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Abstract

Wind speed at the sea surface is a key quantity for a variety of scientific applications and human activities. For its
importance, many observation techniques exist, ranging from in situ to satellite observations. However, none of such
techniques can capture the spatiotemporal variability of the phenomenon at the same time. Reanalysis products,
obtained from data assimilationmethods, represent the state-of-the-art for sea-surfacewind speedmonitoring butmay
be biased by model errors and their spatial resolution is not competitive with satellite products. In this work, we
propose a scheme based on both data assimilation and deep learning concepts to process spatiotemporally hetero-
geneous input sources to reconstruct high-resolution time series of spatial wind speed fields. This method allows to us
make the most of the complementary information conveyed by the different sea-surface information typically
available in operational settings. We use synthetic wind speed data to emulate satellite images, in situ time series
and reanalyzed wind fields. Starting from these pseudo-observations, we run extensive numerical simulations to
assess the impact of each input source on the model reconstruction performance. We show that our proposed
framework outperforms a deep learning–based inversion scheme and can successfully exploit the spatiotemporal
complementary information of the different input sources. We also show that the model can learn the possible bias in
reanalysis products and attenuate it in the output reconstructions.

Impact Statement

This application article presents a novel approach to sea-surface wind speed monitoring. It is addressed to a
multidisciplinary audience involving geophysicists, signal analysts, and machine learning practitioners in the
fields of geosciences. Because of its multidisciplinary scope, this work invests as much in the scientific as in the
operational aspects.

1. Introduction

The characterization, quantification, and study of wind speed at the sea surface are primary interests for a
broad ensemble of scientific and operational purposes. Because of the spatiotemporal-scale heterogeneity,
different sensors and observation techniques have been developed and implemented through the years to
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target some given features of the flow field. In situ measures (Gould et al., 2013) allow us to observe the
phenomenon near-continuously in timewith goodmeasurement accuracy but limited spatial coverage. On
the other hand, remote-sensing products (Amani et al., 2022), especially synthetic aperture radar (SAR)
imagery (Monaldo et al., 2013), can observe a spatially wide region at high spatial resolution, but the
revisit time of the remote sensor of a given region may not suffice to capture the temporal evolution of
surface wind patterns. Numerical weather prediction (NWP) approaches, based on mathematical mod-
eling, are another source of wind speed information. Environmental variables reanalyses (Valmassoi
et al., 2023) are obtained by data assimilation methods. Despite being state-of-the-art for wind speed
forecasting and reconstruction, they may be biased by timing and/or intensity errors (Storto et al., 2019)
and their spatial resolution may not suffice to resolve the smaller scales. In last years, machine learning
modeling gained popularity among the geophysical communities thanks to its efficacy in modeling
high-dimensional dynamical systems and to the ever-growing volumes of oceanic observations and
data bases (Karpatne et al., 2017, Karpatne et al., 2018; Yu and Ma, 2021; Bergen et al., 2019). The
problem of wind speed forecasting and estimation has been the object of many studies (Arabi et al.,
2023; Saxena et al., 2021; Arnold and Asgarimehr, 2021). In this work, we shift the focus of the
analysis on the problem of reconstructing complete, high-resolution (HR) wind speed fields time series
from its partial observations. In other words, the objective is to exploit the complementary information
heterogeneous input sources to retrieve the HR spatiotemporal information related to the sea-surface
wind speed. This kind of inverse problems (Snieder and Trampert, 1999) is typically solved with data
assimilation methods (Bannister, 2017; Carrassi et al., 2018) and deep learning–based inversion
techniques (Barth et al., 2020; Manucharyan et al., 2021) that are used to spatiotemporally interpolate
sparse geophysical fields. Recent work proposed to bridge data assimilation and deep learning
techniques (Arcucci et al., 2021; Farchi et al., 2022). Here, we elaborate on the work of Fablet
et al., (Fablet et al., 2021a; b). They propose a framework, the 4DVarNet, which is inspired by the
4DVar variational data assimilation scheme (see Talagrand, 2015) and based on deep learning
modeling. The 4DVar inversion scheme is kept explicitly and is parameterized in some of its parts
by trainable neural network operators, giving and end-to-end trainable and differentiable architecture.
The appeal of this method is that the time-dependent processes stated by the 4DVar state-space
formulation better inform the learning-based part of the inversion.

