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Strongly Projective Graphs
Benoit Larose

Abstract. We introduce the notion of strongly projective graph, and characterise these graphs in terms
of their neighbourhood poset. We describe certain exponential graphs associated to complete graphs
and odd cycles. We extend and generalise a result of Greenwell and Lovász [6]: if a connected graph
G does not admit a homomorphism to K, where K is an odd cycle or a complete graph on at least 3
vertices, then the graph G× Ks admits, up to automorphisms of K, exactly s homomorphisms to K.

1 Introduction

In the following, all graphs are assumed to be finite and undirected, and unless other-
wise stated all graphs under consideration are without loops. For basic terminology
and notation we shall follow [7]. If G and H are graphs, a homomorphism from G to
H is an edge-preserving map from the vertex-set of G to the vertex-set of H, i.e. a
map f : G → H such that f (g) f (g ′) is an edge of H whenever gg ′ is an edge of G.
The (categorical) product G×H of two graphs has vertex set G×H and two vertices
(g, h) and (g ′, h ′) are adjacent if gg ′ and hh ′ are edges of G and H respectively. In
other words, this is the largest set of edges on G × H such that the projections onto
G and onto H are graph homomorphisms. For n ≥ 1 we let Gn denote the product
of G with itself n times. A graph is a core if it has no proper retracts, i.e. if every
homomorphism of G to itself is an automorphism.

The behaviour of graph homomorphisms with respect to the categorical product
appears to be quite complex. Consider only the (yet unsolved) Hedetniemi conjec-
ture [9] which states that the chromatic number of the product of two graphs G and
H is the minimum of their respective chromatic numbers, i.e.

χ(G×H) = min{χ(G), χ(H)}.

An n-ary operation on a graph G is a homomorphism from Gn to G. An operation
f is said to be idempotent if it satisfies f (x, x, . . . , x) = x for all x. Call a graph G
projective (idempotent trivial) if the only idempotent operations on G are the projec-
tions. Our interest in these graphs is threefold. First, Hedetniemi’s conjecture may
be rephrased as follows. Call a core graph K irreducible if, whenever K is a retract of
a product G× H then it is a retract of G or H. Then the conjecture may be stated as
Every complete graph is irreducible. Few irreducible graphs are known, but it is shown
in [15] that a vertex-transitive core graph which is projective is weakly irreducible,
i.e. if it is a retract of a product of connected graphs, then it is a retract of one of
the factors (this was first shown in the case of the complete graphs by Duffus, Sands
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and Woodrow [4].) Second, in recent work by Nešetřil and Zhu [18], it was shown
that projective core graphs are the natural generalisation of the complete graphs in
extending a result of Müller on unique colourability; more precisely, they show that
if G is a projective core graph, then there exist graphs of large girth that admit, up to
automorphisms of G, only a prescribed set of homomorphisms into G. Finally, a key
ingredient in the study of the relationship between products and homomorphisms is
the notion of exponential graph [17, 5]: Let G and K be two graphs. Define KG as
follows: the vertices are all the functions from G to K, and two such functions f and
g are adjacent if they satisfy the following condition: if x and y are adjacent in G then
f (x) and g(y) are adjacent in K. In other words, we define the ‘right’ edge structure
on the set KG to obtain the natural bijection between the sets Hom(G × H,K) and
Hom(H,KG). There is a natural correspondence between graphs and posets under
which order-preserving operations correspond to functions in exponential graphs
that have at least one neighbour (see below). This correspondence can be used to
investigate the structure of certain exponential graphs, namely those of the form KG

where G = K s for some s ≥ 1. For example it was shown in [14] that if the poset
associated to the graph G is projective, then G must also be projective. In fact, quite
a bit more can be said if we modify the notion of projective graph as follows.

Let G be any graph and let s ≥ 1. For convenience, we shall adopt the following
notation in the remainder of the paper: let Es(G) denote the graph GGs

and let Is(G)
denote the subgraph of Es(G) consisting of the idempotent functions, i.e. those f that
satisfy f (x, . . . , x) = x for all x. Call a graph G strongly projective if, for every s ≥ 2,
the only f ∈ Is(G) with at least one neighbour are the projections.

