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Abstract

A subgroup with non-trivial centre in a one-relator group is shown to be a treed HNN group
(graph product) with infinite cyclic vertices. Moreover, subgroups with non-trivial centre in HNN
groups are also examined.

1. Introduction

Karrass, Pietrowski and Solitar (1974) have proved the following:
/ / G is a one-relator group and H is a finitely generated subgroup with

non-trivial centre, then H is a treed HNN group with infinite cyclic vertices. (A
treed HNN group is an HNN group whose base is a tree product and whose
associated subgroups are contained in vertices of the tree product base).

Here we establish the result for H infinitely generated. More generally, if
G is a group built up from the infinite cyclic group by repeatedly forming free
products and HNN extensions always using free amalgamated and associated
subgroups, and H is a subgroup with nontrivial centre, then H is a treed HNN
group with infinite cyclic vertices.

As a corollary we obtain that H is an extension of a free group by a
subgroup of the additive rationals; this was first proved by Cossey and Smythe
(1975). As another corollary we have that if H,< H and H, has trivial
intersection with the centre of H, then / / , is a free group; this result was first
proved for H, finitely generated in Karrass, Pietrowski and Solitar (1974) and
extended to infinitely generated Hi in Bieri and independently in
Bagherzadeh (1976).

Moreover, let G be a generalized free product
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[2] Subgroups with centre in HNN groups 351

(1) G = (A*B;U)

or an HNN group

(2) G = <t,K; tLt'] = M>

and let H be a subgroup of G with g a central element of H not contained in a
conjugate of U or of L. If G is as in (1), then H is in a conjugate of A or B, or H
is an infinite cyclic extension of a subgroup of a conjugate of U. Similarly, ifG is
as in (2), then H is in a conjugate of K, or H is an infinite cyclic extension of a
subgroup of a conjugate of L.

We wish to thank the referee for his helpful comments.

2. Parity and sign in HNN groups

Let G be as in (2) and let L, denote L when e = 1 and M when e = — 1.
A reduced form in G is a product

(3) kl/'klr---t'-kn

where e, = ± 1, fc, (= K, and if s, + , = — e, then kf g! Lf|; n is called the t-length
of (3). [Britton's lemma implies that a reduced form (3) defines an element
/ 1 if either n > 0 or kn^ 1.] A block B is a product (3) where n > 0 , ko =
kn = 1, e, = e for i = 1, • • • , « ; e is the sign of B. Clearly, a reduced form (3)
can be written in block form

where the B, alternate in sign and k,}/ 1 for j ^ r; r is the block-length of (3).
Suppose right coset representative systems for K mod L and K mod M,

respectively, are chosen. Then a reduced form (3) is called normal if k, is a
representative for K mod Lr,, i > 0 ; every element in G has a unique normal
form (this follows easily from Britton's lemma).

LEMMA 1. Let the reduced form

(4) pot
s'p,t^---ts-pm

define the same element as the reduced form (3). Then (3) and (4) have the
same t-length (i.e., m = n), and e, = 8t; moreover, k< andpt determine the same
double coset of K mod (L,,, L .„,.,) where Lro = £._,„., = 1. In particular, any two
reduced forms of an element of an HNN group have the same block length and
corresponding blocks have the same t-length and sign.

PROOF. It is easily shown by induction on the f-length of (3), that if (4) is
the normal form for (3), then the conclusions of the lemma are satisfied.
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352 A. Karrass and D. Solitar [3]

Speci f ica l ly , (3) is n o r m a l i z e d b y first n o r m a l i z i n g ktt'
2k2- • • t'-kn t o

p\t'2p2- • • t'-pn and then kot
e<p[te2p2- • • t'-pn is normalized to

put
r'p,tr*p2---t'"pn. •

If g £ G, then r{g), j8(g) denote the /-length and block-length of g. The
sign of g is the sign of the first block of g; the cosign of g is the sign of the last
block of g. An element of G not in K is odd or even according as it has odd or
even block length; an element of G not in K is positive or negative according
as its sign is positive or negative.

LEMMA 2. Let G be as in (2). Then an odd element cannot commute with
an even element, and a positive even element cannot commute with a negative
even element.