Given the scale heterogeneity of the input observations mentioned above, the wind speed retrieval
from its partial observations is an inherently multimodal problem (Hong et al., 2020). We hypothesize
that the HR wind speed time series reconstruction can profit from the complementary information in
the input data.We design an observing system simulation experiment (Hoffman andAtlas, 2016) based
on synthetic wind speed data to test the 4DVarNet framework for the reconstruction task and assess the
impact of each input source. HR satellite products, in situ time series, and low-resolution (LR) NWP
products are obtained by the original synthetic wind speed fields. We prove that the 4DVarNet
inversion outperforms a vanilla deep learning–based inversion scheme. We also show how the
4DVarNet can jointly exploit the HR spatial information of the satellite pseudo-observation and the
temporal information of the local in situ time series. To conclude, we show that the 4DVarNet, suitably
parameterized to ingest a multimodal dataset, can attenuate the bias imputable to errors in LR NWP
products.

The rest of this article is structured as follows. Section 2 gives an overview of the dataset used.
Section 3 discusses the methodological aspects of the 4DVar inversion, the models used, and the
experimental settings. Section 4 presents and discusses the results, and Section 5 closes the paper and
restates the main highlights of our analyses.

2. Data

For this work, we prioritize the use of a simulation dataset not to have co-location and grid compatibility
issues between satellite and reanalysis fields and time series. We use the output of the RUWRFmesoscale
model (Optis et al., 2020), based on the version 4.1.2 of theWRFmodel (Powers et al., 2017). This model
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runs a parent nest with a resolution of 9 km for a time interval of 120 hours and a child nest with a
resolution of 3 km (� 0:03 ° ) out of 48 hours. The resolution of the child nest is the reference HR for our
analyses. The region selected (a portion of the North American East Coast) has dimensions of 644× 645
km and the complete time series selected ranges from January 1, 2019, 00:00 to January 1, 2021, 23:00.
Panel (a) of Figure 1 shows the region selected. The dataset is formatted as a collection of 24-hour time
series, from 00:00 to 23:00 for each day. We process the wind speed components into the vector norm to
work with the wind speed modulus.

LR data. We obtain LR fields to emulate data assimilation products. Reanalyses are well suited for
mesoscale phenomena, characterized by spatial scales ranging from tens to hundreds of kilometers and
temporal scales ranging from hours to some days. We manufacture the LR fields by downsampling the
original data and reinterpolating the result on the HR grid, see Panel (c) of Figure 1. The resulting data are
prepared to have a spatial and temporal resolution of 30 km and 6 hours, at hours 00:00, 06:00, 12:00,
18:00, and 23:00. The spatial resolution chosen matches the resolution of the ECMWF ERA-5 data base
products (Hersbach et al., 2020).

HR data.We use the original fields to emulate noise-free HR satellite pseudo-observations. Given the
typical temporal sampling frequency of SAR products, we choose to prepare our dataset to have the HR
fields with a temporal sampling frequency of 12 hours. In particular, we set the HR observations at hours
06:00 and 18:00 of each input time series.

In situ time series.Weobtain local in situ time series by the pixel values of the original HR fields on the
positions of theNOAANational Data BuoyCenter network (reference site: https://www.ndbc.noaa.gov/).
The buoys selected are those that were active in the timewindow and spatial extent chosen. In situ pseudo-
observations have hourly temporal resolution.

2.1. Experimental configurations

We can identify four experimental configurations for our experiments as combinations of the input
sources described above. We can state these configurations as follows. (i) SR: only LR fields, (ii) C1: LR
fields and HR fields with frequency of 12 hours, (iii) C2: LR fields and in situ observations with hourly
sampling frequency, (iv) C3: LR fields, HR fields with frequency of 12 hours and hourly in situ time
series. The LR fields have sampling frequency of 6 hours in all the configurations. The name SR for the
first configurations refers to the superresolution task. Themodel is required to reconstruct the ground truth
HR fields time series from partial time series of LR fields. These configurations are used to assess the
value of each input source on the overall model reconstruction performance. Note that these configur-
ations relate only with the combinations on input sources and do not refer to model architectures.

