
J. Austral. Math. Soc. {Series A) 30(1980), 137-149

ON THE MEASURE OF TOTALLY REAL
ALGEBRAIC INTEGERS

C. J. SMYTH

(Received 4 October 1979)

Communicated by A. J. van der Poorten

Abstract

For totally real algebraic integers •/_ of degree D(n), we examine the stucture of the set of values A/(oO' "'*',
where \l{ i) is the measure of i. We find a small limit point /of this set, and show that the set is everywhere
dense in (/. /_).

19X0 Mathematics subject classification (Amer. Math. Soc.): 12 A 95.

1. Introduction

Let i # 0 be an algebraic integer, not a root of unity, with conjugates
a = a1,a2,...,aD(J). There has been much recent work on the product
Mix) = n£*imax(l , |a f | ) (see Boyd (1978), Mignotte (1978), Stewart (1978) and
forthcoming papers of Dobrowolski, Lawton and Schinzel).

Here we shall be concerned with M(a) for a a totally real algebraic integer, a ^ 0,
±1 . In this situation, a reformulation of a special case of a result of Schinzel
(1973), Theorem 2, states that

with equality when a = £(1+^/5). It therefore seems reasonable to put
fi(a) = M(a)1 DtJ) and look at the set

¥ = {fi(a) | a totally real, a / 0, ± 1}.

Then by Schinzel's result, <f has smallest element ( i ( l+ > /5 ) ) 1 = 1.2720196....
We shall prove the following results:

THEOREM 1. Define jl0 --= 1 and (ln^l > 0 by H(in+ { = [in (n = 0, 1,...), where
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138 C.J.Smyth [2]

(1.1) Hx = x-x~l.

Then /?„ has degree 2" over the rationals, and the sequence

n(/i1),n(^2),n(^3),no34),n(^5),... % 1.272,1.298,1.308,1.312,1.313,...

of elements of if has limit point

logx<iF(x) = 1.31427...,

where F(x) is the function defined by Theorem 3.

THEOREM 2. The set if is everywhere dense in the interval (f. x).

THEOREM 3. There is a unique strictly increasing function F(x), defined on [0, x ] and
satisfying F(0) = 0 and

(1.2) | 2 F ( x ) - l | = F ( | X - X - ' | ) ( X 3 J 0 ) .

The function F{x) is in fact the limiting distribution, as n —> x, q/'f/ie absolute values of
the conjugates of \\n.

It would be interesting to determine the precise structure of if in {{\{ 1 + v'5))\A
It seems likely that the Q([in) {n = 1,2,...) form an increasing sequence lying entirely
within thisinterval, though I have not been able to prove this. Apart from the Q(/in).
there are other elements of if in this interval. They are connected with fixed points of
iterates Hk of H. These are discussed in Section 6.

One might expect that the numbers fi(aq). where

(1.3) a, = 2cos(2n >q)

could give small elements of if. In fact, l im^ r Q(xq) = 1.38135... > /(Lemma 11).
and I know of no Q(a?) on ((i(l +^/5))*/) which is not also equal to Q(/in) for some
n, or Q.(ft') for some fixed point ft' of Hk for some k (see Section 6 for details).

In Section 2 we calculate the degree of fin. In Section 3 we prove Theorem 3, and
derive some other properties of fin and F. In Section 4 we complete the proof of
Theorem 1, and in Section 5 we prove Theorem 2.

I would like to thank Professor J. W. S. Cassels for useful discussions concerning
the degree of /?„.
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[3] Measure of algebraic integers 139

2. Degree of /?„

LEMMA 1 (Albert (1956). Theorem 22, p. 140). Let p be a prime and yeGF(p")for

some n. Then x p - x - y is irreducible over GF(p") if and only if the trace

* r o i - i / ' " i u t - i i ' i V ^ " •

LEMMA 2. If x / 0 belongs to a field of characteristic 2, and [i = x~' +x satisfies
H2 " ~ fi for some n, then x2T" = x or x~'. Here 2\n denotes 22".

PROOE. N o w ( x + x ~ ' ) 2 " = x 2 ' " + x ~ 2 ' " = ju2!" = \i. So x2 T" is one of the roots

of x + x " ' = [i.

LEMMA 3. In a suitable extenstion of F2 = GF (2), define y0 — 1 and

(2.1) y,,+, +y;+\ = yn (« = 0,1,2,...).

Then [F2(yn): F2] = In.