PROOF. It is easy to see that if v, w are in G — K, and cosign v = sign w,
then T(VW) = x(i>)+ x(w), f3(vw) = P(v) + /3(w)— 1, sign vw = sign v, and
cosign vw = cosign w. On the other hand, if cosign v/ sign w, then T(VW)<

T(V)+T(W) or j3(uw)=/3(u) + /3(w).
Suppose vw = wv. Then cosign v = sign w iff cosign w = sign v.
Hence, if v is odd, sign v = cosign v and so sign w = cosign w; hence w

is odd. Also if v is positive even, then w is even; if w were negative, then sign
v = sign vw = sign wu = sign w, which implies tv is positive. •

COROLLARY 1. Let G be as in (2) with K/ L. Then the centre ofG is in L.

PROOF. Since K^ L, G contains an even element tkt', k£ L, as well as
the odd element t. Therefore, the centre of G is in K and hence in t~'Kt.
Since L = K D t~'Kt, the centre of G is in L. •

The following corollary, although not needed for the proofs of Theorems
1 or 2, is also a consequence of Lemma 2. It was obtained independently in
Bagherzadeh (1976) and by L. Comerford (unpublished).

COROLLARY 2. Let G be as in (2) with L/ K or M/ K. If G is a
non-trivial direct product C x D, then C or D is in L.

PROOF. Since t = cd where c G C and d G D, c and d commute with t;
hence c or d is odd. To be specific suppose d is odd. Then by Lemma 2, C
cannot contain even elements. We show, however, that C does contain even
elements if Cfi L.

Clearly, Cfi K since K C\ t 'Kt = L. Assume K/ L,. If C contains an
element k0B, of block length one and sign e, then C contains koB^kB^k^k1

where fc^Lf; hence if L^ K(M^ K), C would contain a positive even
(negative even) element. If g G C with g = k0B, •• • Bn, n g 2 , n odd,
sign Bn = e, then g is cyclically reduced of block length S 2 ; but cyclic
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permutations of a cyclically reduced element of block length S 2, will yield
positive and negative even elements. D

COROLLARY 3. If a one-relator group G is a proper direct product, then G
is finite cyclic or free abelian of rank two.

PROOF. Let G = C x D, CV 1 / D, and suppose G is not cyclic. We may
Nielsen transform the generators of G so that the corresponding relator is in
pre-abelianized form (see p. 142 in Magnus, Karrass, and Solitar (1966)) and
will have zero exponent sum on one of the generators, say t; moreover, since
G cannot be a proper free product, when rewritten in terms of the conjugates
of the other generators by t, this relator will involve distinct conjugates of at
least one generator. Then by the standard method for writing a one-relator
group as an HNN extension of another one-relator group (see Moldavanski
(1967)), G = (t,K;tLt ' = M) where L is free, K = gp(L,M), and K is a
one-relator group on rank L + rank G — 1 generators (provided we include in
K at least two consecutive conjugates of every generator / t of G).

If K^ L or Kj£ M, then by the preceding corollary, we may suppose
C<L. Since L is free, D C\ L ~ \ and so C = L. But C<G, so that
M = L = K.

Thus L = K = M and hence rank G g rank K + 1 - rank L + 1 = 2. On
the other hand, C and D must be free (Corollary 2 to Theorem 2 in Karrass,
Pietrowski and Solitar (1974)), and homomorphic images of G; but if C or D
had rank 2 than G = C x D would have rank S 3. Consequently C and D
must be cyclic and G free abelian of rank two. •

LEMMA 3. Let G be as in (2), H < G, and suppose H contains an odd
element. Then H contains a positive even element unless H is conjugate (by an
element of K) to an HNN group (s, L'; sL's' = L") where L"<L'<L; if
H - K contains only odd elements, then L' = L".

PROOF. By induction on T(U), one can easily show that if u, v are in
G-K and T(M)S T(V), then one of the following three possibilities
holds: sign uv = sign u and cosign uv = cosign v; or T(UV)< T(U) and sign
uv = sign u; or uv £ K.