Figure 1. Qualitative description of the dataset. Panel (a): Geographical region and buoys positions.
Panel (b): In situ pseudo-observations. Panel (c). Original HR fields and the emulated LR fields.
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3. Methods

The classical 4DVar data assimilation scheme is based on the following state-space formulation

_x tð Þ=M x tð Þð Þþη tð Þ
y tð Þ=H x tð Þð Þþ ϵ tð Þ

�
(1)

where x∈X is the objective state variable, y∈ Y is the partial observation of x provided by the observation
operator H :X! Y . The spaces X ⊂ℝm and Y ⊂ℝd are high-dimensional state and observation spaces.
One typically has that d <m. The operatorM :X!X encodes the time evolution of the state variable and
η∈ℝm and ϵ∈ℝd are independent identically distributed noise processes. The objective is to invert the
forward processes M and H from the observations to retrieve the state variable. In this case, the
observations contain information about HR and LR fields and in situ time series. The state variable
contains the information about the complete HR wind speed fields. The state-space formulation is
discretized and the continuous dynamical prior M is replaced by the one-step-ahead predictor Φ :
ℝ×X!X defined as

Φ tþΔt,xð Þ= x tð Þþ
Z tþΔt

t
M x tð Þð Þdt (2)

The 4DVar scheme states the problem as the minimization of the following variational cost1

UΦ x,y;Ωð Þ = λ1∥H xð Þ�y∥2þ λ2∥x�Φ xð Þ∥2
= λ1∥x�y∥2Ωþ λ2∥x�Φ xð Þ∥2 (3)

As usual in inverse problems, the variational cost involves a data proximity term and a prior
knowledge constraint. In this case, this constraint refers to prior physical knowledge. The symbol
∥ �∥ is an L2 norm. The parameters λ1,2 are tunable weights, and Ω represents the spatiotemporal
sampling domain. The observation operatorH, in our case, enforces the temporal sampling frequen-
cies of each input source, as prescribed by the configurations introduced above. For this reason, the
observation term can be stated compactly as the distance between observations and the state of the
domain Ω.

3.1. Direct learning–based inversion

To fix a baseline, we choose to use a vanilla learning–based inversion scheme. This kind of trainable
scheme has proven effective in imaging problems (Ongie et al., 2020). This inversion can be stated as
follows:

x= f θ yð Þ (4)

where f θ is a neural network parameterized by the parameters θ. This neural network is trained to
reconstruct the full-time series of HR wind speeds from the time series of partial observations, with no
need for the variational cost formulation. This kind of end-to-end learning scheme directly relates the
observations to the state variable. Some examples of learning-based direct inversion to perform spatio-
temporal interpolation of satellite products are provided by the work of Barth et al. (2020), for sea-surface
temperature, and Manucharyan et al. (2021) for sea-surface height.

3.2. Trainable data assimilation scheme

In the classical 4DVar, the operatorΦ is implemented by Euler or Runge–Kutta ODE integration schemes
(Cash, 2003). In the 4DVarNet case, Φ is parameterized by a neural network operator (Fablet et al.,
2021a). By this design choice, the flow operator is parameterized and trained to learn the state-space

1 The expression of the variational cost uses the compact matrix notation. The explicit summation over time steps is omitted.
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dynamics of the state variable. This makes the variational cost itself a learnable function. The minimiza-
tion of the variational cost is performed by a second neural network operator, the gradient solver Γ. The
iterative rule to update the state variable is the following:

δk =Γ ∇xUΦ xk,y,Ω
� �� �

xkþ1 = xk�αδk

(
(5)

where k refers to the iteration number. For our experiments, we set the total number of iterations to 5. The
4DVarNet scheme leverages the automatic differentiation capabilities of modern deep learning frame-
works to evaluate the gradients of the variational cost (Baydin et al., 2018). Figure 2 represents the
4DVarNet scheme graphically, the organization of the input observations and the output reconstructions
and the architectures of the trainable networks used. The 4DVarNet can be seen as a bi-level optimization
framework to jointly learn the variational model and solver (Fablet and Drumetz, 2020). As the state
variable is available from the variational cost minimization, it is used to evaluate a training loss function.
This loss function is in turn optimized to fit the trainable networks parameters. These two steps are
repeated for the number of training epochs selected by the user.