PROOF. Assume for inductive purposes that {_F2(yn) '• F2] = 2", Trf2(..n) f2 )'„ = 1
and-;2'"'"1* = ;•; '.This is easily verified for n = 1. Then (y,,., Jynf +yn+ ,/;•„ = y~2,
and Try ; 2 = Tr-;n as ;„ 2 = y2'2'1"" " and Try,, = EjlV yl'- So by Lemma 1,
•in, irintF2(yn), and hence [F2(yn+ , ) : F2] = 2"+ '. Since yn+ , ^F2(yn), y^", # VB+ „
s o 72*" = ;V'i by Lemma 2. Further, from (2.1)

•^Vi+v;+
2i=7.2 ' (fc = 0, l , . . . ,2"- l) .

Since (y2; ,)2 = y ^ = ;•„ J1( where e = 2 " - 1, it follows that

2 " - l 2 " - l
Tr-> — V r->2' 4 - - , ~ 2 ' \ — V " 2 ' — I
1 r m- 1 — 2 - W i t i + / i + i l - 2 - /n — ' '

k= 1 d = 1

by the induction hypothesis. This completes the induction.

We can now prove

LEMMA 4. Let fi0 be an odd rational integer, and Hfin+ , = [in (n = 0,1,...). Then jin

has degree 2" over the rationals Q.

PROOF. We show that 22(/O/(?2 is unramified of degree 2", where Q2 is the field of
2-adic numbers. Assume inductively that Q2{ftn) has residue class field F2(yn), and
that /^ = yn(mod2) (clearly true for n = 0). Then if f(x) = x 2 - / i n x + 1 ,
/(•/„*,) EE 0 (mod 2), and ./''(-/„+ 1) =;'„/'„+ 1 ^0(mod2) . So by Hensel's Lemma,
fix) = 0 has a root /?n4., with /in+ , = yn+ , (mod 2). Then Q2(Pn->-1) n a s residue class
field F2(yn. yn^,) = F2(y,,. () of degree 2"+ ' over F2, by Lemma 3. Hence
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and Q2{fin+ \)IQi ' s unramified of degree 2" + '

3. Proof of Theorem 3

Let Bn be the set of absolute values of conjugates of (in in = 0,1,...). By Lemma 4.

Bn has 2" elements [}„ = Pn,i > lh,,2 > - ^ ft».2° s a v - F o r * Ss 0, put

Fn(x) = 2 " " x (number of/?„ ^in [0,x]). Clearly Fn(0) = 0. Since - /*„" ' is a conjugate

of ft,,

(3.1)
1 - Fn{x ') + 2 " if x = some jin y

Also, for .x > 1 there is a 1 1 correspondence between the \\n j in (.v. x ) and the

fin. UJ in (x - X " ', x ) . So 2"( 1 -F n (x) ) = 2"" '(1 - Fn_ ,(x - ')). or

(3.2)

Now take any x ^ 0. If . v e ( J j = 0 B j , replace x by x ' > x : Fn(.v') = Fn(.v).

Fn_ !(*') = Fn_, (x) and X ' ^ I J ^ Q B J . SO we can assume in what follows that

x$liJ"=0Bj, which implies by (3.1) that

(3.3) FJ.(x) + FJ . (x~1)= 1 (/ =0, . . . .») .

From (3.2) and (3.3), for y<£Bj, Bj_ „ y > 0,

Since yi (J}'=o Bj implies | y-y ' \& (J"=o By- we have b> induction that

F n ( x ) - F n _ , ( x ) | = 2 - ( "~ 2 | jF 2 (_ - ) -F , ( r ) j =S2-(" 2) for some -

By the Weierstrass A/-test, Fn(x) tends uniformly in x to a limit function F(x) say. as
F ( x ) - F ( x + (>)| ^ 2~k < £, from which continuity follows.

(3.4)

(3.5)

and hence

(3.6)

F ( . v - ' ) =

F(x) =

1).

Combining (3.5), (3.6) we can write them as (1.2). Conversely, under the assumption

that F is strictly increasing, (1.2) easily implies (3.4), (3.5) and (3.6). We shall show in
Lemma 8 that F is indeed strictly increasing.
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We now show how to use (3.5) and (3.6) to obtain, for given x, the value of F(x)to
any specified degree of accuracy. Suppose we have obtained an equation ofthe form

(3.7) F(x) = ak+ek2~kF(\Hkx\),

where ak is a rational, ek = ± 1 and Hk x = H(HkX x). (We start with k = 0, a0 = 0,
e0 = 1. H°x = x.) Then, applying (3.5) or (3.6),

F(x) = ak+£k2~k(% + ^e'k+ 1 F{\ Hk+ l x |)

— n 4-r T-(k+ 1) pvl Uk+ 1 v \\ CaV

— ak+i+efc+i- ' ^ i | " x |) s a y .
So we can get an equation ofthe form (3.7) for any/c, and then |F(x) —afc| ^ 2"*. This
shows also that F is uniquely defined by (3.5) and (3.6).