Our first result characterises strongly projective graphs in terms of the neighbour-
hood poset alluded to earlier (Theorem 2.1). In the last section we describe in detail
the graphs Es(K) for s ≥ 2 where K is complete or an odd cycle (Theorems 3.2,
3.6). Theorem 3.2 actually proves a special case of a conjecture by Duffus, Sands and
Woodrow [4] (see [11]). We deduce from this an analog for odd cycles of a result of
Greenwell and Lovász [6] on unique colourability (Corollary 3.7).

2 Strong Projectivity

Let G be a graph. If a ∈ G we denote the neighbourhood of a by Na. More generally,
if X is a set of vertices let NX denote the set of all vertices in G that are adjacent to all
elements of X, i.e.

NX =
⋂
x∈X

Nx.

We say that G is ramified when for all a, b ∈ G, if Na ⊆ Nb then Na = Nb. Let us
now consider the graphs Es(G). For every s ≥ 1 this graph contains loops, namely,
the homomorphisms from Gs to G. When we say that a vertex of Es(G) is isolated we
mean that it is adjacent to no vertex other than (possibly) itself.

If G is a ramified, connected, non-bipartite graph, let PG denote the poset of non-
empty intersections of neighbourhoods of G ordered by inclusion. We’ll drop the
subscript G when no confusion is possible. (See [14] for details). Notice that the
maximal elements of the poset are the neighbourhoods of G, and that because G is
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ramified, its minimal elements are the one-element subsets of G.
We shall need a few technicalities about posets (the reader may also consult [16]).

If P and Q are posets, a map from P to Q is order-preserving if f (x) ≤ f (y) in Q
whenever x ≤ y in P. Let QP denote the poset of all order-preserving maps from P
to Q ordered pointwise, i.e. f ≤ g if f (x) ≤ g(x) for all x ∈ P. For our purposes,
define a connected poset Q to be dismantlable if QP is connected for every poset P. A
poset P with at least 2 elements is ramified if for all x < y in P there exist a and b in P
such that a < y but a 6≤ x and b > x but b 6≥ y. It is easy to verify the following: P is
ramified if and only if the identity map id : P → P is comparable only to itself in the
poset PP. More generally, P is ramified iff the projections are isolated in PPs

for all s.
It is easy to see that, if G is ramified, connected and non-bipartite then the poset PG

is ramified and connected.
The product of two posets P and Q is defined in the obvious way: (a, b) ≤ (c, d)

in P × Q iff a ≤ b and c ≤ d. An s-ary operation on a poset P is an order-preserving
map f : Ps → P. Just as in the case of graphs, we say that a poset is projective if the
only idempotent operations on P are projections.

We now state our first result.

Theorem 2.1 Let G be a ramified, connected, non-bipartite graph. Then the following
statements are equivalent:

1. G is strongly projective.
2. G is projective and I2(G) consists of isolated vertices.
3. PG is a projective poset.

The rest of this section will be devoted to the proof of this result. Let G and H be
two connected, non-bipartite ramified graphs. For convenience let P = PG and let
Q = PH . Let f and g be neighbours in HG. Then we define a map f̂ : P → Q as
follows:

f̂ (X) =
⋂

a∈NX

N f (a).

We claim that this is a well-defined order-preserving map from P to Q. Indeed, it
is easy to see that f̂ (X) contains g(X) so it is not empty. Suppose that X ⊆ Y in P.
If u ∈ f̂ (X) then u is adjacent to f (a) for every a ∈ NX . But clearly NY ⊆ NX so
u ∈ f̂ (Y ) and f̂ is order-preserving.

It is a simple exercise to see that for any graphs G and H as above, the posets
PG×H and PG × PH are naturally isomorphic, using the fact that NA×B = NA × NB.
If f ∈ Es(G) has a neighbour g then using this isomorphism we may express f̂ as an
s-ary operation on PG:

f̂ (X1, . . . ,Xs) =
⋂

ai∈NXi

N f (a1,...,as)

for all Xi ∈ PG.

Lemma 2.2 Let G be a ramified, connected, non-bipartite graph and let f ∈ Es(G)
have at least one neighbour. Then
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1. The operation f̂ is well-defined and order-preserving.
2. If f is idempotent then f̂ is idempotent.
3. If f̂ is a projection then f is a projection.
4. If f satisfies f (x1, . . . , xs) ∈ {x1, . . . , xs} for all xi then f is a projection.

