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PROFINITE MODULES 

BY 

GERARD ELIE COHENO) 

Introduction. An inverse limit of finite groups has been called in the literature 
a pro-finite group and we have extensive studies of profinite groups from the co-
homological point of view by J. P. Serre. The general theory of non-abelian modules 
has not yet been developed and therefore we consider a generalization of profinite 
abelian groups. We study inverse systems of discrete finite length i^-modules. 
Profinite modules are inverse limits of discrete finite length ^-modules with the 
inverse limit topology. 

Let R be a topological ring, CR the category of all jR-modules and iMiomo-
morphisms. Let BR be the category of profinite iÊ-modules and continuous R-
homomorphisms. Then BR is a corefiective subcategory of CR. Moreover it has 
exact inverse limits and we study the free and projective objects of BR. BR is not 
full unless the coreflection map is continuous VI? e BR.BR is an abelian subcategory 
of CR9 thus BR is colocally finite. 

I. The category of profinite i?-modules: BR. We consider an associative ring R 
with 1 and right-unitary i^-modules unless otherwise stated. 

1.1. PROPOSITION. Let Rhea topological ring, A a simple R-module. The following 
are equivalent : 

(1) A with the discrete topology is a topological R-module. 
(2) There exists an open maximal right ideal M such that A^R/M. 
(3) A^R/M' implies that M' is open. 

Proof. (1)=>(2): Let a e A, a^O, M=Ann(a). Then Ag^RjM. Let f\A->Rj'M 
be the isomorphism {ar)f=r+M. Also g:AxR->A is continuous where (a, r)g= 
ar. K.Qr(g) = {(at,r):atr=0} = \Jter({at}xUt) is open where Ut is open in R. 
s e Moas=0o(a, s) e Ker(g)os e Uv Thus M = Ux is open. 

(2)=>(3): Suppose A^RjM'. There exists an open maximal right ideal M such 
that Aç^RjM. Let f:RfM'-+R/M be the isomorphism (\+M')f=r+M. Now 
g : R->R where (x)g=rx is continuous. (M)g-1={x e R: (x)g e M}={x e R: 
xeM'}=M' is open. 
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(3)=>(1): The map (x, y)-*(x—y) is obviously continuous. Also the map g: 
AxR-+A where (a,r)g=ar is continuous since ({ar})gr"1={(at, s):ats=ar} = 
\Jter ({at}xCt) is open where Ct = {s eR\ats=ar}\ indeed if Ct = <f>, Ct is open; 
otherwise 3ueCt and Ct=Ann(at)+u; if at=0, Ann(at)=R=Ct is open; and 
if at7^0, Ann(at) is a maximal right ideal such that A^RlAnn(at). By (3), Ann(at) 
is open and thus C is open. 

1.2. DEFINITION. The simple i^-modules satisfying the equivalent properties of 
1.1 are called the discrete simple R-modules. 

1.3. DEFINITION. A discrete finite length i^-module is an i?-module A of finite 
length, (i.e., it has a composition series of length 1(A)< + co) and A with the 
discrete topology is a topological i?-module. 

1.4. LEMMA. The class of discrete finite length R-modules is closed under taking 
suhmodules, factor modules, finite direct sums and homomorphic images. 

Proof. Left to reader. 

1.4.1. COROLLARY. Let DR be the category whose objects are discrete finite length 
R-modules and whose morphisms are continuous R-homomorphisms. Then DR is a 
full, abelian subcategory of CR, the category of R-modules. 

Proof. Left to reader. 

1.5. LEMMA. A is a discrete finite length R-module if and only if the composition 
factors are discrete simple. 

Proof. Left to reader. 

1.6. DEFINITION. Let CR be the category of i?-modules, R is a topological ring. 
Then the subcategory BR is defined as follows: its objects are inverse limits of 
discrete finite length modules with the inverse limit topology and its morphisms are 
continuous .R-homomorphisms. We call BR the category of profinit e modules. 

