ON THE DIRICHLET PROBLEM IN THE AXIOMATIC
THEORY OF HARMONIC FUNCTIONS

N. BOBOC, C. CONSTANTINESCU and A. CORNEA

In the frame of the recent axiomatic theories of harmonic functions [2],
[3], [1], it has been shown that the continuous bounded functions on the
boundaries of relatively compact open sets are resolutive [5], [1]. The aim
of the present paper is to substitute in these results the continuous functions
by Borel-measurable functions and to leave out the restriction that the open sets
are relatively compact. H. Bauer has replaced the axiom 3 of Brelot’s
axiomatic by two weaker axioms: the axiom of separation (Trennungsaxiom)
and the axiom K. Since the axiom of separation is not fulfilled in some impor-
tant cases (e.g. the compact Riemann surfaces) we shall weaken this axiom
too, substituting it by one of its consequences: the minimum principle for

hyperharmonic functions.®

0. Notations and terminology. We shall use the following notations and
terms. A real (resp. numerical) function is a map in the real axis (resp. real
axis completed with the points + o, — o). For a topological space T we
denote by ¥ (T) the set of real continuous functions on 7. If U is an open
set in a topological space T, o:U=0U (resp. U'=U) will stand for the
boundary (resp. for the closure) of &/ in T. For a locally compact but non-
compact space T we shall denote by U the filter of sets with relatively compact

complements.

1. The axioms. Let X be a locally compact Hausdorff space and & a
sheaf on X of real vector spaces of real continuous functions called harmonic
Sfunctions. We shall suppose that .& will satisfy the axioms Hi, H,, H; stated
in this paragraph.

Let U be an open set of X. An open relatively compact set of X is called
regular in U if:

Received March 28, 1963.
*) A similar axiom has been proposed by M. Brelot [4].
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a) VT U and 2V is not empty;

b) for any f € G (0V) there exists a unique continuous extension on V whose
restriction to V, denoted by Hy = Hy, is harmonic;

c) from f€ (V) and =0 it follows Hr=0.

We shall say simply regular instead of regular in X.

Let V be regular and x€V. The map /- Hf(x) is a positive linear func-
tional on € (V) and so, there exists a Radon measure wy on 3V, called the

harmonic measure of V at the point x, such that for any f€% (V)
Hf (x) = {fdo.

Axiom H,. The regular sets form a basis of X.
A point x= X will be called a zero-point if any harmonic function on a

neighbourhood of x vanishes at x; we shall denote by X, the set of zero-points.

THeEOREM 1. Xj is closed, nowhere dense and lotally disconnected.

Let x= X, and let » be a harmonic function defined on a neighbourhood U
of x. Since u vanishes at the points of X, N U it vanishes also at x. Hence
x€ Xo and X, is closed.

Let x€ X, and V be a regular neighbourhood of x. Then
v 1
{ye viHY(») < 5

is an open neighbourhood of x contained in V whose boundary does not

intersect X,. X, is therefore nowhere dense and totally disconnected.

A numerical function on an open non-empty set U is called hyperharmonic on
Uif:

a) it does not take the value — & ;

b) it is lower semi-continuous;

c) for any point x<= U there exists a neighbourhood Us(x) C U of x, such
that for any regular set V in Us(x) and any y€ 'V

* ,
s(») zj sdwy.

A numerical function s on U is called hypoharmonic on U if —s is hyper-

harmonic on U.
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The harmonic functions are hyperharmonic and a function which is
simultaneously hyperharmonic and hypoharmonic is harmonic. The sum and
the minimum of two hyperharmonic functions and the product of a positive
real number with a hyperharmonic function is also hyperharmonic. The hyper-

harmonic functions form a sheaf on X.

We shall say that the minimum principle is valid on an open non-empty
set U if one of the following conditions is fulfilled:
a) U is compact and all hyperharmonic functions on U are non-negative;

b) U is non-compact and any hyperharmonic function s on U for which
.. -
lim mf%s =0

is non-negalive.
The open non-empty sets on which the minimum principle is valid will be
called M. P.-sets.

THEOREM 2. Let U, U' be open mon-empty sets, U' U, and s (resp. s') be
a hyperharmonic function on U (resp. U'). We suppose that the function s*,
defined on U equal to s on U—U' and equal to min (s, s') on U', is lower
semi-continuous. If any point x= UNSU' possesses a neighbourhood Uy such
that either s<s' on U;NU' or U, NU' is an M.P-set, then s* is a hyperharmo-

nic function.

The conditions a) and b) of the definition of the hyperharmonic functions are
satisfied trivially by s* and the same is true for the condition ¢) at the points
of U-2U'. Let x be a point of UN2U' and U, be a neighbourhood which
satisfies the condition from the statement. There exists a neighbourhood W
of ¥, W< U,, which satisfies the condition ¢) for s. We shall prove that W
fulfils the condition c¢) also for s*.  This is trivial if s<s' on U,NU' since
then s*=s on W. On the contrary case let V be a regular set in W and
fe6(BV), f<s*. The function s* — Hf is lower semi-continuous on V, non-
negative on V' — U', hyperharmonic on VN U, and

lim inf (s*(y) — Hf{y)) >0

V3y->z

for any z€9V. The function s, defined on U,N U’ equal toOon (U, NT") -V
and equal to min (s*— HY, 0) on VN U' is hyperharmonic by the above proof,
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where U, N U (resp. VNU') replaces U (resp. U') and 0 (resp. s* — HY) replaces

s (resp. s'). If U,NU' is non-compact then it can be easily verified that

lim inf% npr$0=0.
@

Since U,NU' is an M.P.-set we get s,=>=0, s*>Hy on V. f being arbitrary we
get for any yeV

*
SN ={ sda.