Proof Statements (1), (2) and (3) are proved in [14] (Lemma 3.2) in the case where
f is a graph homomorphism, but the proof is easily modified to accommodate the
weaker hypothesis. So now we proceed to show (4). Let Is

∗ denote the subgraph of Is

consisting of those functions f that satisfy f (x1, . . . , xs) ∈ {x1, . . . , xs} for all xi .

Claim 0

(i) If g is adjacent to a projection in Es(G) then g is equal to that projection.
(ii) If f ∈ Is and g is adjacent to f then g ∈ Is.

Proof of Claim 0 (i) Fix (x1, . . . , xs) and let (y1, . . . , ys) be a neighbour. Then
g(x1, . . . , xs) is adjacent to πi(y1, . . . , ys) = yi . Since this holds for any neighbour yi

of xi and G is ramified we conclude that g(x1, . . . , xs) = xi . (ii) Restrict both f and
g to the diagonal. You obtain elements f ′ and g ′ of E1(G) which are adjacent. But f ′

is the identity so by (i) with s = 1 we get that g ′ is the identity and hence g ∈ Is.

Claim 1 If f and g are adjacent and f ∈ Is
∗ then g ∈ Is

∗.

Proof of Claim 1 If g(x1, . . . , xs) is not equal to any of x1, x2, . . . , xs then because
G is ramified there exist neighbours ui of xi such that g(x1, . . . , xs) is not adjacent to
ui for all i. But g(x1, . . . , xs) is adjacent to f (u1, . . . , us) which is equal to some ui , a
contradiction.

Claim 2 Let f ∈ Is
∗ which has a neighbour g. For every Xi ∈ P, f̂ (X1, . . . ,Xs)

contains some Xi .

Proof of Claim 2 Suppose that f̂ (X1, . . . ,Xs) contains none of X2, . . . ,Xs. For each
j ≥ 2 choose x j ∈ X j which is not in f̂ (X1, . . . ,Xs). But for any a ∈ X1 we have that

f̂ (X1, . . . ,Xs) contains g(a, x2, . . . , xs) which must be equal to a by Claim 1. Hence
f̂ (X1, . . . ,Xs) contains X1.

Claim 3 Let P be any connected ramified poset, let s ≥ 3 and let F be an s-ary isotone
operation on P that satisfies the identity F(x, x, x3, . . . , xs) ≈ xs. Then F is the s-th
projection.

Proof of Claim 3 Define an isotone map Φ from Ps−1 to PP by Φ(a1, . . . , as−1)(t) =
F(a1, . . . , as−1, t). Notice that Φ(a1, . . . , as−1) is the identity map whenever a1 = a2.
But Ps−1 is connected and hence so is its image under Φ. Since P is ramified the
identity is alone in its component; hence Φ is a constant map and we are done.

Claim 4 Let P be any connected ramified poset, let s ≥ 2 and let F be an s-ary isotone
operation on P that satisfies the following condition (∗): for every xi ∈ P there exists
some i such that F(x1, . . . , xs) is comparable to xi . Then F is a projection.
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Proof of Claim 4 If s = 2 then this is a result of Hazan [8]. Now suppose that the
result holds for s and let F be (s + 1)-ary with property (∗). For 1 ≤ i ≤ s define
operations

gi(x1, . . . , xs) = F(x1, . . . , xi , xi , xi+1, . . . , xs).

Clearly each gi is isotone and idempotent and satisfies (up to a permutation of vari-
ables) property (∗); hence each gi is a projection. By Claim 3 either F is a projection
and we are done, or else we must have that gi = πi for all i. But then s = 3 otherwise
we get, for a and b distinct in P that

a = g1(a, b, . . . , b) = F(a, a, b, . . . , b) = gs(a, a, b, . . . , b) = b.

Now consider the operation h(x, y) = F(x, y, x). Applying once again Claim 3 we
get that either F is a projection, or h is the first projection. In this case we find that F
satisfies the identities

F(x, x, y) ≈ F(x, y, x) ≈ F(y, x, x) ≈ x

i.e. F is a so-called majority operation on P. But it is known that [16] if a poset admits
a majority operation then it must be dismantlable (and hence cannot be ramified). It
follows that F is a projection.

Now we can prove (4): let f ∈ Is
∗ have a neighbour. By Claim 2 f̂ satisfies condi-

tion (∗) of Claim 4, and hence is a projection. Then by (2) we conclude that f is itself
a projection.