1.7. EXAMPLE 1. Let Z be the ring of rational integers with the discrete topology. 
The discrete finite length Z-modules are finite abelian groups: being noetherian, 
they are finitely generated and being artinian, they cannot have infinite cycles in 
their decomposition. Thus Bz is the category of profinite groups with the inverse 
limit topology. 

1.8. EXAMPLE 2. Consider Z, the ring of integers with the (/?)-topology, (a basis 
for the neighborhood system of zero is given by the powers of the prime (hence 
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maximal) ideal (/?)). Thus Z/(p) is a discrete simple i^-module. If q^p then (q) is 
not an open maximal ideal and thus Zj{q) is not a discrete simple i^-module al­
though it is simple. Z/(p)k is a discrete finite length i?-module. LimZ/(p)n is a 

profinite Z-module which is the uniform completion of Z when we give Z the (/?)-
topology. 

1.9. EXAMPLE 3. Let R be a commutative local noetherian ring whose maximal 
ideal is M. We give R the M-topology. Let A be a finitely generated i^-module. 
Then Bk=A/AMk is a discrete finite length iÊ-module: Bk is the image of a finitely 
generated free module, R®- • '®R-+Bk, whence the epimorphism 

RlMk@--e R/Mk-+Bk; 

one shows i^/M^ (and hence Bk by 1.4) is a discrete finite length i?-module. Also 
the {Bk} forms an inverse system. Let 2?=Lim Bk9 B e BR. (B is the uniform com-

<— 
pletion of A if we give A the M-topology). In fact, B=LimA/Ai where {AjA^ is 

<— 
the set of all the factor modules of A which are discrete finite length i^-modules : 
it suffices to show that {A/AMk=Bk} is cofinal in {A/A^, i.e., Vze&3 Ai^AMk. 
Consider the following chain 

(Ai+AM^/Ai 2 (Ai+AM^/Ai 2 • • • 

Since 4̂/̂ 4,- is artinian, without loss of generality, we have (Ai+AM^/A^ 
(Ai+AM^/Ai, thus ((Ai+AMk)IAi)M=(Ai+AMk)/Ai. Also (A^AM^/A, is 
finitely generated since A/A{ is noetherian and Rad R=M. Thus (Ai+AMk)IAi=0, 
Ai+AMk=Ai, AMk^Ai. (Thus if we give A the M-topology, the uniform com­
pletion of A is Lim A/A^) 

<— 

II. The coreflectivity of BR. We refer the reader to [5, p. 128] for the definition 
of the terms: coreflection map, coreflective subcategory. 

2.1. DEFINITION. A topological iÊ-module is linearly compact if every family of 
closed cosets which has the finite intersection property has a nonvoid intersection. 

2.2. LEMMA. Every discrete finite length module is linearly compact and hence 
every object of BR is linearly compact. 

Proof. (Cf. [6, p. 81, Propositions 5 and 4]). 

2.3. LEMMA. Let A19... ,Anbe submodules of an R-module A such that A\Ai is a 
discrete finite length R-module. Then -4/0 <Lî * is a discrete finite length module. 
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Proof. Consider the canonical monomorphism 

and it follows from 1.4. 

2.4. LEMMA. Let A=LimAi eBR,pi:A-+Ai. Let j&i=Impi. Then A is iopologi-

cally isomorphic to Lim Bt where the canonical projections qf.A-^Bi are onto. 

Proof. Left to reader. 

2.4.1. REMARK. Thus A —Lim AjNt where iV,=Ker^.. 
<— 

2.5. Definition of the coreflector G. CR-+BR: For any A eCR there corresponds 
a pair (cA, (A)G), cA:A->(A)G such that the following universal property holds: 
given any ^homomorphism/:,4->i?, B s BR, there exists a unique continuous R-
homomorphism g:(A)G-+B such that the following diagram commutes 

A >B 
\ / 

(A)G 
f=cAg, we sometimes write g=(f)G. 