CoroLLARY 1. Let U be an M.P.-set and U' be an open non-empty subset of
U. If any point x= UNSU' possesses a neighbourhood U, such that either
there exists a finite hyperharmonic function s, on U.NU' with inf s*>0 or
U:NU' is an M.P.-set, then U' is an M.P.-set. The intersection of any regular
set with U is an M.P.-set.

Let s’ be a hyperharmonic function on U’ such that if U’ is non-compact
lim infg,,s'>0.

We suppose firstly that there exists a finite hyperharmonic function s, on
U' with inf so>0. Let ¢ be a positive number and s denote the function on U
equal to 0 on U— U’ and equal to min (s'+eso, 0) on U'. From the theorem
it follows that s is hyperharmonic. If U is non-compact it can be verified easily
that

lim infg, s>0.

Since U is an M.P.-set we get s>0, s'> —es,. ¢ being arbitrary and s,
finite it follows s'>0; U’ is therefore an M.P.-set.

From this proof we see that for any point x€ UNaU' the set U,NU" is
an M.P.-set. Let s* be the function on U equal to 0 on U— U’ and equal to
min (s, 0) on U'. From the theorem it follows that s* is hyperharmonic. If

U is non-compact it can be verified easily that
lim ianIUS*ZO.

Since U is an M.P.-set we get s*>0, s'=0; U’ is therefore an M.P.-set.
If V is a regular set, the set U’ = VN U fulfils the required conditions taking
U= U~ {_vE VlH!’s%} and s, = H{ for any x€UN3U' = UNDV.
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CoroOLLARY 2. Let U be an open non-emptly set, s be a hyperharmonic func-
tion on U and V be a regular set in U. If V is an M.P.-set then the function
s” defined on U equal to s on U—V and equal to

*
x—>§ sdw’s
on V, is hyperharmonic and not greater than s.
Let fe €(@V), f<s. Since V is an M.P.-set s=Hf on V
s = sup Hf=5¢".
Being on V the least upper bound of a family of continuous functions, s”
is lower semi-continuous on V. It follows immediately that s* is lower semi-

continuous on U. In order to show that s” is hyperharmonic on V let us take

a regular set V' in V. We have for any x= V' and f€%(@V), f<s,
\ v ! Vv ’ * .
sV(x) = Hf (%) = ijdwx , (%) > sup jH}'dw}’ =j s"dwk’.

Taking U,=U for any x€9V it follows from the theorem that s" is
hyperharmonic.

Axiom H:. The M.P.-sets form a covering of X.

This axiom is a theorem in Brelot’s [2], [3] and Bauer’s [1] axiomatic since
in these axiomatics all regular sets are M.P.-sets (Theorem 3 (ii) and 4 ([3]
part IV) and Korollar of Lemma 2 [1]).

We shall denote by B the set of regular M.P.-sets. From H;, H, and the
corollary 1 it follows that B is a basis of X. For any open non-empty set U
and any hyperharmonic function s on U and Ve B, VC U, we see by corollary

2 that s” is hyperharmonic and for any x€ V
* d
s(x) zj sdoy.

From this fact it follows that any M.P.-set can be taken instead of Us(x) in
the definition of hyperharmonic functions, this means independently of s.

TueoreM 3. The least upper bound of an upper directed set of hyperhar-

monic functions is also hyperharmonic.
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Let . be such a set of hyperharmonic functions and s, its least upper
bound. s, is lower semi-continuous, does not take the value — o, and for any
Ve®P and x= V we have

ES *
so(x) =sup s(x)=sup |\ sdoy= S sodw.
SEY SES

Axiom H;¥. For any open non-empty set U the least upper bound of any
upper directed set of equally bounded harmonic functions on U is harmonic.

An equivalent statement of this axiom is: on any regular set V the function
x> §fda)¥

is harmonic on V for any bounded lower semi-continuous function f.

Let U be an open non-empty set. A set . of hyperharmonic functions
on U is called a Perron set if it is lower directed and for any VEB, VC U,

and s€.& it follows s”.5#, where s” denotes the function defined in Corollary 2.

Taeorem 4. ([1] Satz 11) The greatest lower bound of a locally equally

bounded Perron set is harmonic.

Let » denote the greatest lower bound of a locally equally bounded Perron
set & on an open non-empty set U and let Ve®B, V C U, such that .7 is equally
bounded on V. Then # is equal on U to the greatest lower bound of the set
{s"|se &} and therefore harmonic by Hs.