For later use, we need the following facts :

LEMMA 5. (a) Define / /" ' .v = i(x + (x2+4)*), so that H(H~l x) = x (and also
H ( [ - r / " ' x r ' ) = x). Then for x, y > 0

\H~l x-H ~l y\<\x-y\.

(b) We have

a/?d /"or /? ^ 0,

(3.9) P n + l . i = H"1 P n . i < P n + \ . i - = ( H ~ 1 P n , i ) ~ l (< = 1 , - , 2 " )

r f i" = 2 n + 1 + l - / .

(d) Pn — Pn,2 ^ IK-11 for " ^ 1 (recall /in,/?„ 2 ^'•f f'!t> largest two elements of Bn).
(e) max (/^--ft, J+ J = / ^ - / i n 2,

j ~ 1 2" - 1

PRCX)F. (a) Direct application of the mean value theorem.
(b) (3.8) follows from (1.1), and (3.9) from (3.8).
(c) First note that fiH+ , = tf"1 \in = M , + (/?n

2 + 4)*) > pn + (WM as
^ +4 > Uin + (K M2. Now assume /in ^ (n +1)*, which is true for n = 0. Then

#!_,> ((«+l)" + i(n+l)*)2 > n + 2.

Next assume /^ ^ (2/;+ 1)*, also true for n = 0. Then

/in+ , ^ i((2n + 1)* +(2n + 5)*) ^ (2/i + 3)*

by convexity.
(d) We must first show that for n ^ 1

(3-10) Pn-Pn-1>
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(put /?_! = 0 ) . This holds with equality for n = 1. Now, using (3.9),

£„ = # - < " - ' > ( # - M ) , j3n_i = H " ( " " I ) 1 ,

£ n 2 = / / - < " - " ( ( / / - ! I )" 1 ) , /?n_2 = H - ( " - 1 ) 0 and H '1 > 1 > (H~ ll)~ ' > 0

Further, (d/dx)(H~l x) is an increasing function of x, so using the mean value

theorem we have that if a> b > c> d and a — b>c — d, then

H~l a-H~lb> H'1 c-H'1 d. Applying this result n-\ times, (3.10) follows.

Then (d) follows from the fact that Pn_2 = /?„_, -/?~_V

(e) Now | x ~ ' — >'" ' | < | x — y\ for x,y— 1. So, using (3.8), the greatest distance

between adjacent elements of B n + 1 must either occur between two elements of

H~lBn, or between the smallest element # " ' ( / ? " ' ) of H~[ Bn and the largest

element ( f / " 1 ^ " 1 ) ) " 1 of (H^1 Bn)~
l. But

by (d), so if the result is true for /) it is also true for n + 1. For the order of magnitude,

first note that

for some xe{pJi2,Pj). Hence

by (c). Hence by induction, for n ^ 2

5
2« - 6'

as Pi—Pit2
 = 1- Since this product is O(n~*), the result follows.

LEMMA 6. F is continuous on (0, oc).

PROOF. Given x,e > 0,choose k :2~k< e,andS > 0such that for/ = 0, l , . . . , /c- 1.

| / / J x | and j // J(x + S) | are not on opposite sides of 1 (one of them may equal 1). This is

possible by the continuity o f H o n f i u j x ) (with its usual topology). Then (3.7)

holds for x and x + <5, with the same values of ak and i:k. Hence

\F(x) — F{x + S)\ ^ 2~k < e from which continuity follows.

LEMMA 7. For j = l,...,2",F(PnJ) = 1 — (2j— l)/2"^ ' .

PROOF. If F(|/?|) = / / 2 " + 1 . w h e r e / is odd, then repeated use of (1.2) shows that

H"(±P) = 1. Hence by the definition of /?„, one of fi or —/i is a conjugate of [iH. Since
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F(x) is continuous, F(0) = 0, F (x) = l,F(x) = / / 2 n + ' has a solution x r say. So the 2"
odd values of/in [1,2"+ ' - 1] must correspond to the absolute values of the 2" roots
of H" x = 1. The exact correspondence follows from the ordering of the /?n,/s and the
fact that F is non-decreasing.