2.5.1. REMARK. This is the same as saying that the inclusion functor F: BE->CR 

(which forgets the topology of objects of BR) has a left-adjoint G:CR->BR, i.e., 
CR[A9(B)F]^BR[(A)G9Bl 

2.6. Construction of the coreflection G. Let A e CR. We define {A)G=L\m A\At 

where (A/A^'s are all the factor modules of A which are discrete finite length R-
modules: {A/A^ forms an inverse system (2.3), {A)GeBR. Let pf.lÂm AjAç^ 

A/Ai9 cA:A-+(A)G is defined by (cfyc^p^a+Ai. Let f:A->B be a given ZMiomo-
morphism, B e BR. B^Lim B/Bj (2.4.1); let qf.B-^BlB^ (a)fqj = (a)f+Bj. Define 

<— 
g as follows: (. . . , a^A^ . . 0#& = (#&)/+^ where Ak=(Bj)f~

1. Now A[Ak is a 
discrete finite length .R-module since it is isomorphic to a submodule of B/Bj9 where 
the explicit map is given by a+Aky->(a)f+Bj, One shows g is a continuous R-
homomorphism, makes the diagram commutative and is unique. (The following 
two facts are used: first, if q^iS/B^B/B^ (B^q^B^ thus Ae = (Bj)f~

1= 
(BJqfr1^ (BdqTHfaT^iW-^A- Thus Ae^Ak and qke'.A\Ae-+A\Ak' also, 
{A)cA is dense in (^4)^, thus g: (A)G^~B is the unique extension of the continuous 
mapping (A)cA-+B defined by the commutativity of the diagram by [1, p. 85, 
Corollary 1 to Proposition 2]). 
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2.7. PROPOSITION. Every object B eBR is linearly topologized. 

Proof. Let U be any open neighborhood of 0, C/ç B. t/is the union of basic open 
sets. Thus 0 G some basic open set V, F=({0}x- • • X {0} X BjBn+1 x • • •) n B. V 
is a submodule. 

2.8. PROPOSITION. Let U be an open submodule ofB G BR. Then BjU is a discrete 
finite length R-module. 

Proof. Left to reader. 

2.9. LEMMA. Let C^Lim CjCieBR9 q^C-^CjC^ Let D be a linearly compact 
<— 

R-module. Iff: D->C is an R-homomorphism such thatp{ =fq{ : D-^CjCi is continuous 
and onto V/, then fis onto. 

Proof. Let y e C. We have to find xe Ds (x)f=y: let (y)qi=yi=ci+Ci. Con­
sider Vi=(yi)p71. The K/s are closed cosets of D9 moreover they have the finite 
intersection property : consider Vl9... , Vn9 since the index set is directed 3k 3 i<k9 

i = 1 , . . . , n; Vk is a nonempty closed coset of D, thus 3/ G Vk 3 (t)pk=yk=ck+Ck. 
Let qik: C\Ck-+C\Ci9 ( 0 ^ = ( 0 / ? i K 0 / M ; * = ^ ^ 
thus t G V^i—\9...,«; since Z) is linearly compact, the intersection of all F/s 
contains an element x. 

2.10. THEOREM. Let B e BR. Let cB9 the coreflection map, be continuous. Then B 
is topologically isomorphic to {{B)F)G. In fact the coreflection map is a topological 
isomorphism. 

Proof. Consider the following diagram B -> B where cB:B-+(B)FG, 

I / 
(B)FG 

g:(B)FG->B, cBg=lB. Thus cB is mono; (B)FG=UmB/Bk where {B/Bk} is the 
<— 

set of all the factor modules of B which are discrete finite length; in the commuta­
tive diagram (B)FG->B/Bk where qk:(B)FG-+B/Bk9 pk:B-+B/Bk, cBqk=pk. Since 

\ / 
B 

qks and cB are continuous, pks are continuous, pks are also onto, B is linearly 
compact (2.2), thus cB is onto (2.9); cB is an i?-module isomorphism, 3c1 e 
cBc^ = lB9 c~1cB=l{B)FO-g(cBc~1)=g=(c-'1(cBg)=c-'19 g is continuous (2.6), 
thus <r1=g is continuous and cB is open. 