A potential 7s a non-negative hyperharmonic function for which any hypo-
harmonic minorant is non-positive. If s is a hypoharmonic minorant of p-+s,
where p is a potenti/al and s a hyperharmonic function, then s <s, since S —s
is a hypoharmonic minorant of p. It follows that the sum of a finite number of
potentials is again a potential. It follows further that if the sum of a series
of potentials is finite it is also a potential. A non-negative locally bounded
hyperharmonic function can be set in exactly one way as a sum of a potential

and a harmonic function.

Lemma 1. Let p be a locally bounded potential on X. There exists for any

x e X a non-negative hyperharmonic function p., finite at x, such that for any

*) This axiom was introduced firstly by H. Bauer [1] (Axiom Kji).
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filter § on X with empty adherence for which
lim infg p>0
we have
limg.j)x = 0,

Let .~ be the smallest set of hyperharmonic functions which contains p
and such that for any s€. and Ve %, s"e . From Theorem 4 it follows
that the greatest lower bound of .~ is a harmonic function. This function
vanishes because it is non-negative and not greater than p. For any natural

number z let p, e &, palx) < —21; . The function p.=2>) p, fulfils the re-
n=1

quired condition.

2. The normed Dirichlet problem. Let U be an open set for which oU is
non-empty and let f be a numerical function on 9U. We denote by g}jx = L;}"
(resp Z}] * = #7) the set of lower bounded hyperharmonic (resp. upper bounded

hypoharmonic) functions s, such that

lim inf s(x)=f(y) (resp. ligna sup s(x) <f(»))

vez->y

for any y €3U and there exists a compact subset Ks of X such that s=>0 (resp.
s<0) on U—~Ks. We denote by HY'*= Hf = Hy (resp. Hf** = Hf = Hy) the
greatest lower bound of ;}’ (resp. the least upper bound of g}’) The open set
U is called an M.Po.-set if H'*=0. Obviously an M.P.-set for which aU is
non-empty, is an M.Py.-set. From the proof of corollary 1 it results that U is
an M.P..-set if and only if for any open relatively compact subset U’ of X
such that UN X, NaU" is empty U' N U is an M.P.-set. If U is an M.P,.-set we
have Hf < Hy.

If {fn} is a decreasing sequence such that Hy, are harmonic then

lim Efn = I,_ilim Fne

n>re
Indeed let x be a point of U and for any 7, sne S . such that s,(x)>

Hy (%) — The functions

1
2n "
s =lim Hy,, sm= 2 (sn— Hy,)

n—>% n=m

are hypoharmonic (Theorem 3) and s+sne %, for any #. Hence s+she #Tu 7,

n—>®
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s(x) — yn‘,l: <s(x) + spx) < H n f,,(x),

s(%) £ H ym £,,(x) < lim Hy, (x) = s(x).
We have
Hypsp,<Hp+Hyf, Hypwr,>Hs+Hrs,

wherever the right side has a sense, where fi+fs is defined arbitrarily on the
set

{(yedUlfi(y) = + o, fsly) = — 0} N{yedUlfi(y) = — =, foly) = + o},
and for a >0
ﬁ¢f=aﬁfv Eaf=dﬂf, ﬁ_f: —-Ef.

If the functions Hy, Hy are finite (resp. harmonic) and equal the function

S is called resolutive (resp. harmonic resolutive) and
Hp* =Hf =Hy=Hys=Hy

s called the normed solution of Dirichlet problem with f as boundary func-
tion. If U is an M.P,.-sel, the set of resolutive (resp. harmonic resolutive) real
Sunctions on 23U form a real vector space. If fi1, f> are non-negative harmonic
resolutive functions them max (fi, f2) is resolutive and Huux(r,r, is the least

harmonic majorant of Hy, Hy,.

LemMma 2. Let U be an open set, y oU and § be a filter on U converging
1o y. We suppose that there exists a fundamental system B of regular neighbour-
hoods of y such that for any V& there exists a non-negative hyperharmonic
Junction sy on VN U such that

limg sy =0
and for any 2 UNDV

lim inf sv(x) >0.

UnV3[z->z

Let s be a hyperharmonic (resp. hypoharmonic) function on the intersection of

U with a neighbourhood of y for which

lim inf s(x) =1 (resp. lim sup s(x) =1).
USa-»y USa->y
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Let f be a non-negative numerical function on oU, for which HY (resp. Hf)

is harmonic on U and bounded on a neighbourhood of y. Then

lim supg Hi< (11m sup f(x)) (lim supg s(x))

Sx->y

(resp. lim infg Hf>(11m inf f(x)) (lim infg s(x)))*.

WU B>y

We shall prove this lemma following the proof of Theorem 22 [3] Part IV.
We suppose that

lim sup f(x) < o (resp. 11m inf f(x) >0)

W Dx->Y USx->y

since on the contrary case the assertion is trivial. Let « be a positive number

a>lim sup f(x) (resp. zx<11m inf f(x)),
W D>y

U Dr->y

¢ be a positive number smaller than 1, and Ve 8 such that HY (resp. Hy) is
bounded on VNU, f<a (resp. f>a) on VNaU, and s>1—e (resp. s<1-+e¢)
on VNU. Let further K be a compact set in UNaV for which

wy (UN3V -K) <e.

There exists a positive number B such that for any z€ K

lim inf (
UnTV3p->z

= s(x) + Bsp(x)) > Hy(z)

(resp. lim sup ( s(x) -~ ﬁw(x)) <LI}7(2)).

