hold. Then eI and J = {ei − i : i ∈ I} are nonzero
ideals of R contained in I and such that eI ∩ J = 0. Because I is a nil p-ring, there
exist nonzero a ∈ eI and b ∈ J such that a2 = b2 = 0 and pa = pb = 0. Hence ab = 0,
〈a〉 ∩ 〈b〉 = 0 and this implies 〈a + b〉 = [a + b]. From Proposition 2.3 it follows that I
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is an H-ring, so by filiality of R, 〈a + b〉 C R. Therefore, e(a + b) = k(a + b) for some
k ∈ Z. But e(a + b) = ea + eb = a + 0 = a, so a = ka + kb. Hence kb ∈ 〈a〉 ∩ 〈b〉 = 0, so
kb = 0 and, in consequence, p | k and ka = 0, so a = 0. This is a contradiction. �

L 3.2. Let R be a commutative filial ring such that N(R) is a p-ring and R/N(R) ∈
S. If e ∈ R is an idempotent such that ei , i for some i ∈ N(R), then eN(R) = 0 and
Re ∈ S.

P. From Lemma 3.1 we get at once that eN(R) = 0. Thus N(R) ⊆ lR(e) and
R = Re ⊕ lR(e), so Re � (Re + N(R))/N(R) C R/N(R). But R/N(R) ∈ S and the radical
S is hereditary, so Re ∈ S. �

L 3.3. Let R be a commutative filial ring such that N(R) is a p-ring and R/N(R) ∈
S. Then for every idempotent e ∈ R, e < S(R) if and only if ei = i for every i ∈ N(R).

P. ⇒. Suppose the assertion of the lemma is false. Then eN(R) = 0 by Lemma 3.1,
and hence eR ∩ N(R) = 0, because if er ∈ N(R) for some r ∈ R, then 0 = e(er) = e2r =

er. It follows that eR � (eR + N(R))/N(R) C R/N(R). But R/N(R) ∈ S, so eR ∈ S. Thus
eR ⊆ S(R) and e = e2 ∈ eR, so e ∈ S(R), which is a contradiction.
⇐. A ring S(R) is reduced and N(R) is a nil ring, so obviously S(R) ∩ N(R) = 0 and

S(R) · N(R) = 0. �

L 3.4. Let R be a commutative filial ring such that N(R) is a p-ring and R/N(R) ∈
S. If S(R) + N(R) , R, then there exists an idempotent e ∈ R such that N(R) ⊆ eR and
R = eR ⊕ lR(e). Moreover, lR(e) ∈ S.

P. Take any x ∈ R \ (S(R) + N(R)). Since R/N(R) is a strongly regular ring, there
exists y ∈ R such that x − x2y ∈ N(R) and yx + N(R) is an idempotent in R/N(R).
But N(R) is a nil ideal, hence the Köethe-Dickson theorem on lifting idempotents
implies yx − e ∈ N(R) for some idempotent e ∈ R. Therefore, x − ex = (x − x2y) +

x(xy − e) ∈ N(R), which yields x ∈ eR + N(R). But x < S(R) + N(R), so e < S(R). By
Lemma 3.3, ei = i for every i ∈ N(R). Thus N(R) ⊆ eR and N(eR) = N(R). Moreover,
R = eR ⊕ lR(e), so lR(e) ∈ S. �

L 3.5. Let R be a commutative filial ring such that N(R) is a p-ring and R/N(R) ∈
S. If eN(R) = 0 for every idempotent e ∈ R, then R = S(R) ⊕ N(R).

P. Take any a ∈ R. Since R/N(R) ∈ S, there exist b, e ∈ R, e = e2, and i ∈ N(R)
such that a − ba2 ∈ N(R) and ba = e + i. Hence a − ae ∈ N(R) and a ∈ Re + N(R).
Lemma 3.2 implies that Re ∈ S. In consequence, a ∈ S(R) + N(R). �

L 3.6. Let R be a commutative filial p-ring such that N(R) is a ring of unbounded
exponent. Then R = S(R) ⊕ N(R).

P. Take any idempotent e ∈ R. If eN(R) , 0, then N(R) = N(R)e by Lemma 3.1.
But pne = 0 for some n ∈ N, so pnN(R) = 0, which is a contradiction. We thus get
eN(R) = 0 and, by Lemma 3.5, R = S(R) ⊕ N(R). �
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L 3.7. Let R be a commutative filial ring with identity such that N(R) is a p-ring
and R/N(R) ∈ S. Then R = 〈1〉 + S(R) + N(R).