2.10.1. COROLLARY. If cB is continuous, then any R-homomorphism f:B-+C9 where 
B9 C G BR9 is a continuous R-homomorphism. 
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Proof. cB:B-^(B)FG is continuous, g:(B)FG->C is continuous, (2.6), .*. / = 
cBg is continuous. 

2.10.2. COROLLARY. BR is full if and only if cB is continuous VB G BR. 

Proof. Left to reader. 

2.11. PROPOSITION. BR is not necessarily a full subcategory. 

Proof. Consider H Z 2 , Z2 e Bz where Z2 is the 2-element field with the discrete 
topology. Let M be a maximal submodule of H Z 2 , thus XTZ2/M^Z2. Now M 
is the kernel of a ma,pfY[Z2->Z2. Now M is dense in XJZ2, iff is continuous, M 
is closed and M=M=XTZ 2 . 

III. Subjects and quotient objects of BR. 

3.1. PROPOSITION. Let A e BR. Let B be a submodule of A with the relative topol­
ogy. B is closed if and only if B e BR. 

Proof. If BeBR, B is linearly compact (2.2), A is linearly topologized (2.8) 
thus B is closed [6, p. 82, Proposition 7]; conversely, if B is closed, B is linearly 
compact. Now A = Lim Ai9 q^.A-^A^ let (B)qi=Bi, the {B{} forms an inverse 

system of discrete finite length i^-modules: consider the following diagram 
B^LimBi where p^.B-^Bi is continuous Vf, since/?; is the restriction of qt. Let 

\ V 
m{ : Lim Bf-^B^ By properties of inverse limits, we have a unique iMiomomorphism 

g-.B-^Lim B^ One shows g is a topological isomorphism and thus B e BR. 

3.2. PROPOSITION. Let C be a linearly compact {and hence closed) submodule of 
B,BE BR. Then B/C^Um BjCi where B=Lim Bi9pi:B^Bi9 (Qp — Ci and where 

B\C has the quotient topology. 

Proof. By (3.1), C=Lim Q. Consider ^ m , : ^ - > ^ - > ^ / Q where BjCi has the 

quotient topology which coincides here with the discrete topology: K e r ^ m J ^ 
Lim Q. Thus 7 ? ^ induces v^BjC-^BJC^ One shows v/s are continuous, {BjCi} 

is an inverse system of discrete finite length jR-modules and that g : (i?/C->Lim BjCi 
induced by the v/s is a topological isomorphism. *~~ 
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3.3. PROPOSITION. Let A, BeBR. Form AxB=A®BeCR. Then AxBeBR 

when we give AxB the product topology. (In fact it is the sum and the product of A 
and B in BR). 

Proof. Left to reader. 

3.4. PROPOSITION. Every morphism in BR has a kernel and a cokernel. 

Proof. Let f:A-+B e BR. Let K=K&r(f) = (P)f-1, then Kis a closed submodule 
of A, KeBR (3.2), one shows that i.K-+A the canonical monomorphism is the 
kernel off:A-+B. Also (A)feBR using [6, p. 81, Proposition 2], (2.8) [6, p. 82, 
Proposition 7], (3.2), .'. B/(A)feBR, (3.3); one shows Coker (f)^Bl(A)f 

3.5. PROPOSITION. Let f:A-+B e BR be a monomorphism, then f'.A-^B is a 
monomorphism in CR and hence 1-1. 

Proof. Let a, b:D->A be i£-homomorphisms such that af=bf Now cD(a)G=a, 
cD(b)G=b, .'. cD(d)Gf=cD(b)Gf thus (a)Gf and (b) Gf agree on the dense subset 
(D)cD of (D)G, ;. (a)Gf=(b)Gf on (D)G, thus (a)G=(b)G, and a=c(a)G= 
c(b)G=b. 