UnV3p->z

1+e
We denote by % the harmonic function on V
x>0, (UN3V -K),

by 7 the number sup Hy(x) (resp. sup Hy(x)), and by s, the function defined

aEVAU 2EV AU

on U, equal to Hy (resp. 2I}) on U~ V and equal to
min (Hf, =5t ﬂsV+rh)

U [“4
(resp. max (H s TyeST Bsi-— (a+7’)h))

on UN V. From Theorem 2 we see that s, is a hyperharmonic (resp. hypohar-

*) With the convention 0eco =00, c0e0=0,

https://doi.org/10.1017/50027763000011193 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011193

82 N. BOBOC, C. CONSTANTINESCU AND A. CORNEA

monic) function. For any s'€.#f (resp. &¥) it can be verified that
s'— HY + soe Y (resp. s' — HY + sy = 7). Hence
s'—Hf +so=Hj  (resp. s — Hf + so< HY),

so=Hyf (resp. so < Hy),

a
1—¢

lim supg HY < lim supgso < lim supg ( s+ Bsr+ Th) <

< —1%—5 lim supgs+7re

a
1+¢

(resp. lim infgH7 > lim infgso=>lim infg < s—Bsy—(a+7) h) =

A& g. .
> ﬂ?hm infgs — (a + r)s)'

¢ and a being arbitrary, we get

lim supgH7 < (liagn sup f(%)) (lim supgs)
i3

x>y

(resp. lim infg HY > (1%1(}1 inf f(x)) (lim infgs)).
=

>y

Remark. If in this lemma s is harmonic and lim s(x) =1, then it can be
US>y

proved in the same way that
lim supg Hf <lim sup f(x),
=TT

lim infgﬂ}]zlg(t]n inf /(%)

SDw->y

for any f (not necessarily non-negative) provided that HY, H} are bounded.

This remark will be not used in the sequel.

Let U be an open set and y=2U. For any non-negative hyperharmonic
(resp. hypoharmonic) function s, defined on the intersection of U with a neigh-
bourhood of ¥ for which

lim inf s(x) =1 (resp. lim sup s(x)=1),
UBa->y Usz->y
we set
66(y, s) =lim sup s(x) (resp. ox0(, s) =lim inf s(x)),
UDe->y Uy

oo () =6™(y) =inf o (y, s) (resp. o4 (y) =0a+(y) =sup a4 (¥, s)).

If there does not exist an s with the required conditions we set ¢*(y) = o
(resp. o4(y) =0). We observe that the existence of a harmonic function on a
neighbourhood of y which is different from zero in y implies o*(y) = a4(y) = 1.
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Hence if ¢*(y)>1 or if ¢4,(¥)<1, vy is a zero point. The function ¢* (resp. o)

is upper (resp. lower) semi-continuous as can be easily verified. We set
Af=A"={yeaUls (y)=1)}, A=Ay ={y €Ul (y) =1}.
Of course oU — A*N A, C Xo.

LemMma 3. Let U be an open set with non-empty boundary, p be a locally
bounded potential on U, positive on a neighbourhood of any point of oU — X,
and | be a non-negative function on dU. a) If f is lower semi-continuous and
Hy harmonic on U bounded in a neighbourhood of any boundary point of U
then

Hy,, < H ™.

b) If f is upper semi-continuous, Hy harmonic on U and bounded in a neighbour-
hood of any boundary point of U, and if U 1is either relatively compact or an
M.P,.-set then

Hy< Hpo ™.

Let x be a point of U and p. be the hyperharmonic function associated to
x and p by Lemma 1. Let ¢ be a positive number and y€2U. We want to

prove that
lim sup (Hys(2) — epx(2)) < f(9) a* ()

UDz->y

(resp. lim inf (H(2) + epx(2)) = f(3)as ().

UDzmy
Let y € X, and Il be an ultrafilter on U converging to y for which
limy (Hy —epx) = liglszsip (Hf(z) — epx(2))
(resp. limy (Hy +eps) = lilgnszi?’f (Hy(2) + epe(2))).
If
limpp=x0

then
limu px =

and the required inequality is proved. In the opposite case the inequality

follows from Lemma 2 taking B equal to the set of all regular neighbourhoods

*) With the convention c0¢Q=0, 0+c0 =00,
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of y and for any Ve B, sr=2; in the role of the function s we can take here
any harmonic function in a neighbourhood of y equal to 1 at y. Suppose now
y€ X,. Then for any regular neighbourhood V of y we have Hi(y) =0. Let
s be a hyperharmonic (resp. hypoharmonic) function on the intersection of U

with a neighbourhood of y with

lim infs(z) =1 (resp. li{]n sup s(z) =1).
3.