Now let s be a positive odd element of shortest f-length in H, and
suppose H contains no positive even elements. We show that K C\ H =
kL'k ' where L' < L, k G K, and that H = gp(s,KH H). If s has reduced
form as in (3), and k' G K Pi H, then sk's"' will be positive even unless
Kk'k'1 G L; hence K D H = kn'L'/cn where L'< L. Moreover, if u is any
positive element in H, then u is odd and r (u )g T(S). Since us' is not positive
even, our first remark implies that us'1 G K, or T(US~])< T(U) and us~' is
positive. Hence by induction on the ^-length of u, every positive element of H
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has the form ps", n > 0 , p G K f l H ; moreover r(ps") = nr(s). Therefore
s(K D H), which consists of positive elements having the same /-length as s, is
contained in (K n H)s, so that s(K D H)s ' = K' < K D H. Hence the HNN
group R = (s, K n H; s(K n H)s~1 = K') can be mapped homomorphically
onto H, = gp(s, K Pi / / ) in H; thus the normal subgroup generated by K n H
in Hi is just the ascending union s~m(K n H)sm, m SO, and so has trivial
intersection with gp(s) in //, since g p ( j ) n ( K n / f ) = l ; thus the
homomorphism of /? onto Ht has kernel in the normal closure of K D H in
i?. But this is mapped isomorphically onto the normal closure of K fl H in
H,; hence, R is mapped isomorphically onto H,.

To show that H, = H, it remains to consider the negative elements of H.
Clearly, any negative odd element of H is in //, since it has the form
s"p~\ n >0, p G K n H. Let q be a negative even element of smallest
r-length in H - H,. If r(q)^ T(S), then by our initial remark, sq E H,
contrary to <j£ //,; if T(^) > 7(5) then ^5 ' G //,, or r(qs~') < r(q) and qs"1 is
negative even, contrary to the definition of q.

Finally, if H contains no negative even element, then s'^K D H)s <
K n H, since (s ik)s cannot be negative and of smaller /-length than s. D

An analogous result clearly holds for subgroups H of G which contain
no negative even elements.

Using similar reasoning we obtain analogous results for an amalgamated
product (1). Specifically, call the elements of A - U positive and of B - U
negative; a non-trivial product gtg2 • • • gn with factors gt alternating from
A — U and B — U has the sign of gt and the parity of n.

LEMMA 4. Let G be as in (1). Then an even element cannot commute with
an odd element, and a positive odd element cannot commute with a negative
odd element.

LEMMA 5. Let G be as in (1), H < G, and suppose H contains an even
element. Then H contains both a positive odd element and a negative odd
element unless H is conjugate to an HNN group (s, U'; sU's' = U") where
U" < V and U'=HDU; if H — U contains only even elements then
U' = U".

3. Subgroups with centre

THEOREM 1. (i) Suppose G is as in (1), H < G, g is in the centre of H, and
g has no conjugate in U. Then H is conjugate to an HNN group
(s, U';sU's~' = U') where U'< U (i.e., H is an infinite cyclic extension of a
subgroup of a conjugate of U) unless H is in a conjugate of a factor.

(ii) Suppose G is as in (2), H < G, g is in the centre of H, and g has no
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16] Subgroups with cent re in H N N groups 355

conjugate in L. Then H is conjugate to an HNN group (s, L'; sL 's ' = L')
where L'< L unless H is in a conjugate of K.

PROOF, (i) If g is in a factor then C(g), the centralizer of g, is also in a
factor. If no conjugate of g is in a factor, then we may assume g is cyclically
reduced and even. Hence by Lemma 4, H has no odd elements and so H has
the asserted structure by Lemma 5.

(ii) If g E K then again an easy argument shows that C(g) < K. Suppose
no conjugate of g is in X. If some conjugate H" of H contains an odd
element, then by Lemma 2, g" is odd and so H has the asserted structure by
Lemmas 2 and 3.

Suppose no conjugate of H contains an odd element. Now some cyclic
rearrangement of a cyclically reduced element of G is odd unless all of its
blocks have t-length 1. Hence an element of G having no odd conjugate must
be in a conjugate of Q = (K * tKt'1; M = tW). Thus H<KG. We may
assume g G Q, and show H < Q. Now Ka is a tree product of three groups
Q-i,Q,Qu where Q i is generated by all t'"Kt" f o r n S l , Q, is generated by
all tmKtm for m § 2 , with t'Mt = L amalgamated between Q_, and Q, and
tMt~l = t2Lt2 amalgamated between Q and Qt. Since g is not in a conjugate
of L, the amalgamations are proper and so by the first remark in the proof of
(i) above, H < Q. Since g is. not in a conjugate of K, (i) applies again to show
that H has the asserted fdfm. •

COROLLARY. If g is an odd element in (2), then C(g), the centralizer of g, is
an infinite cyclic extension of a subgroup of a conjugate of L.