3.6. PROPOSITION. Letf:A->B e BR be an epimorphism, then fis onto. 

Proof. Consider 0, x:B-+B/(A)F, now/0=/x , .". 0=x, B=(A)f 

3.7. PROPOSITION. F:BR->CR is exact and G:CR->BR is right exact. 

Proof. F is exact (3.5, 3.6, 3.1, 3.2, 3.4). Now consider 0-^4->£->C->0 an 
exact sequence in CR where f.A->B, g\B->C; we show (A)G->(B)G^(C)G->0 is 
exact in BR. First (g)G is onto: let y e (C)G, we have to find x e (B)G such that 
(x)(f)G=y; let^:(C)G->C/C,, (y)Pi=yi9 now B/B^C/C, where 2*, = (Q)g-* 
since g:B->C is onto, ^ : (B)G-^BjBj is onto since {b+B3) e (B)G, ,\ (fi)G->C/Q 
is continuous and onto: moreover (^)G is linearly compact, .". (g)G is onto (2.9). 
Now Im((/)G) Ç Ker(fe)G) since/g=0; conversely, let (y)(g)G=(0+Ck), (»& = 
j , -= (£,•+.#,.), consider ri:(A)G^-A/Ai and the monomorphism tj\A\Ai-^B\Bj 

derived from/where A—Bf'1, let ^ = r ^ , let F — ^ ) ^ 1 , let Bm=Bjgg~1=Bj+N 
where JV=Ker(g)=Im(/); 5/j9m is a discrete finite length i^-module since B/Bj-+ 
B\Bm is onto (1.4), / . B\Bm = (B)g\(Bm)g=C\{Bm)g and since (6m)g+(5w)g= 
0+(BJg :. bmeBm; since B, <= 5w , i ,+J?w=*w+J?T O=M>+5^ .'. è,G^m, .'. * ,= 
•s+OO/, where s G fi, and (a)feN, bj+Bj=(a)f+Bj, ;. (a+At) G V^ thus {FJ are 
nonempty closed cosets, they have the finite intersection property as in (2.9), and 
there exists x G (A)G such that (x)(f)G=y. 

7 
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3.8. REMARK 1. (3.7) is also the consequence of the fact that G is left adjoint to 
F (2.5.1) and thus right exact. It preserves all colimits [4]. 

3.9. REMARK 2. IfBR is full then BR is abelian for then every monomorphism is 
the kernel of a morphism and every epimorphism is the cokernel of a morphism. 
i.e., by (2.10.2) if cB is continuous Vi? e BR9 BR is abelian. 

IV. Exact inverse limits and cogenerators in BR. 

4.1. LEMMA. If (7Z is closed in Bi9 then J J Vi is closed in XT^* 

Proof. I I t^ = n si where Si=B1x- • • x ^ _ 1 x C / i x 5 m x - • • is closed V2. 

4.2. LEMMA. Let {B^ be a family of discrete finite length modules. Then IX#i e BR. 

Proof. Left to reader. 

4.3. THEOREM. BR is closed under inverse limits. 

Proof. Let {Bt) be an inverse system of profinite modules, i^=Lim B{i9jt). Now 

n ^ = I T Lmi B(i, ji) ^JJi Jlj. #(/,./<)=P, PeBRby 4.2. Also since Bt is a closed 

U 
submodule of Y[B(i,jj)9 .'. IX s* *s a closed submodule of P by 4.1. 

.\ UBi s BRby 3.1 

.*. Lim Bi9 being a closed submodule of J J Bi9 belongs to BR (3.1). 

4.4. THEOREM. Lim is an exact functor: TR-^BR where BR is the category having 

for objects inverse systems of objects of BR and for morphisms inverse systems of 
morphisms of BR. 