UDz-»y z->Y

Taking in Lemma 2, 8 the set of all regular neighbourhoods of y, for any V&%

H{ as sy, and the trace of ¥ on U as & we get from this lemma
lim sup Hs(z) <f(9)d*(y, s)
Usz-y
(resp. lilm inf H(2) = f(9) 05(», s)).
TDz->y

s being arbitrary the assertion is proved also in this case.

a) He+ epxe;’”—?ﬁ, Indeed the above proof shows that the condition at
the points of oU is fulfilled- Since Hy, p. are non-negative, Hy + ¢p. is non-

negative on U. From this relation we get
Hyo, < Hy + ep.
px being finite at x and ¢ and x being arbitrary we obtain
H, o, < Hy.
b) Suppose now that U is relatively compact. Then from the first part of
the proof we have Hy—epx g"f’o.,
Hy—epr< Hyon.
px being finite at x and ¢ and x being arbitrary we obtain
Hy< Hyor.

Suppose now that U is a non-relatively compact M.P,.-set. Let G be a relatively
compact open set whose boundary does not intersect X,. From the proof of
Corollary 1 it follows that GN U is an M.P.-set. Let f¢ be the function defined
on 3(GNU) equal to 0 on GNaU and equal to Hf on UNDJG. Since U is an
M.P,.-set HY is non-negative. From HYe ./%" and the fact that GN U is an
M.Po.-set we deduce that H7;" is non-negative harmonic and bounded, The
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function s¢ on U equal to Hf on U— G equal to H%Y on GN U and equal to

lim inf HZY(2)

GNUSDz>Y

at any yeUNSG is hyperharmonic. Indeed se¢ fulfils the conditions a) and b)
from the definition of hyperharmonic functions. Let seyo"v. The function
5¢ on U equal to Hf on U~ G and equal to min (5, HY) on GNU is hyper-
harmonic by Theorem 2. Let V be a regular set in U and f€ %(3V), f< sa
We have on V

Se= Hy.
From this inequality we get on V—2G

se= inf 5¢> Hf.

ie y}""v

For any ye VN oG we have

se(¥) =lim inf se(z) = H'¥ ().

GnUDBz>»y

se¢ is therefore hyperharmonic.

Let & denote the set of open relatively compact sets G for which X, N 9G = ¢.
By Theorem 1 X, is closed and totally disconnected. Hence for any compact
set K, there exists an open set G @ containing K. The family (s¢)eeg is
contained in a Perron set with the same greatest lower bound since from
G, Gy, GEG, GDGiUG,, it follows

se < Say, Se < Sa,.

All functions s¢ being non-negative and dominated by H7 the greatest lower
bound # of this family is harmonic by Theorem 4 and non-negative. Let  be
a positive number, and y €2U. Taking a G ©, which contains y we get from

the first part of the proof

lim sup (#(2) = 7p:(2)) < lim sup (H%V(2) — 79.(2)) <0

UBz—»y AnUD2>y

if y&X,. If y= X,, let V be a regular neighbourhocd of y, VG, and « a
sufficiently great number such that

Hf <«

on VNU, We denote by s, the function on UNG equal to Hf on UNG~—V
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and equal to min (HY, «HY) on VNU. From Theorem 2 it follows that s, is
hyperharmonic. s, belongs to /4% and we get

lim sup (#(2) —7px(2)) <lim sup H%%(z) < lim sup so(z) < aHi(y) =0.
Usz->y UnNGDz->y UnG3z->n

Hence for any 5& ¢ and y €3U we have

lim inf (5(2) — #(2) + 7p:(2)) =1 ().

UDz->y
From this inequality and from 5> # it follows 5 — u+ 7p: € 7,
5(x) — u(x) + npa(x) = Hf ().

5 and 7 being arbitrary and p.(x) finite we deduce #(x) =0. Let {Gn} be a
sequence from & for which

2186,(%) < o0
n=0
and let us denote by s, the hyperharmonic function
Sy = 20 Sgn.
It is easy to verify that Hys—es, is non-positive outside a compact set of X.
From this and from the first part of the proof it follows
ﬁf—pr_esxegZ'L;a*, ﬁf_EPx_ESxSEfa*-
px and s, being finite at ¥ and ¢ and x being arbitrary we obtain
Hf < ijo’“

THEOREM 5. Let U be an M.P.-set, p be a locally bounded potential on U,
positive on a neighbourhood of any point of U — X,, and s be a non-negative
hyperharmonic function on U bounded in the neighbourhood of any point of U
and for which

lim inf s(x)>1
UDe->y

Jor any yE Ay. If f is a bounded lower semi-continuous function on oU, then

JX4, is harmonic resolutive, where 14, is the characteristic function of As.

Let us denote

B= {yeaUllim inf s(x) > %}
URa-y
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B is an open set on oU and A,C B. Suppose firstly f=0. Then, for a suitable
positive number a, as € _#fpon, where Xr is the characteristic function of B
and # a natural number. Hence Hpo» is harmonic and bounded in a neigh-

bourhood of any boundary point of U. We get by the preceding lemma
Hyy,, < Hrxports < Hpy o1
It follows

Hyy, < Hp,, <lim Hpypor = Hpy,..

