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Abstract

The aim of this paper is to give a classification theorem for commutative torsion filial rings.
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1. Introduction

All considered rings are associative but do not necessarily have identity. We say that
aring R is an H-ring if all its subrings are ideals. H-rings were investigated by many
authors (see [1, 2, 9-12]). A detailed description of the structure of torsion H-rings
turned out to be one of the most difficult problems.

A classification of H-rings was obtained independently by Kruse in his
dissertation [9] and by Andrijanov in [2]. Andrijanov showed that there are sixteen
types of these rings [2, Theorem 2]. Unfortunately, the still unanswered question is
whether there exists any isomorphism between any two rings from the same class.
This problem seems complicated because a variety of parameters define these classes.

A ring R is called filial (left filial), if for any ideal (left ideal) J of R, and any
ideal (left ideal) 7 of J, I is an ideal (left ideal) of R. The notion of a filial ring is a
natural generalization of the notion of an H-ring. Filial rings and left filial rings were
investigated by many authors (see [5-8]). For example, Filipowicz and Puczylowski
in [8] obtained the structure of left filial algebras over a field.

However, the problem of a classification of filial rings is much more complicated
and subtle. So far, the most important results concern the case of commutative filial
rings (see [3-5]).

The purpose of this paper is to give a complete classification of commutative torsion
filial rings. The main theorem of this work (Theorem 4.1) is a surprising analogue
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of [8, Theorem 4.3]. Nevertheless, our proof is quite different from the one in [8] and
requires fundamentally new ideas and methods.

2. Preliminary results

Throughout the paper, N and P stand for the set of all positive integers and the set
of all primes, respectively. For a ring R, we denote by N(R) the nilradical of R, and by
R* the additive group of R. We write o(x) for the order of an element x of the group
R*.ForpePweletR,={xeR: pFx =0 for some k € N} and R(p) = {x e R : px=0}.
We say that a ring R is of bounded exponent if there exists M € N such that Mx = 0 for
every x € R, otherwise we say that R is of unbounded exponent. We say that a ring R is
a p-ring if R* is a p-group for a prime number p. If R is both a p-ring and an H-ring,
we shall say that R is an H-p-ring. For a subset S of a ring R, we denote by (S) the
subgroup of R* generated by S, and by Iz(S) the left annihilator of S in R.

The term almost null ring was introduced by Kruse in [10]. These rings play an
important role in the study of certain H-rings.

Derinition 2.1 [10, Definition 2.1]. We say that a ring R is almost null if for every
a€ER:

i) a*=0;

(i) Ma® = 0 for some square-free integer M (M = M,);

(iii) aR + Ra C (d?).

Clearly, every almost null ring R is an H-ring such that R? = 0. Moreover, every
homomorphic image and every subring of an almost null ring are almost null. The
importance of this notion lies in the following proposition.

ProposiTion 2.2 [10, Proposition 2.5]. A nil p-ring R of an unbounded exponent is an
H-ring if and only if R is almost null.

We begin by recalling a few well-known facts.

Prorosition 2.3 [7, Corollary 2.3]. A commutative nil ring R is filial if and only if R is
an H-ring.

Lemma 2.4 (see [8, Theorem 3.3]). Let R be a nil H-ring such that pR = 0 for a prime
p. Then R is almost null.

Remark 2.5. Let C be a commutative ring with identity 1 and let A be a C-algebra.
We denote by (1¢, A) the C-algebra obtained from A by adjoining an identity 1 of C.
Obviously, (1¢,A)* =C* @ A*. Forany c € C, a € A we write ¢ + a instead of the pair
(c, a). According to this notation we have A < (1¢, A) and (1¢, A)/A = C. It is also
clear that if A is commutative, then the algebra (1¢, A) is commutative too. Moreover,
if A possesses an identity, then (1¢, A) = C & A. Note that every ring is a Z-algebra in
a natural way.

DEerNtTION 2.6. We say that R is a Ky-ring if R is a commutative filial ring with identity,
such that N(R) # 0 and R/N(R) is a field.
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In [5] we considered K-rings, that is, noetherian Kj-rings. In that paper we proved
the following result, which is important in the description of Ky-rings.

THeorEM 2.7 [5, Theorem 4.3]. For a given ring R with identity 1, the following

conditions are equivalent:

(1) Risa Ky-ring;

(ii) there exists a commutative almost null ring N such that N < R, pN = 0 for some
peP, R=(1)+ N, o(1) = p™ for some m e N, and if m = 1, then N # 0.