Proof. Since Lim is left exact on CR9 it is left exact on BR. Given l^-^Q-^0 

exact in BRWi9 v^Bf-^C^ let v:B^~C eBR be the morphism induced by the v/s. 
Wehaveto showthatyis onto. l&tK=ker(vi)9ti:LimBiIKi-+BiIKi9 (LimBjK^t — 

EJKi9 where E{ c #.. One shows Lim BJKi^Lim EJKi (2.4), {£J e TR9 Lim Et ç 

LimB^ It is thus sufficient to show that the restricted morphism u:\Am Ef-> 

Lim EJKi is onto, let q^lÂmE^E^p^^iE^E^m^.Ef^E^K^p^i is onto, 
<— <— 

one shows qimi is onto and thus u is onto (2.9). 
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4.5. PROPOSITION. BRhasafamilyofcogenerators{UÙ-

Proof. Let A\Ai be a discrete finite length i^-module. Let A=X0 s l ^ " ^ 
Xn=A$ be a composition series with discrete simple composition factors (1.5). 
XJXi+1^RlMi+l9 where Mi+1 is a maximal open right ideal of R (1.1). Thus 
XJXi+1^âi+1R where âi+1=ai+1+Xi+1, ai+1 $ Xi+1. Let x e A, 

x+X± = a^+Xi, x = afa+Xi, x± e X±; xx+X2 = a2r2+X2, 

Xi = ^2^2 + ^ 2 , X2 G X2\ . . . î X = fl1r1 + fl2^2~r* * ' ~T~Qnrn~i"Sn9 

sneAj; x+Aj=a1r1-] h<Vw+4,-- Thus the mapping/:Rn->A/A j defined by 
(rl9 . . . , r^f—a^r^ \-anrn+Aj is onto. Let Kerf—Ns and RnlNj^A/Aj, 
when we give RnjN} the discrete topology, it is a finite length discrete .R-module. 
Let U(nJ)=RnlNj where N3- is any right ideal of Rn such that Rn/Nj is a discrete 
finite length jR-module and n a positive integer. The {U(n,j)} forms a set of co-
generators of BR since Lim A\A5 is a closed submodule of XI iAl^i) which is 

topologically isomorphic to IJ U(n,j). 

V. Free and projective objects of BR. 

5.1. DEFINITION. Let F:A->Ens be a functor, where Ens is the category of sets. 
If F has a left adjoint G : Ens-+A then an object A e A h free \ÎA = (S)G for S e Ens. 

5.2. EXAMPLE. Let F':CR->Ens be the "forgetful" functor that assigns to each 
module its underlying set. Then F' has a left adjoint G' where (S)G'=@sGsRs 

where J ^ i ^ V s e S . 

5.3. PROPOSITION. Let G:CR->BR be defined as in (2.6). Then the free objects of 
BR are of the form (®RS)G=^ (RS)G where 2 denotes direct sums in BR. 

Proof. Since BR((A)G, B)=CR(A, (B)F) and CR((C)Gf, D)=Ens(C, {D)F'\ 
;. Ens(S,(B)FF') = CR((S)G', (B)F)=BR((S)GfG, B). Now (®RS)G=2 (RS)G 
since G is a coreflector. 

5.4. PROPOSITION. Let P be a projective object of CR, then {P)G is a projective 
object in BR. 

Proof. Let A-^B->0 be exact in BR,f:A^B. Now A^B->0 is exact in CR, (3.6). 
Let g: (P)G^>B in BR be given, cP :P->(P)G be the coreflection map, thus cPg:P-+ 
B, thus there exists h:P-+A such that cPg=hf; also there exists k=(h)G:(P)G-+ 
A e BR such that cPk=h; thus cPg=cPkf thus g and kf agree on the dense subset 
(P)cP of (P)G; thus £=&/ [1, p. 85, Corollary 1 to Proposition 2]. 
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5.5. PROPOSITION. BR has enough projectives. 

Proof. Let A e BR. Since CR has enough projectives, there exists P e CR, P 
projective such that P-+A-+0 is exact in CR; one shows that the corresponding 
(P)G->A is also onto. .'. (P)G->A->0 is exact in BR, (P)G projective (5.4). 

