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Abstract

We establish a characterization of certain trees of polygons similar to that of n -gon-trees given by
Chao and Li.

1991 Mathematics subject classification (Amer. Math. Soc): primary 05 C 75; secondary 05
C15.

1. Introduction

The graphs which we consider here are finite, undirected, simple, and loopless.
For a graph G, let P(G\ A) denote its chromatic polynomial. Two graphs X and
Y are said to be chromatically equivalent if P(X; A) = P(Y; A). If Hx and H2

are graphs, we shall say that a graph H is of type (H\, H2) if it can be formed
from the disjoint union H{ U H2 by identifying an edge of Hi with an edge of
H2.

Let m and «i, n2,..., nm be integers satisfying m > 1 and nm > • • • > n2 >
«i > 3. Let Q be the class of graphs defined recursively by the rules: the«,-cycle
Cn> is in Q for each i (1 < i <m), and if Hx and H2 belong to Q then so does any
graph of type (Hu H2). The graphs in Q are called (nu n2,..., nm)-gon-trees.
They are evidently 2-connected planar graphs. If m — 1 and ri] = n then the
graphs in Q are called n-gon-trees.
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Let H be a graph of type (Hu H2). Then every chordless cycle (induced
cycle) in H is a chordless cycle in H\ or a chordless cycle in H2. Also, the
chromatic polynomial P{H\ k) of H satisfies

k(k - 1)

It is well known that the chromatic polynomial of an n -cycle is given by
P(Cn; k) = k(k - \)Q{Cn\ k) where

n-2

(2) Q(Cn;k) = (-\rJ^(l-k)'.

We thus see that if G is an (nu n2,..., «m)-gon-tree then every chordless cycle
in G has one of the lengths nu ..., nm. An easy inductive argument using (1)
and (2) also gives the following theorem.

THEOREM 1. If G is a («i, n2,..., nm)-gon-tree with kt chordless nrcycles
(1 < i < m), then

(3)
;=i

where Q(Cni; k) is defined by (2).

For n-gon-trees (m = 1), Chao and Li [1] proved that the converse of
Theorem 1 also holds. The purpose of this paper is to prove the converse of
Theorem 1 for a wider class of («1; n2,..., «m)-gon-trees.

In the remainder of this section we shall state some known results that will
be useful in proving our characterization theorems.

THEOREM A. (Whitney [7]). Let G be a graph of order p and size q. Then

P(G;k) = [
\=\ v=o

where N(k, r) denotes the number of spanning subgraphs of G having exactly
k components and r edges.
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THEOREM B. (Chao and Zhao [3]). Let G be a connected graph of order at
least 3, and with P(G; A.) = (A. - l)T(G; A,). Then

(a) T(G\ 1) = 0, if and only ifG has at least one cut-vertex;
(b) \T(G; 1)| = 1, if and only if G is a 2-connected graph and has no

subgraph homeomorphic to the complete graph K4 with 4 vertices;
(c) | T (G; 1) | > 2, if and only if G is a 2-connected graph and has at least

one subgraph homeomorphic to K4.

We also need the next result which gives explicit expressions for the first four
coefficients of the chromatic polynomial of a graph.

THEOREM C.Let G be a graph of order p and size q. If P{G\X) —
Yl?=oai^P~' ' s tne chromatic polynomial of G, then

(a) a0 = 1, a{ = -q;
(b) a2 = («) - NQi;
(c) a3 = - («) + {q - 2) NQi + NQi - 2NKi;

where NK. and NQ. denote the number of complete graphs Kt and chordless
cycles Ct respectively in G, and (*) is the binomial coefficient.

We end this section with the following result which is a corollary of a more
general result established in [5].

LEMMA D. Let G be a bipartite graph which has no subgraph K{2,2>). If a
graph H is chromatically equivalent with G, then NQ6(H) = NQ6(G).

2. Tree of Polygons

In this section we shall prove the converse of Theorem 1 for a wider class of
(nun2,..., «m)-gon-trees. We first establish the following key result by using
Whitney's theorem and a technique introduced by Farrell [4].