For a general f denote
a =inf f.
The functions ¥,,, (f — «)Z4, being resolutive, the function

fZA,,, = (f— “)ZA* + aXa,
is also resolutive.
If Uis an MP,.-set, a set MCU is called negligible if Hy, =0, where Xn
denotes the characteristic function of M. A set M is negligible if and only if

Sfor any x< U there exists a non-negative hyperharmonic function s, finite at x
Sor which

lim inf s(z) =
U2y

JSor any y= M. The condition is obviously sufficient. If M is negligible there

exists for any natural number » an s, €.%, such that

Sn(x) < -2'170

and we can take
se=Son
If two functions f, g on 0X differ only on a negligible set, then
Hy = Hp, Hy=Hp.
Indeed we have for x€ U and >0, esy . ’;}_g;, and therefore

Hlf-gl =0,
Hyf < Hy g+ Hg = Hyg.
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THEOREM 6. Let U be an M.P.-set, p be a locally bounded potential on U,
Dositive on a neighbourhood of any point of oU— Xo, and fy be a non-negative
upper (resp. lower) semi-continuous function on 3U for which Hy, (resp. Hy,)
is harmonic on U and bounded in a neighbourhood of any boundary point of

U. If oU— A* (resp. oU — Ay) is negligible then any Borel function® f, | f| < fo,
is harmonic resolutive.

Let f be a non-negative upper (resp. lower) semi-continuous function on 80U,
f<fo. Hy (resp. Hf) is harmonic and bounded in a neighbourhood of any
boundary point of U. This is obvious for Hy. Let ¥ be the smallest Perron
set containing the set {min (5, Hy,) |5 %}, Forany s'e Y, and any s €./

we have s+ s'— Hf e./}. Hence
HY <s+s' — HY%, Hf, <inf s.
SES

The converse inequality being trivial, Hf, is the greatest lower bound of a
Perron set and therefore harmonic.

From Lemma 3 and from the fact that f and fo* (resp. foy) differ only on
a negligible set we have

<Hr<
(resp. Hy < Hy = Hy,, < Hy),

and f is resolutive.
Let B be the class of Borel-sets M CaU for which fo¥x is resolutive. B

contains the closed (resp. open) sets and from M it follows oU— M B.
Let M;, M, 8. From

JoXmon, = max (foXM“ foxm)

it follows that M; UM, ®B. Let {M,} be an increasing sequence of B. Then
JoXun Y SoX @ and U M,=B. B coincides therefore with the class of all Borel
n=1

v My
n=1

sets.

Let f be a Borel function on 9U, 0<f<fo, and # a natural number.

For any natural number i, 0< i< 2", we design

*) A function is called a Borel function if it is Borel measurable. The class of Borel
sets is the smallest class of sets which contains the open sets and is closed with respect
to countable unjon and contjans together with a set its complement.

https://doi.org/10.1017/5S0027763000011193 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011193

DIRICHLET PROBLEM IN THE AXIOMATIC THEORY OF HARMONIC FUNCTIONS 89

Ai={yeaUl 4 () <f (< LA}

fn =f022inXAt
0

i=

f=» is resolutive and f» 1 /. Hence f is resolutive. This result can be extended

immediately to a Borel function £, [f]| < fo.

CoroLLARY 3. Let s be a positive finite and continuous hyperharmonic func-
tion on X, U be an M.Py-set™, and p be a locally bounded potential on U
positive in a mneighbourhood of any boundary point of U. Then any Borel

function f, |f|<s, is resolutive.

In this case A*=3U and H; is harmonic and bounded in the neighbourhood
of any boundary point of U.

Let U be an open set and U° be the set of points x< U for which any
locally bounded potential on U vanishes at x. U° is closed in U. If U is o-
compact and U° compact, then there exists a locally bounded potential on U

positive in the neighbourhood of 2U.

LemMa 4. Let x= U and Uy denote the set of points y < U~ {x} such that

if s1, s2 are locally bounded non-negative hyperharmonic functions on U then
s1(x) Sz(y) - sl(y)sz(x) =0.
If x& XU Uy then x& U°.

Let ¥ denote the set of restrictions on U° of the set of non-negative har-
monic functions on U. If fi, o€ % then min (f;, f2) € 4. Indeed let w; (i=1,
2) be a non-negative harmonic function on U whose restriction on U° coincides
with f;. Then min (#1, %) is a locally bounded non-negative hyperharmonic
function on U. Denote by u the greatest harmonic minorant of min (%, %).

Since min (%, u,) — % is a potential on U

min (fy, /2) = min (w1, w) =u
on U°.
Let V be a regular set in U, x= V, VN U.,=¢, F be the carrier of o%, and
?p be a locally bounded potential on U. Since x<¢ X, F=¢, for a sufficiently
small V. Suppose x U°. From

*) If & satisfies Brelot’s axioms, the existence of s implies that any open set is an
M.Py.-set ([3], Part IV, Theorem 3 (ii)).
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0=p(x)25pdm;’

it follows that p vanishes on F and FC U°.

Let ye F and s;, s: be two locally bounded non-negative hyperharmonic
functions oa U such that

51(%) s2(y) — s2(%) s1(») = 0.

Let u; (i=1, 2) be the greatest harmonic minorant of si. Since si—#; is a
locally bounded potential on U, s; =«; on U° and

wi (%) u2(y) — u2(x) s (y) 0.

If ui(x) =0 then from

ui(x) = fm doy
it would result #;(y) = 0 which contradicts the above inequality. We may sup-
pose therefore

wi(x) = uz(x) =1, ul(y) <ue(y)

Since x€ U°, FC U°,
Smin (%3, %) doy = min (guldwl{, s.u«zdwg)

and we get the contradictory inequality

~

0 <5(u2- min (2, #2)) dwy = w,(x) — min (#;(x), #(x)) = 0.