5.6. PROPOSITION Every free object of BR is projective. 

Proof. Let D e BR be free, D = (0P)G; now R is projective in CR, .*. ©P is 
projective in CR, thus (©P)G=P> is projective in BR (5.4.). 

5.7.1. DEFINITION. (5) Let se be any category, c:A->B esé\\î there exists c \ 
B^A such that c'c= lB, then B is called a coretract of A. 

5.7.2. PROPOSITION. In BR every projective object is a coretract of a free object. 

Proof. Let P be a projective object of BR; there exists ©P such that ©P->P->0 
is exact in CR, .'. (©P)G->P->0 is exact in BR where/: (©P)G->P. Now 1 P :P->P, 
P projective, .'. there exists g:P->(®R)G such that gf=lP. 

5.8. PROPOSITION. (P)G W A generator of BR. 

Proof. Let i.C^B e B R be a proper monomorphism, thus f is 1-1, and C is a 
closed submodule of B, C^B. Thus there exists b e B such that b$C. Let f.R-> 
P e C^ be defined by (lR)f~b; thus cR(f)G=f where cR is the coreflection map; 
(P)G=LimP/i\r„ (lB+JV i)(/)G=(l2 2)c i 2(/)(?=(l J B)/=6; thus the morphism 

<— 
(f)G cannot factor through C: for if there exists g:(R)G^C, gi=(f)G, then 
(lR+Nàgi=(lR+NJ(f)G=b, but since b $ C, ( l^+AQg^Z, . 

VI. BR, an abelian subcategory (colocally finite). 

6.1. LEMMA. Let f.A~>B e BR be a continuous R-isornorphism, then f is a 
topological isomorphism. 

Proof. We have to show t h a t / i s open, i.e., V open submodule A' of A, (A')f 
contains an open submodule B' of P. Consider the basis of the neighborhood system 
of 0 given by the open submodules {PJ of P (2.7), and the corresponding family 
{{A'+BJ-^IA'}. Since A\A' is a discrete finite length module (2.8), we have a 
minimal element (A'+f^B^/A'. Since lim is exact (4.4), . \ by the dual of the 

equivalent conditions of [2, p. 337, Proposition 6], (f{Bif-
1)+Af = c\(A'+BJ-1). 

Now f\Bif~
1=0 s m c e f)Bi=® by properties of inverse limit topology; also 

Ç\(A'+Bif~
1)=A'H-Po/"1 since it is the minimal element. .'. Af=A'+B0f~

1, 
Bof-1 c A' and P0 <= (A')f [2, pp. 392-393]. 
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6.2. LEMMA. V monomorphism f: A~>B £ BR is the kernel of some morphism in 

Proof . / i s 1-1 (3.5). Consider the canonical epimorphism g:B->B/(A)feBR 

(3.2), then f =kerg:Vx:C-^B EBRB xg=Q, (C)x ç (A)f. Nowf:A->{A)fwhere 
(x)f=(x)fVx e A is a continuous .R-isomorphism, .'. it is open (6.1) .*. f"1 e BR 

and u=xf~1 is a unique mapping 9 w/=x. 

6.3. LEMMA. V epimorphism f: A-+B e BR is the cokernel of some morphism in BR. 

Proof . / i s onto (3.6). Let i:K->A be k e r / then/=coker i'.AjK eBR and is 

topologically isomorphic to B (6.1) .'. VX:A->CGBRB ix=0, (K)x=Q, .'. x 
factors through B^A/K in BR. 

6.4. THEOREM. BR is an abelian subcategory of CR and is colocally finite. 

Proof. BR is abelian (6.2), (6.3), (3.3), (3.4). F:BR->CR is exact (3.7) .'. BR is 
an abelian subcategory. Since BR is abelian, has exact inverse limits (4.6) and has 
cogenerators of finite length (4.5) .'. BR is colocally finite [2, p. 356]. 
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