4. One relator groups and generalizations
We next wish to describe the structure of subgroups with non-trivial

centre of one-relator groups. As is well known (and follows from Lemma 4)
the centre of an amalgamated product G=(A*B;U) is in U if
A ^ U/- B. Similarly, the centre of a tree product is in each edge if the tree
product is proper, i.e., if it has at least two vertices and for each edge t/v

joining A, to A,, A,^ U,,^ Ah On the other hand, if the tree product is not
proper, its centre need not be contained in any edge, e.g., consider a properly
ascending union of groups. However, this is essentially the only exception.

LEMMA 6. Let G be given as a tree product P. If G is not an ascending
union of some of its vertices, then G can be expressed as a tree product P" of a
subset of the original vertex groups and edge groups of P in such a way that the
centre of G is in each edge group; moreover, each of the vertices of P is
contained in a vertex group of P".'

PROOF. We wish to write P as a proper tree product. Let Au be a vertex
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group of P and define the level A (A,) of the vertex group A, as the length of
the shortest path in P from A,, to A,. Clearly, every subtree of P has a unique
vertex of minimal level.

An edge of P joining A< to A, with \(A,)< X(Aj) is said to be
descending (strictly ascending) if A, is contained in A, (A, strictly contains
A;); a subgraph is descending (strictly ascending) if each edge of it is
descending (strictly ascending). If we delete all edges of P but the descending
ones (strictly ascending ones), then the resulting connected components are
maximum descending (strictly ascending) subtrees. Clearly the tree product of
every maximum descending subtree is just its vertex of minimal level.

We shall now eliminate the descending edges from P by contracting the
maximum descending subtrees. By the generalized associative law for tree
products (Theorem 1 of Karrass and Solitar (1970)), G is the tree product P'
of each of the vertices of P of minimal level in some maximum descending
subtree of P; moreover the edges of P' are the edges of P which join vertices
from different maximum descending subtrees of P. Let A' be the level
function for the tree P' with \'(A0) = 0. Then P' has no descending edges.
For, suppose A,, A, are joined by an edge in P' and A, < Ay. Then in P there
are neighboring vertices A' and A) such that there exists (in P) a descending
path from At to A', and from A, to A J. Now in P, the simple path joining A,
to Aj generates its tree product, and so A, is contained in each of the vertices
of this simple path. Thus A',< At < A '„ and hence A (A [) < A (A',) since the
edge joining A', and A J- cannot be descending. But since A) can be joined by
an edge to a unique vertex of smaller level, the vertex AJ must coincide with
the vertex A,. Therefore in P the simple path from Ao to A, consists of the
simple path from Ao to Ah the descending path from At to A', and the edge
from A; to A,; moreover, A^Aj) is the only vertex on this simple path joining
A,, to A,(A,), which lies in the maximum descending subtree containing
A,(A,). When this path is projected into P' and made simple, there results a
simple path in P' joining Ao to A, and passing through A,; thus A'(A^)>
A '(A,). Consequently, P' has no descending edges.

We next contract slightly the maximum strictly ascending subtrees.
Clearly P' is the tree product of its maximum strictly ascending subtrees, with
edges the proper edges of P'. Let M be a maximum strictly ascending subtree
of P'. If M is a chain and some proper edge of P' has a vertex in M, let A, be
the vertex of M of minimum level on a proper edge; let M' result from M by
contracting the vertices below A, into A,. If M is not a chain, then there exists
a unique vertex A, of minimum level which is joined in M to at least two
vertices of higher level; let M' result from M by contracting the vertices
below A, into A,. Let P" result from P' by replacing each M by M'.
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[8] Subgroups with centre in HNN groups 357

.' Suppose now that G is not an ascending union of vertices. Then Z, the
centre of G, will be contained in each edge of P". For, Z is contained in each
proper edge of P" and so is in each maximum strictly ascending subtree M' of
P". If M' is a chain then, by construction, there is a proper edge adjacent to
the lowest vertex of M' and so Z is contained in each vertex and edge of M'.
If M' is not a chain then M' = (C * D; U) where U is the vertex of minimum
level in M' and C, D each contain a vertex of M' joined to U. Since M' is
strictly ascending, C/ U/ D, hence Z < U. But each vertex of M' contains
U and so each edge of M' contains Z. •

COROLLARY. Let G be given as a tree product P. If G is not an ascending
union of vertices of P, then G can be expressed as a proper tree product Q whose
edge groups are edge groups from P and whose vertices are strictly ascending
trees with vertex groups and edge groups from P.