THEOREM 2. Let G be a graph of order p and size q with girth k > 3. If
P(G; X.) — $Zf=oa'^'' ' *5 tne chromatic polynomial of G, then

(a) aI- = ( - l ) ' ( « ) , / o r i = 0 , l , . . . , * - 2 ;

L(*-3)/2J.
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PROOF, (a) Let i be any integer such that 0 < i < k — 2. By Theorem A,
the coefficient of Xp~' is

r=0

where N(p — i, r) is the number of spanning subgraphs of G with p — i
components and r edges. But in a spanning subgraph with p — i components,
no component can have more than / + 1 vertices. Since i < k — 2 and G has
girth k, all such spanning subgraphs are forests with exactly / edges, and every
set of i edges gives such a forest. So the contribution of these graphs to a, is
therefore

Thus we have the required result.
(b) Let / be any integer satisfying 0 < i < l(k — 3)/2J. By Theorem A,

ak+i.x = J](-ir/V(/7 - k - i + 1, r),

where N(p — k — i + 1, r) is the number of spanning subgraphs of G with
p — k — i + 1 components and r edges. No component of such a spanning
subgraph can have more than k + / vertices. Since the girth of G is k and
/ < [(k — 1)/2J, these spanning subgraphs of G are forests with exactly k + / — 1
edges or unicyclic graphs of girth > k with k + i edges. Thus we can categorize
them as follows:

(i) Sj — { Unicyclic graphs with one chordless (k + y')-cycle plus i — j
edges }, for j — 0, 1 , . . . , i.

(ii) 5,+i = { Forests with k + i — 1 edges }.
We shall now calculate the contributions of all the graphs in Sj (0 < j < i +1)

to the coefficient ak+i-\.
Let j be any integer such that 0 < j < i. All the graphs in 5; have one

chordless (&+y)-cycleplus/ — y edges. Since G has girth k and i < [(k — 1)/2J,
there is no other such graph which is not in 5,-. Therefore the contribution of
these graphs to «*+,-_i is

All the graphs in 5,+i contain k + i — 1 edges. Since G has girth k and
/ < [(k — 1)/2J, the only other graphs with k + i — I edges which are not in Si+l
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are unicyclic graphs with one chordless (k + y)-cycle plus i — j — 1 edges, for
j = 0, 1,...,( — 1. Hence the contribution of all the graphs in Si+i to ak+i-\ is

| / + 1 = (-1)*+'-> \( q

\\k + i-

By adding all the contributions £,- (0 < j < i + 1) to a*+i-i, and using the
binomial identity Q + ( ^ J = (r+

s
l), we get the required result.

COROLLARY 3. If two graphs G and H are chromatically-equivalent, then
they have the same girth. Furthermore, if the girth ofG is k > 3, then H and G
have the same number of chordless i-cyclesfor 3 < / < k + [(k — 3)/2J.

Our characterization theorems depend on the following lemma.

LEMMA 4. Let G be a connected graph of order p, size q, and with chromatic
polynomial given by (3). Then

(a) p = Y17=i(ni ~ 2)kt +2andq = Yl?=i(»> ~ l)*i + !>'
(b) G is a 2-connected planar graph with E/=i k> interior regions.

PROOF, (a) It is easy to see that (Q(Cni; A))*1' has degree («, - 2)£, and that
the coefficient of A'"1"2**1"' is — («,- — 1)^,. Thus

1) x
1=1

has degree h = YltM' ~ 2)k> + 2 and its coefficient of A*"1 is -
\)ki +1 ) . Hence we conclude that (a) holds.

(b) Let P(G; A.) be written as P(G\ A.) = (A. - 1)T(G; A), that is

Then \T(G; 1)| = |1 n r = i ( e ( Q ; 1))*'| = 1, since |Q(Cn,; 1)| = 1 for 1 <
i < m. By Theorem B(b), G is a 2-connected graph and has no subgraph
homeomorphic to K4, and hence G is a planar graph (see [1, Lemma 6]).

The well-known theorem of Euler states that the p vertices, q edges, and /
regions of a planar graph satisfying p + f — q + 2. Thus for the graph G, we
have E*=i(«.• -2)*, +2 + / = YZMi ~ W< + 1 +2, and / = J X , *,• + 1,
that is, G has EHi <̂ interior regions.
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We are now ready to state and prove our main result.

THEOREM 5. Let m > 2 and let nt be integers satisfying 3 < «i < n2 <
• • • < nm < «i + L(«i - 3)/2J. Then a graph G is a (nun2, ..., nm)-gon-tree
with kt chordless nrcycles (1 < i <m) if and only if

P(G; A) =

where Q(Cni; X) is defined as in (2).

PROOF. The necessity follows from Theorem 1. To prove the sufficiency
we proceed as follows. We first claim that G has kt chordless «,-cycles for
I < i < m. Since G is chromatically-equivalent to a (nu n2,..., «m)-gon-tree
with ki chordless «,-cycles (1 < i < m), the claim follows from the corollary to
Theorem 2.