The 4DVarNet scheme has been successfully applied to sea-surface height (Beauchamp et al., 2023),
sediment (Vient et al., 2022), and turbidity (Dorffer et al., 2023). The open-source 4DVarNet code base is
available on the following repositories, the started version: https://github.com/CIA-Oceanix/4dvarnet-
starter and the core version: https://github.com/CIA-Oceanix/4dvarnet-core.

Multimodal version. We mentioned that the problem is inherently multimodal. Both the direct
inversion and the 4DVarNet configuration discussed do not process the heterogeneous HR, LR, and
local components of the observations y separately. We propose the following modification to account
explicitly for this input source heterogeneity. The observation term in the variational cost has a further
term that evaluates the distance between the feature maps of the observations and the state variable. These
feature maps are not constrained by the spatiotemporal characteristics of the observation components and
can better relate. The new variational cost reads

Figure 2. Schematic illustration of the 4DVarNet framework. The observations and the state variable are
prepared as concatenations of the input sources available. The symbol θ represents the networksΦ and Γ
parameters and n denotes the training epoch index. The symbol u represents the ground truths. The
statement x0 ymeans that the initial guess of the state variable is initialized with the observations. The
red box contains the inversion part to solve for the state variable x, being the parameters θ fixed as of the
previous training iteration. The green box highlights the parameters training part to solve for θ, with the
state variable x fixed as returned by the inversion part.
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UΦ x,y;Ωð Þ= λ1∥x�y∥2Ωþ λ1∥ψx xð Þ�ψy yð Þ∥2þ λ2∥x�Φ xð Þ∥2 (6)

where ψx,y is the trainable neural networks. For simplicity, we call single-modal the 4DVarNet based on
the plain variational cost 3 and we call multimodal the 4DVarNet based on the variational cost 6. In both
the single and multimodal versions of the 4DVarNet, we choose to train the weights λ1,2 as well.

3.3. Numerical implementation

The observations and state variable objects are obtained by concatenating the LR and anomaly fields, see
Figure 2. The anomaly is the difference between theHR andLR fields. The LR represents the average field
information, while the anomaly is the deviation from the LR of the HR field. This choice prevents the
model to process redundantly the LR information. We choose a 2D convolutional neural network to
parameterize both for the direct inversion and the dynamical priorΦ of the 4DVarNet. The gradient solver
Γ is parameterized by a 2D convolutional LSTM (Hochreiter and Schmidhuber, 1997). The networks ψx,y

are composed by 2D or 1D convolutional layers depending on the experimental configuration. Recall that
by configuration we mean the input data combinations. 2D layers process spatial image fields and 1D
layers are well suited for multivariate time series.

3.4. Learning scheme

The models are trained with the following supervised mean-squared-error cost function:

L u,bxð Þ= 1
M

XM
i = 0

XT
t = 0

λl∥ulrit �bxlrit∥2þ λh∥uhrit �bxhrit ∥2þ
þλg∥∇uhrit �∇bxhrit ∥2þ λp∥bxhrit �Φ bxhrit� �

∥2
(7)

Let u andbx be the ground truths and the reconstructions, respectively. The symbolsM and T represent the
number of elements in each data batch and the time window length, that is, 24 hours. To evaluate the loss
function, we obtain the HR fields summing the LR and anomaly components of the reconstructed state
variable. The spatial gradients term enforces the spatial coherence of the output fields. These gradients,
evaluated with the finite difference method available in the Pytorch library, are computed with respect to
the coordinates that define the fields spatial grid. Note that these spatial finite difference-based gradients
are evaluated numerically. This has nothing in commonwith the gradients of the variational cost, as in the
first line of Equation 5, which are evaluated by automatic differentiation. The last training loss term acts as
a regularization and enforces the parameters to be learned in compliance with the dynamics specified by
the first equation of the state-space formulation 1. This term should not be dominant, so theweight λp is set
to a small value. In this case, λp = 10�3. We train the model for 50 epochs with the Adam algorithm
(Kingma and Ba, 2014). Training is regularized by the L2 method and by early stopping based on the
validation loss.