Let G be a ramified, connected, non-bipartite graph and let P = PG. If Φ is an
s-ary idempotent operation on P, then we may find an operation Ψ on P with the
following properties: (i) Ψ ≤ Φ, (ii) Ψ is idempotent and (iii) for every gi ∈ G
there exists a ∈ G such that

Ψ({g1}, {g2}, . . . , {gs}) = {a}.

Indeed, let Ψ be any minimal map below Φ. Since P is ramified, any map comparable
to Φ must itself be idempotent since x = Φ(x, . . . , x) ≥ Ψ(x, . . . , x) will hold for
all x ∈ P. So it suffices to prove that, if Q is any poset, any minimal element Ψ
of PQ maps minimal elements of Q to minimal elements of P. Suppose that Ψ is
minimal but that Ψ(M1, . . . ,Ms) is not, where M1, . . . ,Ms are minimal in Q. Let
U < Ψ(M1, . . . ,Ms) be minimal in P and define a new map

Ψ ′(X1, . . . ,Xs) =

{
U if Xi = Mi for all i,

Ψ(X1, . . . ,Xs) otherwise.

It is obvious that Ψ ′ < Ψ and easy to verify that it is order-preserving. Hence our
claim is proved.

We now proceed to prove Theorem 2.1:
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Proof of Theorem 2.1 (1)⇒ (2): Let f ∈ I2(G). If f has no neighbour we are done.
Otherwise, let g be a neighbour of f . Since G is strongly projective if follows that f is
a projection, and by Claim 0 we get that f = g. Hence f is an isolated loop and we
are done.

(2)⇒ (3): To prove that P = PG is projective, it suffices to prove that the only
idempotent operations of arity 2 on P are projections [10]. Since G is ramified, con-
nected and non-bipartite it follows that P is ramified and connected. Let Φ be a
binary idempotent operation on P. Since projections are isolated in PPs

, we may
suppose that Φ satisfies (iii) by the above discussion. So we may define an element
f ∈ I2(G) by f (x, y) = z where Φ({x}, {y}) = {z}, for all x, y ∈ G.

Claim The element f has a neighbour in I2.

Proof of Claim By Claim 0 it suffices to show that f has a neighbour. It is clear
that to show this, it suffices to find, for every pair (a, b), some c ∈ G such that
f (N(a,b)) ⊆ Nc (indeed, just define the neighbour g by g(a, b) = c). Now since Φ is
isotone, for every pair (a, b) we get that

f (N(a,b)) ⊆ Φ(Na,Nb)

and this set is a non-empty intersection of neighbourhoods, so is contained in some
Nc.

Since I2 consists of isolated vertices, we must conclude that f is a loop, i. e. a graph
homomorphism. But G is projective, so f is a projection, say f = π1. This means
that for any X and Y in P we have that

Φ(X,Y ) ≥ Φ({x}, {y}) = {x}

for all x ∈ X and all y ∈ Y , i.e. Φ satisfies (∗) of Claim 4. Thus Φ is a projection and
we are done.

(3)⇒ (1): Let f ∈ Is(G) have a neighbour. We construct f̂ which by Lemma 2.2(2)
is an idempotent operation on P. Since P is projective f̂ is a projection and by
Lemma 2.2(3) this implies that f is a projection. Since G is ramified it follows that f
is adjacent only to itself, so the elements of Is(G) are all isolated vertices.

It would be interesting to see examples of projective graphs which are not strongly
projective, if any. The following result is proved in [11], and shows that all known
families of projective graphs contain only strongly projective graphs:

Theorem 2.3 If G is of one of the following types then it is strongly projective:

1. Complete graphs on more than 2 vertices.
2. Odd cycles.
3. Square-free, connected, ramified, non-bipartite graphs.
4. Connected, ramified bipartite graphs with a universal vertex added.
5. Directly indecomposable primitive graphs.
6. Truncated simplices (see [13]).
7. Non-bipartite, distance-transitive graphs of diameter at least 3.
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3 The Exponential Graphs Es(K)