A detailed study of a classification of K-rings, (especially the proof of [5,
Theorem 4.5]) enables us to obtain a similar classification of Ky-rings.

THeorEM 2.8. The rings described in Examples 2.9-2.11 are all Ky-rings (up to
isomorphism).

ExampLE 2.9 (see [5, Example 1]). Let neN, peP and let N be a commutative
almost null ring such that pN = 0. If n =1 then we additionally assume that N # 0.
Then N is a Z,:-algebra with a natural external multiplication

koa=ka forke€Zy,acN,

and the ring (1z,,, N) is a Ko-ring.

Let m € N and let M be a commutative almost null ring such that pM =0. If m =1
then we additionally assume that M #0. Then (1z,, N) = (lz,,, M) if and only if
n=mand N =M.

Exampre 2.10 (see [5, Example 2]). Let p be any prime and m >?2 be a positive
integer, and let #o € Z, \ {0}. Denote by P the Z,.-algebra generated by 1, x with
the relations px =0, x*> = top™ ! - 1. Every element of P can be written as k + [x for
uniquely determined k € Z,», [ € Z,, and P is a filial ring.
Let B be a Z,-algebra such that B>=0. Then B is a P-algebra with external
multiplication
(k+ix)ob=kb forkeZ,,l€Z, beB.

By Theorem 2.7, the ring (1p, B) is a Ky-ring. Notice that, if in [5, Example 2] we
replace | B| by dimgz, B, and use the same arguments, then for p = 2, 7o = 1 and for fixed
m > 2 and fixed B there a exists uniquely determined (up to isomorphism) ring (1p, B),
whereas for fixed p > 3, m > 2 and B there exist exactly two (up to isomorphism) rings
(1p, B). One of them can be obtained by setting 7y, = 1. The other one can be obtained
by taking 7y as an arbitrary nonresidue modulo p.

ExampLE 2.11 (see [5, Example 3]). Let p be an odd prime and m > 2 be a positive
integer and let fy € Z, \ {0}. Denote by P the Z,»-algebra generated by elements
1, x, y with the relations xy = yx = px = py =0, x> = top""' - 1, y> = ax?, where —a is
a fixed nonresidue modulo p. Every element of P can be written as k - 1 + [;x + L,y for
uniquely determined k € Z», [, [, € Z,,. From Theorem 2.7 it follows that P is a filial
ring.
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Let B be a Z,-algebra such that B? =0. Then B is a P-algebra with natural external
multiplication

(k+hx+bhy)ob=kb forkeZy,l,b€Z, beB.

By Theorem 2.7, the ring (1p, B) is a Ky-ring.

Let C’ be a Z,-algebra with basis {xi, x%, y1} and the relations x;y; = y;x; = x? =
0, y% = ,Bx% for a nonresidue —8 modulo p. Let so€Z,\{0}. Denote by P’ the
Z,yv -algebra generated by the elements 1, x1, y; with the relations x;y; = y1x; = px; =
py1=0,x7 = sop" "' - 1,y =By

If (1p, B) = (1p/, B'), then replacing |B| by dimz, B in [5, Example 3] and using the
same arguments we obtainm =m’, P= P’ and B= B’.

Conversely, assume that m =m’ and let g: B — B’ be an isomorphism of rings.
Then there exists a nonzero y € Z, such that g = ¥2a, because both —a and —f3 are
nonresidues modulo p. It is well known that {u?> + VA :u,v e Z,} =7, for a nonzero
A€Z,. So, there exist I, k; € Z, such that 7y = so(/; + k3y*) mod p. Moreover,
there exists y’ € Z, such that y -y’ =1 mod p. Set I, = —ayki, k» =v'l;. One can
easily check that a function F: (1p, B) = (1p/, B’) given by

FU-1+Vx+Wy+b)=U-1+ VIl + Wh)x; + (Vk; + Wky)y; + g(b),

where U € Z,», V, W € Z,,, is an isomorphism of rings.

This shows that for fixed m > 2 and B there exists a uniquely determined (up to
isomorphism) ring (1p, B). We obtain this ring by setting, for instance, fy =1 and
taking —a as an arbitrary nonresidue modulo p.