P. By Proposition 2.3, N(R) is an H-ring. From [2, Lemma 1 and Theorem 2],
it follows that N(R) is nilpotent. So, there exists nonzero i0 ∈ lN(R)(N(R)). Then
〈i0〉 C N(R) and 〈i0〉 C R. Let r ∈ R. Then there exists an integer k such that ri0 = ki0.
Hence, r − k · 1 ∈ lR(i0), and R = 〈1〉 + lR(i0). Moreover, S(R) ∩ N(R) = 0, so S(R) ⊆
lR(i0). Take any a ∈ lR(i0). Then R/N(R) ∈ S implies that there exist b, e ∈ R, e = e2,
and i ∈ N(R) such that a − ba2 ∈ N(R), and ba = e + i. But ii0 = 0, ai0 = 0, so ei0 = 0.
Lemma 3.2 now yields eN(R) = 0 and Re ∈ S. But a − ae ∈ N(R), so a ∈ Re + N(R) ⊆
S(R) + N(R). It follows that lR(i0) ⊆ S(R) + N(R) and lR(i0) = S(R) + N(R). Finally,
R = 〈1〉 + S(R) + N(R). �

L 3.8. Let R be a commutative filial p-ring with identity such that N(R) , 0. Then
pR ⊆ p · 〈1〉. In particular, the group pN(R)+ is cyclic and N(R) = N(R)(p) + p · 〈1〉.

P. Since R+ is a p-group, there exists n ∈ N such that o(1) = pn. Hence pnR = 0
and pR ⊆ N(R). By filiality of R and Proposition 2.3, we get that N(R) is an H-ring.
But 〈p · 1〉 = [p · 1] C N(R), so 〈p · 1〉 C R. This means that pR ⊆ p〈1〉. In particular,
pN(R) ⊆ p〈1〉, and the group pN(R)+ is cyclic.

If pN(R) = 0, then N(R) ⊆ N(R)(p) and N(R) = N(R)(p) + p〈1〉. So, assume that
pN(R) , 0. For every i ∈ N(R) there exists k ∈ Z such that pi = k(p · 1).

If p - k then there exists l ∈ Z such that lk ≡ 1 mod pn, so p · 1 = lpi. Thus
pN(R) ⊆ piN(R) and pN(R) ⊆ pN(R)im for every m ∈ N. But N(R) is a nil ring, which
clearly forces pN(R) = 0. This is a contradiction.

Therefore, p | k. Hence, there exists k′ ∈ Z such that k = pk′. Then p(i − (pk′) · 1) =

0, i − (pk′) · 1 ∈ N(R)(p). Thus i = (i − (pk′) · 1) + pk′ · 1 ∈ N(R)(p) + p · 〈1〉, and this
leads to N(R) = N(R)(p) + 〈p · 1〉. �

4. The classification theorem for torsion filial rings

We now state and prove the main theorem of this work.

T 4.1. All (up to isomorphism) commutative torsion filial rings are rings of the
form

⊕
p∈P Rp, where every Rp is one of the following rings:

(i) S ⊕ N, where N is a commutative nil H-p-ring and S is a commutative strongly
regular p-ring;

(ii) (1C , S ) ⊕ S 1, where S and S 1 are commutative strongly regular p-rings and the
p-ring C is a K0-ring.

P. Every torsion ring R can be written in the form R =
⊕

p∈P Rp, where every
component Rp of this sum is uniquely determined. From [6, Proposition 2], R is filial
if and only if Rp is filial for every p ∈ P. Therefore, without loss of generality we can
assume that R is a commutative p-ring.

Assume that the ring R is filial. From Proposition 2.3, N(R) is an H-p-ring.
Moreover, the quotient p-ring R/N(R) is filial and reduced. According to [7,
Theorem 4.1] we have R/N(R) ∈ S. So, if R = N(R) or N(R) = 0, then R is like in (i).
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Assume now that 0 , N(R) , R. If N(R) is a ring of unbounded exponent, then by
Lemma 3.6, R = S(R) ⊕ N(R).