The associated poset P of the complete graph Kn on n vertices, n ≥ 3, is a trun-
cated boolean lattice on n atoms, i.e. the collection of all non-empty proper subsets
of {1, 2, . . . , n} ordered by inclusion. Truncated boolean lattices were shown to be
projective by E. Corominas [1], and it follows that the complete graphs are strongly
projective. The same can be said of odd cycles: the associated poset is called a crown,
and these are known to be projective [1]. Hence odd cycles are strongly projective.
We shall now describe in more detail the graphs Es(K) where K is either an odd cycle
or a (non-bipartite) complete graph. We start with the case of complete graphs:

Lemma 3.1 Let f and g be adjacent in Es(Kn) where Kn is the complete graph on n
vertices, n ≥ 3. If f is onto, then there exist permutations σ1, . . . , σs such that

f
(
σ1(x), . . . , σs(x)

)
= x

for all x ∈ Kn.

Proof For convenience let K = Kn. Since f is onto there exist {xi
j}, 1 ≤ i ≤ n,

1 ≤ j ≤ s such that f (xi
1, x

i
2, . . . , x

i
s) = i for all 1 ≤ i ≤ n. For 1 ≤ j ≤ s let

X j = {x1
j , x

2
j , . . . , x

n
j}. We claim that if X j = {1, 2, . . . , n} for all j then we are done.

Indeed, if this is the case just define σ j(i) = xi
j for all i and j. So we choose the

elements {xi
j} in such a way that the number r of sets X j equal to K = {1, 2, . . . , n}

is as large as possible, and such that the union of the remaining X j ’s has maximum
cardinality. Notice that r ≥ 1 for otherwise we could find elements u1, . . . , us such
that u j 6∈ X j for all j, and thus g(u1, . . . , un) would be adjacent to f (xi

1, x
i
2, . . . , x

i
s) =

i for all 1 ≤ i ≤ n, a contradiction. By rearranging the variables of f we may assume
that X1, . . . ,Xr are equal to K. Suppose for a contradiction that r < s.

We define two functions F and G from E1(K)s to E1(K) as follows: if h j ∈ E1(K),
j = 1, . . . , s put

F(h1, . . . , hs)(i) = f
(

h1(i), . . . , hs(i)
)

and
G(h1, . . . , hs)(i) = g

(
h1(i), . . . , hs(i)

)
for all i. It is easy to see that F and G are adjacent (i.e. if h j is adjacent to h ′j for all j
then F(h1, . . . , hs) is adjacent to G(h ′1, . . . , h

′
s ) in E1(K).) It is clear that a map is in

the component of the constants of E1(K) if and only if it is not onto, and otherwise it
is an isolated loop.

Now define elements h j of E1(K) by h j(i) = xi
j for all i, j. Then h1, . . . , hr

are isolated loops and hr+1, . . . , hs are in the component of the constants. Since
F(h1, . . . , hs) is the identity (which is isolated), and F is adjacent to G, and the com-
ponent of the constants of E1(K) is non-bipartite, it follows that F(h1, . . . , hr,
kr+1, . . . , ks) is the identity function for any constant maps kr+1, . . . , ks. In other
words, we have that

f (xi
1, . . . , x

i
r,wr+1, . . . ,ws) = i
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for all i ∈ K and any w j ∈ K. Define yi
j to be equal to xi

j when 1 ≤ j ≤ r

and equal to i otherwise. Then f (yi
1, yi

2, . . . , yi
s) = i for all 1 ≤ i ≤ n, and

Yi = {y1
j , y2

j , . . . , yn
j } = K for all i, contradicting our hypothesis that r < s.

Theorem 3.2 Let s ≥ 1 and let Kn be the complete graph on n vertices, n ≥ 3. Let
f ∈ Es(Kn). Then f is in the component of the constants if and only if it is not onto. If
it is onto then it is an isolated vertex of Es(Kn); furthermore, it is a loop if and only if
there exists an i and an automorphism σ of Kn such that f (x1, . . . , xs) = σ(xi) for all
x1, . . . , xs.

Proof Let K = Kn. Let f ∈ Es(K). If f is not onto then it is adjacent to a constant
function. Now assume that f is onto and that it has a neighbour g. By the last
lemma there exist permutations σ j such that f

(
σ1(x), . . . , σs(x)

)
= x for all x ∈ K.