It follows from this lemma that if %  satisfies Bauer’s Trennungsaxiom,

then U° is empty.

TueoREM 7. Let U be an M.P,.-set with g-compact boundary for which
either (U° N3U) U (dU - A*) or (U°N2U) U (U — Ay) is negligible. If f is
a real continuous function on dU for which Hy is harmonic and bounded

in the neighbourhood of any boundary point of U then f is harmonic resolutive.

It is sufficient to prove this theorem for a non-negative f. Replacing X by
X—{x=2Ul|f(x) =0}, we may suppose further f positive. Let x= U and s,
be a non-negative hyperharmonic function finite at ¥ and such that
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lim inf s,(2) = o
[=Y R

for any ye (U°NdU) U (U — A*) (resp. y (U°N3U) U (U — A4)). For any

natural number n we denote

A, ={yeaU|lim inf s,(z) >»n max (f(y), lim sup Hs(2))}.
U2y UDz->y

A, is an open set on 9U which contains the set (U° UaU) U (U — A*) (resp.
(U° nal) U U -~ Ay)).

Let ¢ be a positive number. For any y=oU-— A, we take a regular
neighbourhood V, of y and a hyperharmonic (resp. hypoharmonic) function s,
on UN Vy which satisfy the following conditions: a) VyNU°=¢; b) for any
ze VyNoU we have |f(z) —f(y)| <ef(z); c) 1—e<sy<l+e There exists a
compact set Ky on UN9V, and an open set W, on V,N2oU containing y such
that

() + sup (H(2") 0d"(UNDVy — Ky) <ef(2)
2’EeUnVy

for any z€ W,. Since oU— A, is s-compact there exists a sequence {¥;} in
oU— Ay, such that

i=1

For any ¢ there exists a potential p; on U, finite at ¥ and positive on Kj,
because Ky, N U° =¢. Let pix denote the hyperharmonic function associated to

»i: and ¥ by Lemma 1, with
1
Pir(x) < DTk

and let us denote

Px = Epix-

1=1

Let >0, y€ U and U be an ultrafilter on U converging to » such that

limy (Hf“ *i;* - :o.bx) =lim sup (ﬁf(z) - ﬁ;—zl - 7?1’::(2))
(resp. timy (7 + 5= +2px) =tim inf (Hy() + S22 4+ 7p.(2))).

If yeE An then
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limy (Hy = 5 = s) <0
(resp. 1imu(ﬂf+ % + n.bx) =/(y) )

If ye A*— A, (resp. y€ Ay — A,) then there exists an 7 such that ye W,,. If

limy pi=0
then
limy px = oo,
limy ( Hy - - —upe) = = oo,
(resp. limy (Llf+ —‘:‘— +77p,,) = + oo).
If

limy p;=0

then it can be proved like in Lemma 2 that

. . 2
limp Hr<0(e) f(3),  0(e) = ( 11: ) +e
(resp. limy Hr=6( —&)f(»)).
For any y € 2U we have therefore

lim sup (ﬁf(z) - Lf:l - vpx(z)>_<_0(e)f(y)

UDz->y

(resp. li({rsl‘zinf (ﬁf(z) + % +npx(z))2 (- e)f(y))-

If (U°NaU)U (U~ A,) is negligible then Hy + ‘;i + 7P € G(-e)f and we get,

for a sufficiently small e,

Hy+ S5 4 npy= Hoop =00 - &) Hy.

px and sy being finite at ¥ we get
Hy(x) = Hs(x)

making successively 7V 0, el 0, # t . f is therefore resolutive.

Let now (U°NaU) U (U~ A*) be negligible and G be an open relatively
compact set for which X,NoG =¢. We denote by f¢ the function on 2(UNG)
equal to 0 on GNaU and equal to Hy on U N3G and by s¢ the function on U

GnU

equal to Hy on U-G equal to A%V on GN U and equal to
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lim inf H%Y(2)

GnUE2r>z"
for any 22 UN9G. It has been shown in the proof of Lemma 3 that ss is a
hyperharmonic function. Let # be a natural number, »' be a positive number,
ye GNol, and I be an ultrafilter on GN U converging to ¥ such that

sx(2).
n

limy (sa - -;’i - n’px) =lim sup <sa(z) -

Uz->y

— upa(2) )-

If ye A, then

limy <sa - —‘:;"—) <0.

If y=eoU — A, then there exists an 7 such that ye W,,. If

limy pi =0
then
limy (s¢ ~7'px) = — .
If
limy pi=0

then it can be proved like in Lemma 2 that
limy se < ef ().

For any case we get

lim sup (SG(Z) _osala) v‘ﬁx(z))s e (»).

U3z->y n

Let us denote by @ the set of relatively compact open sets G for which X, NoG=¢
and by u the greatest lower bound of the family {ss}scg.  # is harmonic. Let

se.7. Then s=u and for any y €oU

sx(2)

lim inf (s(z) —u(2) + —p T ﬂ’px(z)>z (1—¢)f(y).