Finally in this section we can show

LEMMA 8. F is strictly increasing in (0, oc).

PROOF. Let 0 < a <b. Choose n large enough so that there are two elements (]„ p

Pnj-i of Bn in (a,b). This is possible by Lemma 5(c), (e). Then
F{a) ^ F(PnJ) < F(PnJ^) < F{b).

The above result completes the proof of Theorem 2.

4. Proof of Theorem 1

LEMMA 9. We have
(a)

for some I with 1 < C < x .
(b)

lim

PROOF, (a)

log xdF(x)= Y. I logxdF(x)I;
Z log ft+i dF(x)

i = 0

s: S 2- ( i + 3)log(2( + 3)< x .

by Lemma 7 and Lemma 5(c).
(b) Given e > 0, put t' — 2"— 1 and choose «:

(4.1) log
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log xdFn(x)- I log xdF(x)

V Z. 'log/?,,,-
z ;=i

^f + 4 2 S 'logfA,,/^,,,,)
z z ,• = 1

as F has weight 2"" in each interval (/?„,;+!,/?„,,), by Lemma 7

for n sufficiently large, using 5(c) again.

This lemma, combined with Lemma 4, proves Theorem 1.

5. Proof of Theorem 2

We now generalize the sequence {/?„} by setting $j" = -̂ where b is an odd positive
integer, and /?<,*{, > 0 by H^\ x = fin

b) (n = 0,1,...). By Lemma 4, [fn
h) has degree 2"

over (). Also, let Bib) be the generalisation of the set Bn,
an — \Pn — Pn.l ^ Pn, 2 ^ Pn,3 ^ — ^ Pn,2"j-

The next lemma allows us to approximate most elements of BJ,6' by elements of

some

LEMMA 10. Apart from p{
n
b) and (#,*>)"', the other 2 " - 2 elements of B? can be

arranged into disjoint pairs, so that there is a 1-1 correspondence between each pair
P*\r F&i and each element p>\ ofB0 u Bx u ... u Bn_2, in such a way that j ffi\, - /yj1/1

PROOF. The lemma is trivial for n = 1. Assume it is true for n. For Bjfj ,, let the pair
H'1 p^h, H-1 ^n

b\2 correspond to H~' #,'/. Then

by Lemma 5(a). This defines the correspondence for all elements of B{*1, except
( / / " ' ^ ' " ) ± 1 and (//"-HA1")"1)11. The first two of these are C ) 1 1 , and so are
excluded from the correspondence. Let the other two correspond to 1. Then
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[9] Measure of algebraic integers 145

by Lemma 5(a). Since |.v~ ' — 11 < |x— 1 | for x > 1, the relevant inequality also

holds forf//"1!/?1,,1")" ') '• We have therefore obtained the required correspondence

between B^! [ and

{1 j u H ' (Bo
 l^ - u Bn_2) u(H~ >(B0 ^ B , u ... u BH.2)y '

= BQUBJ u... uBn_j.

We can now prove Theorem 2.

Let a > / and i: > 0 be given. We shall exhibit a /?(
n
M with | log /Jf" — log «| < e,

where /'n
M = Q(/^h)). We first observe that a straightforward generalization of

Lemma 5(c) gives

(5.1) b^li^^dn + b2^.

Also note that from Lemma 9(b) we may put

(5.2) log^'^l-c^log/.

where r.j -»0 as / -• x . Then by Lemma (10) and (5.1),

(5.3) log/r = 2 ' n V

2"s 2 " ( g ; V
j = 0 j = 0

where

Similarly, in the other direction

(5.4) log^b ) < 2^"log/i + »i2""fo^2 + log / + T n

Now choose N i large enough so that

+Tn < | for n ̂  N
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We also want

or

Choose N2 ^ N l such that this interval contains an odd integer for n ^ N2- Finally
choose N3 ^ N2 so that max(log(l -b~')"'), log(l+/>"')) < s/3 for 11 > JV3. The
three e/3-inequalities now combine with (5.3) and (5.4) to give the required result.

6. Small elements of <f

We define a small element of <£ to be one in [ i y ] . We now show that for %q

defined by (1.3), Q.(aq) can only be small for finitely many q.

LEMMA 11. We have

PROOF. NOW

, - log+ 1 -eie dO = 1.38135....
2K JO

logQfa,) = (\4>(q)y' I log+|2cos(27nA/
1

since the discrepancy, on the unit circle, of the primitive </th roots of 1 tends to 0 as
q -» x . This fact follows, for instance, from Kuipers and Niederreiter (1974),
Chapter 2, Theorem 2.5, and Hardy and Wright (1960). Theorem 272.