A ring R is strongly regular if a € Ra® for every a € R. It is well known that all
strongly regular rings are von Neumann regular, and for commutative rings this two
properties coincide. The class of all strongly regular rings S form a radical in the sense
of Kurosh and Amitsur. One can easily check that every strongly regular ring is filial.

Lemma 2.12. Every Ky-ring R is S-semisimple.

Proor. Assume that S(R) #0. Then N(R) N S(R) =0 and (N(R) ® S(R))/N(R) is a
nonzero ideal in the field R/N(R). Hence N(R)® S(R) =R. But R is a ring with
identity, so N(R) is also a ring with identity, which is a contradiction. O

3. Useful lemmas concerning idempotents in filial rings

Lemwma 3.1. Let R be a commutative filial ring containing a nil ideal I such that I is a
p-ring. Then, for every idempotent e € R, el =0 or ei =i for everyiel.

Proor. Suppose the lemma does not hold. Then el and J = {ei —i: i € I} are nonzero
ideals of R contained in / and such that e/ N J =0. Because [ is a nil p-ring, there
exist nonzero a € el and b € J such that a> = b*> =0 and pa = pb =0. Hence ab =0,
{a) N {b) = 0 and this implies (a + b) = [a + b]. From Proposition 2.3 it follows that /
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is an H-ring, so by filiality of R, (a + b) < R. Therefore, e(a + b) = k(a + b) for some
keZ.Bute(a+b)=ea+eb=a+0=a,soa=ka+kb. Hence kb € (a) N (b) =0, so
kb =0 and, in consequence, p | k and ka = 0, so a = 0. This is a contradiction. O

Lemma 3.2. Let R be a commutative filial ring such that N(R) is a p-ring and R/N(R) €
S. If e € R is an idempotent such that ei # i for some i € N(R), then eN(R) =0 and
Re € S.

Proor. From Lemma 3.1 we get at once that eN(R) =0. Thus N(R) CIz(e) and
R =Re @ Ig(e), so Re = (Re + N(R))/N(R) < R/N(R). But R/N(R) € S and the radical
S is hereditary, so Re € S. |

Lemma 3.3. Let R be a commutative filial ring such that N(R) is a p-ring and R/N(R) €
S. Then for every idempotent e € R, e ¢ S(R) if and only if ei = i for every i € N(R).

Proor. =. Suppose the assertion of the lemma is false. Then eN(R) = 0 by Lemma 3.1,
and hence eR N N(R) = 0, because if er € N(R) for some r € R, then 0 = e(er) = ¢*r =
er. It follows that eR = (eR + N(R))/N(R) < R/N(R). But R/N(R) € S, so eR € S. Thus
eR C S(R) and e = ¢* € ¢R, so e € S(R), which is a contradiction.

&. Aring S(R) is reduced and N(R) is a nil ring, so obviously S(R) N N(R) = 0 and
S(R) - N(R) =0. O

Lemma 3.4. Let R be a commutative filial ring such that N(R) is a p-ring and R/N(R) €
S. If S(R) + N(R) # R, then there exists an idempotent e € R such that N(R) C eR and
R = eR & [g(e). Moreover, Ig(e) € S.

Proor. Take any x € R \ (S(R) + N(R)). Since R/N(R) is a strongly regular ring, there
exists y € R such that x — x>y € N(R) and yx + N(R) is an idempotent in R/N(R).
But N(R) is a nil ideal, hence the Koethe-Dickson theorem on lifting idempotents
implies yx — e € N(R) for some idempotent e € R. Therefore, x — ex = (x — x*y) +
x(xy — e) € N(R), which yields x € eR + N(R). But x ¢ S(R) + N(R), so e ¢ S(R). By
Lemma 3.3, ei = i for every i € N(R). Thus N(R) C eR and N(eR) = N(R). Moreover,
R =¢eR® Ig(e), so Ig(e) €S. O

Lemwma 3.5. Let R be a commutative filial ring such that N(R) is a p-ring and R/N(R) €
S. If eN(R) = 0O for every idempotent e € R, then R = S(R) @ N(R).

Proor. Take any a € R. Since R/N(R) € S, there exist b,e €R, e = e, and i € N(R)
such that a — ba®> € N(R) and ba=e +i. Hence a —ae e N(R) and a € Re + N(R).
Lemma 3.2 implies that Re € S. In consequence, a € S(R) + N(R). O

LemMma 3.6. Let R be a commutative filial p-ring such that N(R) is a ring of unbounded
exponent. Then R = S(R) ® N(R).