The learning rates forΦ, Γ, and the parameters λ1,2 are, respectively, 10�4, 10�3, and 10�4. The weight
decay coefficients are, in the same order, 10�5, 10�5, and 10�8. The coefficients λl, λh, and λg are,
respectively, 2:5, 15, and 10�2. In the multimodal 4DVarNet case, the models ψx,y have learning rate and
weight decay coefficient set to 10�4 and 10�7. We used a batch size 8 for all the simulations2.

4. Results

In the presentation of the results, we adopt the following notation. Let LDI be the direct inversion baseline.
Let 4DVN-SM denote the single-modal 4DVarNet version and 4DVN-MM the multimodal version. Let

2 The simulations are run on a machine mounting 8 Nvidia A100-SWM4 graphical processor units. These units have 80 GB
memory and GA100 graphics processors with 1593 MHz memory clock speed. Training times are reported in Section 4.
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the symbols {LDI, 4DVN-SM, 4DVN-MM}-{SR, C[1,2,3]} indicate the model-data configuration
combinations. These abbreviations are, for readers’ convenience, restated systematically in part A of
Table 1. The target of each model are the ground truth HR original fields.

4.1. Evaluation framework

To set up the evaluation scheme, we chose a proper reference metric for the sea-surface wind speed
reconstruction. In the literature, reference values for the root-mean-squared error (RMSE) can be found
for SAR-derived wind speed fields (Monaldo et al., 2013; Ahsbahs et al., 2020) and reanalyzed products
(Brune et al., 2021; Gualtieri, 2021; Potisomporn et al., 2023). Part B of Table 1 reports the reference
values provided by the cited work. The RMSE score is evaluated for SAR and reanalyses using in situ
observations and assuming that these observations match the true wind values. In our case, we use
synthetic simulated data andwe have no in situ observations to be used as ground truth.3 To fix a reference
performance value, we do the following. We interpolate the LR fields in time on the 24-hour window.
Recall that our experimental configurations have LR fields with observation frequency of 6 hours. We
then evaluate the RMSE between these interpolated time series and the ground truth HR fields. Let
B-RMSE represent this metric, which attains the value of 1.1234 m s�1. We assume that our HR ground
truth fields match the real physical phenomenon. In this way, we can directly compare our B-RMSE with
the RMSE range found in the literature for reanalyzed fields, that is, 1.35–1.9 m s�1. Our B-RMSE attains
a lower value than the lower bound of this interval. This is due to the fact that our interpolated LR fields,
simulating real reanalyses, are not affected bymodel errors, as happens for real reanalyses. In this way, we
can fix our B-RMSE as a quantitative reference for this case study. That is, if only LRNWP products were
available. Next, we evaluate how two classes of trainable models (direct inversion and 4DVarNet) give
better reconstruction performance leveraging (i) learnable modules and/or (ii) heterogeneous input
observations. We may emphasize that we choose as baseline the superresolution direct inversion model
LDI-SR because it is the simplest method that aims to reconstruct theHR ground truth fields, while the LR
interpolation approach does not. Therefore, we keep the mentioned B-RMSE as quantitative reference,
but it would not be a fair baseline to assess the 4DVarNet performance improvement.