NowQ(a5) = Q(/i,) is small, and Q(at7) = 1.309784... and Q(a60) = 1.311254... are
also small. We shall show, however, that these numbers also belong to a sequence of
elements of if connected with fixed points of Hk for some k. We need

LEMMA 12. For k = l,2,...,Hkx = Pk(x
2)/xQk(x

2), where P,(y) = y- 1, Qx(y) = 1

and

(6.1) Pk+1(y) = P2(y)-yQk
2(y) (k = 1,2,...),
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(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

Qk+i

A

ft

(y) = P

:(.V) = V

:(V) = V

(v) = -

(y) = P,

Measure of algebraic integers

*(>•)&(>•)= n n(.v).

2i ' - { 2 f c - l ) _ v 2 k ' - 1 + . . . -

21 '-l-(2k-k-\)y2k ' -

nfyJ + yftO^/cy2'1-1

t( >') + }'&(>') = 2 y 2 ' " - . . .

147

(k > 2),

Further, Pk is the minimal polynomial of fit-,.

PROOF. Equation (6.1) —(6.6) all follow by induction, using the fact that

x & ( x ) P t ( x )

The final remark follows from the fact that Hfij = fij__1, Hkfik^l=0 and

Hk(-fik-l) = 0.

Note that for e = ± , the roots of Hkx = ex are the zeros of R^x2).

We now establish a connection between the fixed points of Hk and the values of x

where F(x) is rational.

LEMMA 13. (a) The values of x where F(x) =j/(2k— 1) (j = 1,2,...,2k — 2) are the

positive roots of Hkx = x and of Hkx~l = x'1.

(b) The values of x where F(x) = j/(2k+ 1) (j = 1,2, ...,2k) are the positive roots of

Hkx = -x and ofHkx~l = - x ~ '.

PROOF. From (6.5). //* x = x and Hk x 1 - x~' each have 2k~ ' - 1 positive roots,

a total of 2 k - 2 . Let F\x)=j/2k-l, where ; e { l , 2 , . . . , 2 k - 2 } . From (1.2),

F{EHX) = res(2jr.)f2k-\, where

j 1 if x > 1
| i i f x < r

and

res(u) = ti(mod2k-l), res(a)e{l,2,.. . ,2' l-2}.

Hence.as H{t:Hi x) = i:Hi+ ' x, we can show by induction that for e' = sgnf^x— 1),

Since res(2\/) =j, rcs(-2kj) = 2 f c - 1 - ) , and E'H^X = WkxE', F(Hkx>) = F(x£).

Part (b) follows similarly.
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We now note that Hkx = + x implies H2k x = \ . and Hx = — x implies

H2k+ix = -x. Hence, from Lemma 12, R2k{y) = 2ky2:i ' " ' - . . . - 1 is divisible by

Rk
+(y)Rk(y) = 2ky2"'1 -... - l,and R;{y) = 2 y - 1 divides R2k+ ,(y) = 2y21'-... + 1.

Therefore, by defining

*2k{y' ~ Rk
+(y)Rk(yY *2k + l 0 ' ~ ' 2 . 1 - 1 " '

we obtain an infinite sequence of monic integral polynomials with constant term
± 1. Note that S2k has degree 22k ~' - 2 \ and S2k + , degree 22k - 1. The S, need not be
irreducible, as, for example, S31S9. However, we can use the Mobius //-function to
define, in a manner analogous to the formulae for irreducible cyclotomic polymials.

; : 1 ' J .21+ 1 J

It is then possible that the S? may be irreducible. We have

S* = S* = 1, SJ(y) = y 3 - 5 y 2 + 6 . v - l . SJ(y) = y 4 - 7 y 3 + 1 4 y 2 - 8 y + 1 .

S*(y) = y ' 5 - 2 8 y 1 4 + 339y1 3.. .-l . etc.

It is easily checked that S*(y), S%{\) are the minimal polynomials of a2, i\0. Thus a-.
a60 arise naturally as roots of / / 3 x = — x. and W4x = v, respectively.

Assuming that S*k is irreducible, with y2t a zero, then the absolute values of the
conjugates of y\k are the values of x where F(x) =j'{22k— 1), where

f o r a n y k

Under the (likely) further assumption that these special values of/ (22k- 1) have
small discrepancy in [0,1], then

)k) V conjugalc

will be near

logxJF(x).
Ji

i.e. Q(y|jwill be near {. This will be true whether degy2; = 2degy2l or degy2t.
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