Proor. Take any idempotent ¢ € R. If eN(R) # 0, then N(R) = N(R)e by Lemma 3.1.
But p"e =0 for some n €N, so p"N(R) =0, which is a contradiction. We thus get
eN(R) =0 and, by Lemma 3.5, R = S(R) @ N(R). O
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Lemma 3.7. Let R be a commutative filial ring with identity such that N(R) is a p-ring
and RIN(R) € S. Then R = (1) + S(R) + N(R).

Proor. By Proposition 2.3, N(R) is an H-ring. From [2, Lemma 1 and Theorem 2],
it follows that N(R) is nilpotent. So, there exists nonzero iy € Iyg)(N(R)). Then
(ipy < N(R) and (iy) < R. Let r € R. Then there exists an integer k such that riy = kiy.
Hence, r — k- 1 € Ig(ip), and R = (1) + Iz(ip). Moreover, S(R) N N(R) =0, so S(R) C
Ig(ip). Take any a € Iz(ip). Then R/N(R) € S implies that there exist b, e € R, e = €2,
and i € N(R) such that a — ba® € N(R), and ba = e + i. But iip = 0, aiy = 0, so eip = 0.
Lemma 3.2 now yields eN(R) =0 and Re € S. But a —ae € N(R), soa € Re + N(R) C
S(R) + N(R). It follows that Iz(ip) € S(R) + N(R) and Ig(ip) = S(R) + N(R). Finally,
R={1)+S(R)+ N(R). O

Lemma 3.8. Let R be a commutative filial p-ring with identity such that N(R) # 0. Then
PR C p - (1). In particular, the group pN(R)" is cyclic and N(R) = N(R)(p) + p - (1).

Proor. Since R* is a p-group, there exists n € N such that o(1) = p". Hence p"R =0
and pR C N(R). By filiality of R and Proposition 2.3, we get that N(R) is an H-ring.
But (p-1)=[p- 1] <N(R), so (p-1) <R. This means that pR C p(1). In particular,
PN(R) C p(1), and the group pN(R)* is cyclic.

If pN(R) =0, then N(R) C N(R)(p) and N(R) = N(R)(p) + p(1). So, assume that
PN(R) # 0. For every i € N(R) there exists k € Z such that pi = k(p - 1).

If p{k then there exists /€Z such that [k=1 mod p", so p-1=Ipi. Thus
PN(R) C piN(R) and pN(R) C pN(R)i" for every m € N. But N(R) is a nil ring, which
clearly forces pN(R) = 0. This is a contradiction.

Therefore, p | k. Hence, there exists kK’ € Z such that k = pk’. Then p(i — (pk’) - 1) =
0,i—(pk’)-1e NRR)(p). Thusi= (G- (pk’)- 1)+ pk’ - 1 e N(R)(p) + p - (1), and this
leads to N(R) = N(R)(p) + (p - 1). O

4. The classification theorem for torsion filial rings

We now state and prove the main theorem of this work.

TueoreM 4.1. All (up to isomorphism) commutative torsion filial rings are rings of the
form @pE]P’ R, where every R, is one of the following rings:
(i) S ®N, where N is a commutative nil H-p-ring and S is a commutative strongly
regular p-ring;
1) (¢, S)® Sy, where S and S| are commutative strongly regular p-rings and the
p-ring C is a Ky-ring.
Proor. Every torsion ring R can be written in the form R = @pep R,, where every
component R, of this sum is uniquely determined. From [6, Proposition 2], R is filial
if and only if R, is filial for every p € P. Therefore, without loss of generality we can
assume that R is a commutative p-ring.
Assume that the ring R is filial. From Proposition 2.3, N(R) is an H-p-ring.
Moreover, the quotient p-ring R/N(R) is filial and reduced. According to [7,
Theorem 4.1] we have R/N(R) € S. So, if R = N(R) or N(R) = 0, then R is like in (i).
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Assume now that 0 # N(R) # R. If N(R) is a ring of unbounded exponent, then by
Lemma 3.6, R = S(R) & N(R).