Define new elements f ′ and g ′ of Es(K) by f ′(x1, . . . , xs) = f
(
σ1(x1), . . . , σs(xs)

)
and g ′(x1, . . . , xs) = g

(
σ1(x1), . . . , σs(xs)

)
for all x j . It is easy to see that f ′ and g ′

are adjacent, and that f ′ is idempotent. Since K is strongly projective it follows that
f ′ = g ′ is a projection, say the i-th projection. So we have that

f
(
σ1(x1), . . . , σs(xs)

)
= xi = g

(
σ1(x1), . . . , σs(xs)

)
for all x j . It follows easily that

f (x1, . . . , xs) = σ(xi) = g(x1, . . . , xs)

where σ = σ−1
i .

We note in passing the following interesting corollary:

Corollary 3.3 Let P be a truncated boolean lattice on n atoms, n ≥ 3. Let F be an
order-preserving s-ary operation on P. If F is not onto, then F is in the component of the
constants of PPs

. Otherwise F is essentially unary.

Proof Let F be any s-ary operation on P. Let G be a minimal element of PPs

such that
G ≤ F. Then G maps minimal elements of Ps to minimal elements of P, and we may
define an element g of Es(Kn) by g(a1, . . . , as) = b where G({a1}, {a2}, . . . , {as}) =
{b}. As in the claim in Theorem 2.1 we see that g has a neighbour in Es(Kn). If
this map g is not onto, it means that the image of G misses some minimal element
of P, and it is known that the remaining poset which contains the image of G is
dismantlable; it follows that G, and hence F is in the component of the constants
([12], Lemme 1 and Théorème 1). So we may assume that g is onto. By Theorem 3.2
we have that g is a projection followed by an automorphism, say g(x1, . . . , xs) = σ(xl)
for some 1 ≤ l ≤ s.

It is an easy exercise to verify that since G is minimal we have that

G(X1, . . . ,Xs) =
∨

Yi≤Xi
Yi minimal

G(Y1, . . . ,Ys)
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and thus
G(X1, . . . ,Xs) =

⋃
a∈Xl

{σ(a)}.

Define an automorphism S of P by S(X) = {σ(x) : x ∈ X}; then clearly
G(X1, . . . ,Xs) = S(Xl), and S−1G(X1, . . . ,Xs) = Xl is the l-th projection. Since
S−1F ≥ S−1G it follows that S−1F must be the same projection and thus F = G and
we are done.

We shall now prove that the graphs Es(C2k+1) have essentially the same structure,
where C2k+1 is the cycle on 2k + 1 vertices, k ≥ 1. However we shall achieve this using
the poset correspondence described earlier. A poset is called Słupecki if it satisfies
the following condition: if F is an s-ary operation on P, either it is not surjective
or it depends on only one variable, i.e. there exists some i and a unary operation σ
on P such that F(x1, . . . , xs) = σ(xi) for all x1, . . . , xs. Notice that this is a stronger
condition than projectivity.

Lemma 3.4 Let P be a crown. Then

1. P is Słupecki,
2. if F : Ps → P is not in the component of the constants of PPs

then it is onto.

Proof (1) Crowns are shown to be Słupecki in [3] (for a more general result, includ-
ing the case of truncated boolean lattices, see [2]).

(2) Let F be an s-ary operation on P which is not onto. Then the image of F is con-
tained in a fence (a crown with one element removed), which is a dismantlable poset.
By Lemme 1 of [12] it follows that F must be in the component of the constants.

Lemma 3.5 Let G and H be ramified, connected non-bipartite graphs and let P = PG

and let Q = PH . Let f ∈ HG have a neighbour.

1. If f̂ is in the component of the constants in QP then f is in the component of the
constants in HG.

2. If G = Hs and f̂ depends only on one variable then f depends on only one variable.

Proof We shall divide the proof into several claims. Recall from earlier that, if F:
P→ Q is minimal in QP then it will map minimal elements of P to minimal elements
of Q. The dual statement holds if F is maximal. So if F is minimal, define a map
F0 : P → Q by F0(p) = q if F({p}) = {q}. If F is maximal then define a map
F0 : P→ Q by F0(p) = q if F(Np) = Nq.

Claim 0 Let f ∈ QP have a neighbour. If f̂ ≤ F and F is maximal then f = F0.

Proof of Claim 0 By definition of f̂ we have for all x ∈ P that

N f (x) = f̂ (Nx) ⊆ F(Nx) = NF0(x)

and hence f (x) = F0(x).