The reconstructions of our models are evaluated with the RMSE score related to an ensemble of
10 model runs. We assess the RMSE in two ways. First, we collect the reconstruction RMSEs between
each model’s output and the ground truths. We evaluate the average RMSE and the standard deviation as
measures of centrality and spread. In formulas

AvgRMSE bx,uð Þ = 1
R

XR

r = 1
RMSE bxr,uð Þ= 1

R

XR

r = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

i = 1
bxr�uð Þ2

r
StdRMSE bx,uð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R

XR

r = 1
AvgRMSE�RMSE bx,uð Þð Þ2

r (8)

where u is the ground truth, bxr is the model r reconstruction, R is the number of model runs, equivalent to
the ensemble members, and M is the number of samples. Second, the RMSE is evaluated between the
ground truths and the median of an ensemble of 10 model runs (Rincy and Gupta, 2020). In formulas

Median RMSEðbx,uÞ=RMSEðu,Medianðfbxr;r = 1,…,RgÞÞ (9)

We define a relative gain to compare the model improvement w.r.t. the chosen baseline as
1�pm=pbð Þ× 100, where pm and pb are the performance of the model and baseline, respectively.

4.2. Model benchmark

The 4DVarNet is compared against the LDI-SR model. This baseline model is trained to perform a
superresolution task to retrieve the finer-scaled information from the LR input fields. The neural network

3Do not confuse our in-situ pseudo-observations as true in-situ values.
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used for the direct learning–based inversion shares the same architecture used to parameterize the
dynamical prior Φ of the 4DVarNet framework. Part B of Table 1 lists systematically the simulations
results. We can see that the 4DVarNet, in both the single and multimodal versions, outperforms the direct
inversion baseline. However, the 4DVN-SM model does not benefit fully from the in situ observations,
and indeed, the baseline does. The rightmost column of the table evaluates the difference between the
performance associated to the configuration C3 w.r.t. the configuration C1. That is, the added value of in
situ time series. In the case of 4DVN-MM, thanks to the features maps term in the variational cost 6, the
framework can effectively benefit from the in situ time series. Figure 3 illustrates the spatial distribution of
the time-average gain of the C3 configuration w.r.t. the C1 configuration, for both the 4DVN-SM and
4DVN-MM models. The single-modal 4DVN-SM, despite outperforming the direct inversion baseline,
does not fully use theHR information of the satellite pseudo-observations. 4DVN-MM, on the other hand,
can effectively extract the spatiotemporal HR information from both satellite pseudoproducts and in situ

Table 1. Global overview on the benchmark experiments
Table A—Table of the abbreviations used in the results presentation. The symbol ✘ states that a given
input data source is missing. 1 h, 6 h, and 12 h stand, respectively, for observation sampling frequency

of 1, 6, and 12 h.

Model Explanation Data configuration LR HR In situ

LR-int LR fields interpolation SR 6 h ✘ ✘

LDI Direct inversion C1 6 h 12 h ✘

DVN-SM Single-modal 4DVarNet C2 6 h ✘ 1 h
DVN-MM Multimodal 4DVarNet C3 6 h 12 h 1 h

Table B—Benchmark test results. To contextualize our results, the first two rows report the typical
reconstruction errors expected when using SAR Sentinel-1A imagery and the wind speed reanalyses of
the ECMWF ERA-5 catalog. In the second part of this Table, we report the RMSE scores for our

simulations, expressed by Equations 8 and 9. Relative gains are expressed in percentage. The gains are
referred to the LDI-SR baseline, marked in orange. The black boldface highlights the best result.

We follow the names conventions stated in part A of this Table.

Method RMSE [m s�1] References

SAR Sentinel–1A 1.4–1.6 Monaldo et al. (2013); Ahsbahs et al. (2020)
ECMWF ERA5 1.35–1.9 Potisomporn et al. (2023); Brune et al. (2021)
Model RMSE [m s�1] Gain [%] Δ Gain (C3 vs C1) [%]

Avg ± Std Median
LR-int 1.1234
LDI SR 0.9968 ± 0.0003 0.9960

C1 0.9617 ± 0.0004 0.9605 3.56 3.91–3.56 = 0.35
C2 0.9964 ± 0.0002 0.9957 0.03
C3 0.9586 ± 0.0004 0.9571 3.91

4DVN-SM C1 0.9073 ± 0.0018 0.9000 9.64 9.65–9.64 = 0.01
C2 0.9673 ± 0.0008 0.9619 3.42
C3 0.9066 ± 0.0016 0.8999 9.65

4DVN-MM C1 0.8983 ± 0.0016 0.8802 11.63 13.48–11.63 = 1.85
C2 0.9319 ± 0.0015 0.9197 7.66
C3 0.8876 ± 0.0035 0.8617 13.48
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time series. The effect of this multimodal skill is reflected in the area affected by the reconstruction
improvement, on tens-of-kilometers neighborhoods of the in situ buoys.