U2
It follows
S—u+ % +9'D:= (1~ ) Hy.
D+ and s, being finite at x we get u(x) =0 making succesively 7'{ 0, eV 0,

n 1t o, s(x)l He(x). Let {G:} be a sequence in @ such that
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0
ol
So=>,S¢;
=1

is finite at x. Then Hy — s, is non-positive outside a compact set of X. It

follows
= s
Hy— 7:* —bx — 150 E Lhierfs
5 s
Hy — Tni = 9px— 150 < Hye)f.

Since sx, P So are finite at x we get
Hy(x) < Hp(x)

making succesively 7V 0, el 0, n * 0. f is therefore resolutive.

If & satisfies the axioms of Brelot’s or Bauer's theory then X, =U°=¢
and A*= A, =0U. Therefore Theorem 7 contains Hervé's [5] and Bauer’s [1]
(Satz 24) results about the resolutivity of continuous functions on relatively
compact open sets. On the other hand, in Brelot’s axiomatic there exists always
a positive potential on U and the same is true in Bauer’s axiomatic if U is o-
compact. Hence Theorem 6 proves the resolutivity of bounded Borel-measurable
functions in these cases. This gives the possibility to prove, without the condi-
tion that X has a countable basis, that if % satisfies Brelot’s axioms and the
axiom D [3] the limit of a decreasing sequence of non-negative hyperharmonic
functions differs from a hyperharmonic function on a polar set.

The condition A* = A, =2U and the fact that the constants are harmonic
is not sufficient in order that any continuous function on oU is resolutive, even
if U is relatively compact. An example is given by a region on a compact
Riemann surface, whose boundary consists of more than one point and is of

capacity zero.

3. Relation between the normed and the usual Dirichlet problem. The
study of the Dirichlet problem on X is interesting only in the case when X is
a non-éompact M.P..set. We shall suppose from now on that X satisfies this
condition. Let Y be a compactification of X, i.e., a compact Hausdorff space
which contains X as a dense subspace and 4 =Y —~ X. Since X is locally compact,
4 is compact. Let f be a numerical function on 4. We denote by #5 ¥ =7 F

(resp. LF ¥ = %) the set of lower bounded hyperharmonic (resp. upper bounded.
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hypoharmonic) functions s, such that

lim inf s(x) = f(») (resp. lim sup s(x) <f(y))

X3p->y X3y

for any ye 4. The greatest lower bound of .5#F (resp. the least upper bound
of /F) is denoted by Hf ' = H¥=Hys (resp. Hf¥ = H¥ = Hy); since X is an
M.P.-set Hy< Hy. If the functions Hy and Hy are finite and equal, the function

f is called resolutive and
Hf'=Hj=Hf=Hs=Hy

is called the solution of the Dirichlet problem with f as the boundary function.
If any bounded continuous (resp. lower semi-continous) function on 4 is

resolutive then Y is called a Baire (resp. Borel) resolutive compactification
of X.

In the rest of this paper Y will be a fixed compactification of X.

The normed Dirichlet problem and the Dirichlet problem formulated above
are closely related. Indeed let U be an open set for which 9U is not empty
and s be a numerical function defined on aU. Let U" (resp. o,U) denote the
closure (resp. the boundary) of U in Y. Taking U instead of X and U' instead
of Y in the preceding considerations, and defining f;, equal to f on 9xU and

equal to zero on 9,U —9xU it is clear that
FLIcFLT, LPFcsET.
Therefore we have
== =, FY 7,0 LTy
Hp*2 BT, Hf<HLT

If any bounded Borel function on 9,U is resolutive then U is called a Borel-

resolutive set.

LemMAa 5. Let Y be a compactification of X, U be a Borel resolutive set,
and f be a non-negative resolutive function on 4. Then the function g on oyU,
equal to f on ANo,U and equal to zero on XNoyU = 0xU, is resolutive.

We set »=Hyf". Let s (resp. $>0) belong to /5" (resp. &##") and
s'=0 (resp. ') belong to 7' (resp. Zs'™). Thens—s'(resp.s —5') belongs

to. 757" (resp. Sy ) and therefore HS'Y" is finite and
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= Y 724
Hy" —Hgy" <(s~8")—(s—3").
Since s/, 5! are arbitrary we get

Hy" —Hp"'<(s=HPY) = (s = H{ ).

U being a Borel resolutive set and S a bounded upper semi-continuous function

on oyU we have
j’jff,x _ Hg,xégsp’,x’
Hy" —HpU'<s-—s.
5, S being arbitrary it follows that g is resolutive.

TueoreM 8. If Y is a Baire (resp. Borel) resolutive compactification of X
and U is a Borel resolutive open subset of X, then U' is a Baire (resp. Borel)

resolutive compactification of U.

Since the resolutive functions form a real vector space it is sufficient to
prove that any continuous (resp. lower semi-continuous) bounded non-negative
function f! on 9,U is resolutive. Let f be a continuous (resp. lower semi-
continuous) bounded non-negative function on 4 equal to s’ on 4N U’ and g
be equal to f= f' on ANU" and equal to zero on oxU. From the preceding
lemma it follows that g is resolutive. Since U is Borel resolutive the function

f'—g is also resolutive, hence f' is resolutive.
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