It remains to consider the case when N(R) is a ring of bounded exponent. Since
P(R/N(R)) =0, we have p”'R = 0 for some m € N. Assume that R # S(R) @ N(R). From
Lemma 3.4 there exists an idempotent ¢ € R \ (S(R) + N(R)) such that N(R) C eR,
R =eR & Ig(e) and Ir(e) € S. Hence, eR is a commutative filial ring with identity e and
N(eR) = N(R), p"(eR) =0. Moreover, (eR)/N(R) €S so, by Lemma 3.7, eR = (e) +
S(eR) + N(R). Denote C =(e)+ N(R). From Lemma 3.8, N(R) = N(R)(p) + p{e)
and C =<{e) + N(R)(p). Theorem 2.7 implies that C is a Ky-ring. By Lemma 2.12,
C N S(eR)=0. Hence, eR is the direct sum of subrings C and S(eR). Moreover, for
keZ, xe N, s € S(eR) we have (ke + x) - s = (ke)s. This means that S(eR) is a C-
algebra in a natural way. Thus eR = (1¢, S(eR)) and, finally, R = (1¢, S(eR)) & Iz(e).

Conversely, if R=S ® N, where N is a nil H-p-ring and S is a strongly regular
p-ring, then from [7, Theorem 3.2], it follows that R is filial.

LetR=(1¢,S)® S, where S and §| are commutative strongly regular p-rings and
the p-ring C is a Ky-ring. The ring R is an extension of the ring (1¢, S) by the ring
S1, so from [7, Theorem 3.2], it is enough to prove that the ring (1¢, ) is filial. But
(1¢, ) is an extension of the strongly regular ring S by the filial ring C, so from [7,
Theorem 3.2], the ring (1¢, S) is filial.

We will show that the rings described in (i), (ii) are determined uniquely up to
isomorphism. Let S, S5, §3, S4 be any strongly regular p-rings, let Nj, N, be any nil
H-p-rings, and finally let the p-rings Ci, C, be any Ky-rings. Consider R; =S| ® Ny,
Ry =S5, ® N,. Assume that g : Ry — R; is an isomorphism of rings. Clearly, N(R;) =
Ny and N(R;) = N3, so g(N1) = N,. Moreover, S(R;) =51, S(Ry) =S,,s50g(51)=S>.
Hence, Ny =N, and §1=S5,.

Let A=(1¢,,S1)®S2, B=(¢,,S3)@S4. Assume that f: A— B is an
isomorphism of rings. By Lemma 2.12, S(A)=S1®S,, S(B)=S3®S4. Hence
J(S19S,)=53®S5,4 and, as a consequence, C; = A/S(A) = B/S(B) = C;,. Next S, =
IA(Cy) = 1p(Cy)=S4,50A/S, = B/S 4, which yields S| = S(A/S,) = S(B/S4) =S3.

Finally, if R is a ring described in (i), then R/S(R) is a nil ring. But, for every ring
T described in (ii), 7/S(T) ia a nonzero ring with an identity as a K-ring. This shows
that R T. O

From the classification of nil H-p-rings (see [2, Theorem 2]), it follows that every
noetherian nil H-p-ring is finite. It is a well-known fact that every (up to isomorphism)
nonzero commutative noetherian strongly regular p-ring is a finite direct sum of fields
of characteristic p. Moreover, from Theorem 2.8 and Examples 2.9-2.11 it follows
that a Ky-ring is noetherian if and only if it is finite. Hence, by Theorem 4.1 and
Remark 2.5, we have the following corollary.

CoroLLARY 4.2. All (up to isomorphism) commutative torsion noetherian filial rings
are rings of the form @pen R, where 11 is a finite subset of P and every R, is one of
the following rings:
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S ® N, where N is a finite commutative nil H-p-ring and S is a commutative
strongly regular p-ring and S is a finite direct sum of fields of characteristic p;
C @S, where S is a finite direct sum of fields of characteristic p and the p-ring
C is a finite Ky-ring.

Recall that every field which is finitely generated as a ring is finite, and every
commutative finitely generated ring is noetherian. Hence, by Corollary 4.2, we have
the following corollary.

CoroLLARY 4.3. All (up to isomorphism) commutative torsion finitely generated filial

rings are rings of the form P

vert Rp» where 11 is a finite subset of P and every R), is

one of the following rings:

@

(ii)

[10]
(11]
[12]

S ® N, where N is a finite commutative nil H-p-ring and S is a commutative
strongly regular p-ring and S is a finite direct sum of finite fields of characteristic
D;

C®S, where S is a finite direct sum of finite fields of characteristic p and the
p-ring C is a finite Ky-ring.
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