By Lemma 4 and the above claim, P(G; X) = X(X - 1) \\™=l(Q(C,.; A))*'
implies that G is a 2-connected planar graph with Yl?=i (n> ~ 2)£i + 2 vertices,
5Zili("i ~ l)^i + 1 edges, ^ = 2Zi=i î interior regions, and £, chordless
«,-cycles (1 < / < m). We now proceed by induction on k to show that G
is indeed a («1; «2* • • •. «m)-gon-tree with ,̂ chordless «,-cycles (1 < / < m).
For k — 1, that is, &, = 0 for all /, 1 < i < m except kr = 1 for some r,
1 < r < m, it is clear that G is a («r)-gon-tree with one chordless nr-cycle.
Assume that the conclusion holds for k — 1 = Yl?=i t# ^' + (^ ~ 1)- f°r some
?, 1 < t < m (k > 3). That is, if G* is a 2-connected planar graph with
EtM - 2)*,- + 2 - (n, - 2) vertices, E7=1(«, - 1)*,- + 1 - («, - 1) edges,
k — 1 interior regions, and £, chordless «,-cycles (1 < / < m, / ^ f) and )t, — 1
chordless n,-cycles, then G* is a («i, n2,..., «m)-gon-tree with k, chordless
A2,-cycles (1 < / < m, i ^ t) and k, — 1 chordless «,-cycles.

We now consider &. Suppose that G is not a («i, «2. • • •, «m)-gon-tree with
A:, chordless w,-cycles (1 < / < m). If G contains h (h > 2) chordless
cycles Cr, (1 < y < h) which share exactly one common edge e, then G — e
is a 2-connected planar graph with k — 1 interior regions, Jl?=i(ni ~ 2)£; + 2
vertices, 2~2?=\(n' ~ l)*i edges, and^, chordlessn,-cycles (1 < / < m, i ^ r; for
1 < 7 < A),^. —1 chordless n0-cycles, and one chordless «r,+ry_2-cycle for each
2 < y < h. But G - e is not a («i, « 2 ) . . . , nm, «ri+r2_2, «ri+r3-2, • • •, «r|+rft-2)-
gon-tree with kt chordless «,-cycles (1 < i < m, i ^ r7 for 1 < j < h),
kr — 1 chordless nfj-cycles, and one chordless /in+rj_2-cycle for 2 < j < h,
contradicting our induction hypothesis. So any two chordless cycles of G
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have either no or at least two edges in common. But then, since G is a 2-
connected planar graph with Y17=i h interior regions and kt chordless n,-cycles
(1 < / < m), it is not difficult to see that G has no more than Y17=i (n* ~ 2)£; + 2
edges, which is strictly less than J2?=i(n' — l)^i + 1. again a contradiction.

3. Special Cases

We shall in this section characterize two other trees of polygons which are
not established in Theorem 5. Firstly we need the following two results.

LEMMA 6. If a graph G is chromatically-equivalent to a (3, 4)-gon-tree with
k\ triangles andk2 chordless A-cycles, then G has the same number of triangles
and chordless A-cycles.

PROOF. This follows from Theorem C.

LEMMA 7. If a graph G is chromatically-equivalent to a (4, 6)-gon-tree with
k\ chordless A-cycles and k2 chordless 6-cycles, then G has the same number of
chordless A and 6-cycles.

PROOF. This follows from the corollary to Theorem 2 and Lemma D.

We are now ready to give the characterizations of (3,4)-gon-trees and (4,6)-
gon-trees which can easily be proved using Lemmas 6 and 7, and similar argu-
ments to those used in establishing Theorem 5.

THEOREM 8. A graph G is a (3, A)-gon-tree with k\ triangles andk2 chordless
A-cycles, where k{ + k2 > 1, if and only if

P(G;k) = k(k- l)(A-2)*'(A.2-3A. + 3)*2.

THEOREM 9. A graph G is a (4, 6)-gon-tree with k{ chordless A-cycles and
k2 chordless 6-cycles, where k{ + k2 > 1, if and only if

P(G; k) = X.(k - \)(k2 -3k + 3)kl(k4 - 5k3 + 10A2 - 10A + 5)*2.

In concluding this paper, we note that the converse of Theorem 1 holds if the
following conjecture is true.
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CONJECTURE. If a graph G is chromatically equivalent to a {n\,n2, ... ,nm)-

gon-tree with kt chordless nrcycles (1 < / < m), then G has kt chordless

Hi-cycles for i — 1 , 2 , . . . , m.
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