Claim 1 Let f ∈ QP have a neighbour. If f̂ ≥ F and F is minimal then f is adjacent
to F0.
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Proof of Claim 1 Let a and b be adjacent vertices in G. Put c = F0(a), i.e. F({a}) =
{c}. We must show that c and f (b) are adjacent in H. We have

{c} = F({a}) ⊆ f̂ ({a}) =
⋂

x∈Na

N f (x)

so that c ∈ N f (b), i.e. c is adjacent to f (b).

Claim 2 If F ≤ G in QP, where F is minimal and G is maximal, then F0 is adjacent to
G0.

Proof of Claim 2 Let a and b be adjacent vertices in G. Put c = F0(a), i.e. F({a}) =
{c} and let d = G0(b) i.e. G(Nb) = Nd. We must show that c and d are adjacent.
Indeed, we have that {a} ⊆ Nb so

{c} = F({a}) ⊆ F(Nb) ⊆ G(Nb) = Nd

and we are done.
Now we prove (1) of the Lemma: suppose that there is a path from f̂ to a constant

map. Clearly we may assume that every map in this path (except f̂ ) is either minimal
or maximal. By considering F0 or F0 as the case may be, for every map in this path,
we build a path in HG from f to a constant map, by the claims above. Hence f is in
the component of the constants.

To prove (2): suppose without loss of generality that f̂ depends only on its first
variable, so that

f̂ (X1, . . . ,Xs) = σ(X1)

for some map σ. Then we have by definition of f̂ that

σ(Na1 ) = f̂ (Na1 , . . . ,Nas ) = N f (a1,...,as)

for all ai in G. It follows that f cannot depend on any variable but the first, since for
any bi in G we get

N f (a1,a2,...,as) = σ(Na1 ) = N f (a1,b2,...,bs)

and since H is ramified this proves that f (a1, a2, . . . , as) = f (a1, b2, . . . , bs).

We can now describe the structure of the graph Es(C2k+1) for k ≥ 1 and s ≥ 1.

Theorem 3.6 Let s ≥ 1 and let C2k+1 be the cycle on 2k + 1 vertices, k ≥ 1. Let
f ∈ Es(C2k+1). Then f is in the component of the constants if and only if it is not onto.
If it is onto then it is an isolated vertex of Es(C2k+1); furthermore, it is a loop if and only
if there exist an i and an automorphism σ of C2k+1 such that f (x1, . . . , xs) = σ(xi) for
all x1, . . . , xs.
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Proof For convenience let K = C2k+1. Recall that since K is an odd cycle then the
associated poset P is a crown. Let f and g be adjacent in Es(K). If f̂ is not onto,
then by Lemma 3.4 it is in the component of the constants and by Lemma 3.5 f and
g are in the component of the constants of Es(K). So we may now assume that f̂ is
onto, and it is easy to see that this implies that f in onto. By Lemma 3.4 the poset
P is Słupecki so it follows that f̂ depends on one variable only. Hence by the last
lemma f is unary and onto, i.e. there exist an index i and a permutation σ such that
f (x1, . . . , xs) = σ(xi). By the same argument we have that g(x1, . . . , xs) = τ (x j) for
some permutation τ . It follows easily that i = j and that σ and τ are adjacent in
E1(K); since K is ramified it means that σ = τ and thus f = g is a homomorphism.
Hence if f is not in the component of the constants, then it is onto, and either it has
no neighbours or it is a projection followed by an automorphism of K.

In [6] Greenwell and Lovász show that, if G is not n-colourable then the graph
G× Kn is uniquely n-colourable. Here is an extension of this result to higher powers
and an analog for odd cycles.

Corollary 3.7 Let K be any odd cycle (or Kn, n ≥ 3). Let G be a connected graph
which does not admit a homomorphism into K. Then for every s ≥ 1 the graph G× K s

admits exactly s homomorphisms into K (up to automorphisms of K).

Proof Let Φ : G × K s → K be any homomorphism. Then Φ induces a homomor-
phism φ : G → KK s

where φ(g)(x1, . . . , xs) = Φ(g, x1, . . . , xs). We know that the
component of the constants admits a homomorphism into K because K is a vertex-
transitive projective core [15]. Since G admits no homomorphism into K it follows
from the last result that the image of G under φ must be a loop, since it is connected.
Hence it is, up to an automorphism of K, one of the s projections.
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