LEMMA 7. Let G be a treed HNN group with tree product base B having
vertices {A,} where each A, is itself a treed HNN group such that each
amalgamated and associated subgroup of G incident with At is conjugate in A,
to a subgroup of a vertex of A,. Then G is a treed HNN group whose base C is a
tree product with vertices conjugate in B to the vertices of the various A, and
whose amalgamated subgroups are conjugate in B to the original amalgamated
subgroups of G and to the amalgamated subgroups of the various A,; finally,
the new associated subgroups are conjugate in B to the original associated
subgroups of G and to the associated subgroups of the various A,.

PROOF. Let A» be a vertex of B and let A be the level function for B with
A(Ao) = 0. For each vertex A, in B of level one, there exists an edge
Uoi = U](, joining A,, to A,. By hypothesis aoil/oifloi1 and awUwa'w are in
vertices of Au and A, respectively, where a,, £ A,. If we define A[~
aOiaH,'Aia.<ia»i', then gp(Aa, A,) = gp(A0, A I) = (Ao * A \; amUma,»
= a(n Uina,t!), and the amalgamated subgroups are in vertices of the treed
HNN groups A,, and A (. Similarly, each vertex A2 of level two can be joined
by an edge t/2i = Ul2 to a vertex A, of level one, where a^V^a^ and
a2\U2\a2l are in vertices of A, and A2, respectively. If we define A'2~

A2a2ianau)a(n, then

= amUi»am , auiawCinUnci\2aiaa'm = d(nawaV2U2ia 12awaa,)

X where the amalgamated subgroups are in vertices of the treed HNN groups
i Ao,A',,A'2. Continuing in this way we obtain that B is a treed HNN group
Si

*' whose tree product base C has as vertices conjugates in B of the vertices of
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the various A,; moreover, the amalgamated subgroups of C axe. conjugate in
B to the original amalgamated subgroups of B and the amalgamated
subgroups of the various A,. The associated subgroups of B are conjugate in
B to the associated subgroups of the various A,.

Finally, consider any pair L, M of associated subgroups of G and the
corresponding free generator t of G. By hypothesis, L, M are conjugate in B
to subgroups of vertices of C. If btLb^1 and b2Mb2' are in vertices of C where
b\, b2& B, replace t by t, = b2tbiK, the pair of associated subgroups corres-
ponding to t, are blLbi' and b2Mb2'- In this way G can be expressed as a
treed HNN group of the type asserted in Lemma 7. •

Lemma 7 also appears in Cohen (1973).

LEMMA 8. Suppose G/N is a treed HNN group with vertices A,, amalga-
mated subgroups Utj = U,i, and associated subgroups Lk, Mk corresponding to
the generator tk. If (p is the natural homomorphism of G onto G/N, then G is a
treed HNN group with vertices <p'\Ai), amalgamated subgroups <p~1(Uii) =
(p~'(Uji), and associated subgroups <p~'(Lk),<p~'(Mk) corresponding to the
generator t'k where t'k is an element of cp~'(tk).

PROOF. First we observe that the group G = (A * B; U) can be charac-
terized internally by the fact that G = gp(A, B), A D B = U, and
g\gi • • • gn/ 1 where the g, are alternately from A - U and B - U; the group
G = (t, K; tL,t' = L_i) can be characterized internally by the fact that
G = gp(t,K),tL,t-' = L-u and kot

e'k,t^k2 • • • t'-kn^ 1, where fe, e K, e, =
± 1, and k,£ L, if e, = e and e^i = — e.

If GIN = (A *B; U = V) or (t, K;tLt~l = M), then the result follows
from the internal characterizations of such groups. If G/N is a treed HNN
group with finitely many vertices and free part of finite rank, then the result
follows by induction. Finally, one can characterize a general treed HNN
group internally by specifying that each finite subtree of vertices and a finite
number of free generators whose associated subgroups are incident with these
vertices generate the natural treed HNN group. •

THEOREM 2. Let H be a subgroup of a torsion-free one relator group G
where H has non-trivial centre Z. Then H is a treed HNN group with infinite
cyclic vertices; moreover, if H is not locally cyclic and not free abelian of rank
two, then Z is contained in each vertex and associated subgroup of this treed
HNN group.