It remains to consider the case when N(R) is a ring of bounded exponent. Since
p(R/N(R)) = 0, we have pmR = 0 for some m ∈ N. Assume that R , S(R) ⊕ N(R). From
Lemma 3.4 there exists an idempotent e ∈ R \ (S(R) + N(R)) such that N(R) ⊆ eR,
R = eR ⊕ lR(e) and lR(e) ∈ S. Hence, eR is a commutative filial ring with identity e and
N(eR) = N(R), pm(eR) = 0. Moreover, (eR)/N(R) ∈ S so, by Lemma 3.7, eR = 〈e〉 +
S(eR) + N(R). Denote C = 〈e〉 + N(R). From Lemma 3.8, N(R) = N(R)(p) + p〈e〉
and C = 〈e〉 + N(R)(p). Theorem 2.7 implies that C is a K0-ring. By Lemma 2.12,
C ∩ S(eR) = 0. Hence, eR is the direct sum of subrings C and S(eR). Moreover, for
k ∈ Z, x ∈ N, s ∈ S(eR) we have (ke + x) · s = (ke)s. This means that S(eR) is a C-
algebra in a natural way. Thus eR � (1C , S(eR)) and, finally, R � (1C , S(eR)) ⊕ lR(e).

Conversely, if R � S ⊕ N, where N is a nil H-p-ring and S is a strongly regular
p-ring, then from [7, Theorem 3.2], it follows that R is filial.

Let R � (1C , S ) ⊕ S 1, where S and S 1 are commutative strongly regular p-rings and
the p-ring C is a K0-ring. The ring R is an extension of the ring (1C , S ) by the ring
S 1, so from [7, Theorem 3.2], it is enough to prove that the ring (1C , S ) is filial. But
(1C , S ) is an extension of the strongly regular ring S by the filial ring C, so from [7,
Theorem 3.2], the ring (1C , S ) is filial.

We will show that the rings described in (i), (ii) are determined uniquely up to
isomorphism. Let S 1, S 2, S 3, S 4 be any strongly regular p-rings, let N1, N2 be any nil
H-p-rings, and finally let the p-rings C1,C2 be any K0-rings. Consider R1 = S 1 ⊕ N1,
R2 = S 2 ⊕ N2. Assume that g : R1→ R2 is an isomorphism of rings. Clearly, N(R1) =

N1 and N(R2) = N2, so g(N1) = N2. Moreover, S(R1) = S 1, S(R2) = S 2, so g(S 1) = S 2.
Hence, N1 � N2 and S 1 � S 2.

Let A = (1C1 , S 1) ⊕ S 2, B = (1C1 , S 3) ⊕ S 4. Assume that f : A→ B is an
isomorphism of rings. By Lemma 2.12, S(A) = S 1 ⊕ S 2, S(B) = S 3 ⊕ S 4. Hence
f (S 1 ⊕ S 2) = S 3 ⊕ S 4 and, as a consequence, C1 � A/S(A) � B/S(B) �C2. Next S 2 =

lA(C1) � lB(C2) = S 4, so A/S 2 � B/S 4, which yields S 1 = S(A/S 2) � S(B/S 4) = S 3.
Finally, if R is a ring described in (i), then R/S(R) is a nil ring. But, for every ring

T described in (ii), T/S(T ) ia a nonzero ring with an identity as a K0-ring. This shows
that R � T . �

From the classification of nil H-p-rings (see [2, Theorem 2]), it follows that every
noetherian nil H-p-ring is finite. It is a well-known fact that every (up to isomorphism)
nonzero commutative noetherian strongly regular p-ring is a finite direct sum of fields
of characteristic p. Moreover, from Theorem 2.8 and Examples 2.9–2.11 it follows
that a K0-ring is noetherian if and only if it is finite. Hence, by Theorem 4.1 and
Remark 2.5, we have the following corollary.

C 4.2. All (up to isomorphism) commutative torsion noetherian filial rings
are rings of the form

⊕
p∈Π Rp, where Π is a finite subset of P and every Rp is one of

the following rings:
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(i) S ⊕ N, where N is a finite commutative nil H-p-ring and S is a commutative
strongly regular p-ring and S is a finite direct sum of fields of characteristic p;

(ii) C ⊕ S , where S is a finite direct sum of fields of characteristic p and the p-ring
C is a finite K0-ring.

Recall that every field which is finitely generated as a ring is finite, and every
commutative finitely generated ring is noetherian. Hence, by Corollary 4.2, we have
the following corollary.

C 4.3. All (up to isomorphism) commutative torsion finitely generated filial
rings are rings of the form

⊕
p∈Π Rp, where Π is a finite subset of P and every Rp is

one of the following rings:

(i) S ⊕ N, where N is a finite commutative nil H-p-ring and S is a commutative
strongly regular p-ring and S is a finite direct sum of finite fields of characteristic
p;

(ii) C ⊕ S , where S is a finite direct sum of finite fields of characteristic p and the
p-ring C is a finite K0-ring.
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