To complete the systematic benchmark of ourmodels, we show in Table 2 that the computational effort
associated with each model is used. We report the training time for the ensemble of 10 model runs, the
trainable parameters of one single model of the ensemble, and the memory size required to store the
10-member model ensemble. Not surprisingly, the multimodal 4DVarNet 4DVN-MM is the most
expensive model in terms of resources.

4.3. Biased LR data

Reanalyzed NWP products can be biased by model errors. To emulate this scenario, we train our models
on an artificially biased dataset where the LR fields are modified by a random delay of �4,þ4½ � hours or a
random phase amplitude of 0:5,1:5½ �. Formally,

ylr tð Þ= ylr tþΔtð ÞwithΔt � U �4,þ4ð Þ
αylr tð Þwithα � U 0:5,1:5ð Þ

�
(10)

whereU represents the uniform distribution. Interestingly, this at-train-time modification can be seen as a
dynamic data augmentation process (Xu et al., 2021). At test time, the model is evaluated using a test set
that is systematically modified by each one of the modification factors. In this way, we can visualize a set
of performance curves that depict that reconstruction error as a function of the modification factor, see
Figure 4. In the case of random delay, the reconstruction curves for 4DVN-MM-C3 are lower at the
extremes. This means that the model trained on the biased dataset learns the error in LR fields.

Figure 3.Average gainsmaps. Left panel: plain 4DVarNet, average gain of 4DVN-SM-C3 vs 4DVN-SM-C1.
Right panel: 4DVarNetwith the additive trainable observation term in the variational cost, 4DVN-MM-C3 vs
4DVN-MM-C1.

Table 2. Computational effort associated to the models used. Training times refer to the time required
to train the ensemble of 10 models. The trainable parameters are the number of parameters of one
single model. Memory size refers to the space required to save the 10-members model ensemble

Model Training time Parameters Size [MB]

LDI 20 min 115 K 39
DVN-SM 3 h 742 K 89
DVN-MM 4 h 40 min 1.3 M 157
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Intriguingly, the curve associated with 4DVN-MM-C3 is systematically lower than the curve of 4DVN-
SM-C3. This proves that the modeling choice of the additional term in the variational cost 6 gives the
model the capability to learn and generalize even in the case of biased input data. In the amplitude case, the
effect is less pronounced. An explanation of this phenomenon could be the following. In the delay case,
there is a clear mismatch between the HR field and the swapped LR field. The LR field remodulation by
the amplitude factors we chose may not suffice to make the field drastically different from the original.
This implies a lesser model capability to detect and attenuate the LR data bias.

5. Conclusions

Our analysis presents the application of a hybrid data assimilation and deep learning framework used to
retrieve HR wind speed fields from the partial observations of sea-surface wind. We showed that this
framework can outperform a deep learning–based direct inversion scheme. We see that the 4DVarNet
scheme improves the baseline in two independent ways. The first is imputable to the underlying 4DVar
formulation that accounts explicitly for time processes. This informs the reconstruction of the temporal
features of the phenomenon. On the other hand, the 4DVN-MMmodel better exploits the different input
sources. This multimodal skill covers a primary importance in oceanography and geosciences since the
large volumes of Earth observations are characterized by different spatiotemporal features. Our results
show that proper modeling choices allow us to profit from the complementary information conveyed by
these diverse observation sources.We also proved that these modeling choices, thanks to the flexibility of
deep learning modeling, can endow the 4DVarNet framework with improved generalization capabilities
that help to attenuate the errors in NWP products.
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