PROOF. The proof is by induction on the length of the relator of G. If G
is not infinite cyclic, then G is a subgroup of an HNN group (t, K; tLt~' = M)
where K is a group with a single defining relator of shorter length than that of
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G, and L is free. Therefore H is a treed HNN group with vertices in
conjugates of K and amalgamated and associated subgroups in conjugates of
L (by Theorem 1 of Karrass, Pietrowski and Solitar (1974)).

Suppose first that H has non-trivial free part and Z is contained in each
associated subgroup of H. Then Z must be infinite cyclic and contained in
some vertex of the tree product base B of H. Hence by Lemma 6 we may
assume that Z is contained in each vertex and amalgamated subgroup of B.
By inductive hypothesis each vertex V of H is a treed HNN group with
infinite cyclic vertices V, each of which contains Z (this holds even if V is
locally cyclic or free abelian of rank two). If E is any amalgamated or
associated subgroup incident with V in the treed HNN representation of H,
then E is infinite cyclic since it is free and has a non-trivial centre and EjZ is
a finite subgroup of the treed HNN group VIZ, which has vertices VJZ.
Hence a conjugate of E/Z in V/Z is in some vertex VJZ. Therefore some
conjugate of £ in V lies in some vertex V,. It follows from Lemma 7 that His
a treed HNN group with infinite cyclic vertices such that Z is contained in
each vertex and amalgamated and associated subgroup.

If the free part F of H has rank s 2, or if F is infinite cyclic and the base
of H is different from either associated subgroup, then by Corollary 1 to
Lemma 2, the preceding argument applies.

Hence if F/ 1 we may assume H is an infinite cyclic extension of a free
group B; moreover, H/Z is a finite extension of the free group BZ/Z.
Therefore by Scott (1974), H/Z is a treed HNN group with finite vertices, and
so by Lemma 8, H is a treed HNN group with infinite cyclic vertices and Z is
contained in each vertex and associated subgroup.

Finally, suppose F = 1. If H = B is not a single vertex, then Lemma 6
shows that H is locally cyclic or that Z is contained in each vertex V of B, and
so as in the first case H has the desired form. If H = B is a single vertex, then
the inductive hypothesis applies. •

COROLLARY 1. Let A, B, K be groups such that any subgroup H with
non-trivial centre has the structure described in the preceding theorem. If
G = (A* B;U) or G = (t,K;tLt~l = Af) where U, L are free, then any
subgroup of G with non-trivial centre has the structure described. •

Thus, for example, the centralizer of an element in (A *B; U) where
A, B are free, is a treed HNN group with infinite cyclic vertices.

COROLLARY 2. Let G be as in the preceding corollary, and let C be the
centralizer of an element xj^\ in G. If H is a subgroup of C such that
H n gp(x) = 1, then H is a free group.

https://doi.org/10.1017/S1446788700020371 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020371


360 A. Karrass and D. Solitar [11]

PROOF. Same as for Corollary 2 of Theorem 2 in Karrass, Pietrowski and
Solitar (1974).

COROLLARY 3. Let G be as in the preceding corollary and let H =
C x D <G. CV 1 ^ D. Then C, D are free groups.

PROOF. If 1 j^ d £ D, then C is in the centralizer of D, and C D gp(d) =
1, and so Corollary 2 applies. •

In particular, if G is a torsion-free one-relator group, and C x D <
G, CV 1 / D, then C, D are free.

To obtain the result of Cossey-Smythe referred to in the introduction we
must establish that a treed HNN group with infinite cyclic vertices and
non-trivial centre is an extension of a free group by a subgroup of the additive
rationals. For this purpose choose some fixed generator xn of a vertex
(referred to as level zero) and map this into the rational number 1. If xn;, is a
generator of a vertex An*, of level n + 1 and xn is a generator of a vertex An

of level n joined to an<, by an edge and if the amalgamated subgroups of this
edge are xp

n= xl^ and xn has been mapped into rn then map xn^t into
prn/q\ map each free generator t into 1. If c is a non-trivial central element
then c = x™ = x[ and so if tx°t~' = xf then tx""t~' = xf" = tcat~' = c" = x?

and therefore (3m = ay. But if x, goes into the rational r, then mrn = ;>5.
Hence. lx^t~' goes into ar, while x, goes into /3rs; but a/(I = w//' = rs/rn so
that arn = fir, and the homomorphism is well-defined. Since the mapping is
one-one on the vertices it follows that the kernel is a free group.
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