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Abstract

DeVore-Gopengauz-type operators have attracted some interest over the recent years. Here
we investigate their relationship to shape preservation. We construct certain positive
convolution-type operators H, , ; which leave the cones of j-convex functions invariant
and give Timan-type inequalities for these. We also consider Boolean sum modifications
of the operators H, ; ;, show that they basically have the same shape preservation behavior
while interpolating at the endpoints of [—1, 1], and also satisfy Telyakovskii- and DeVore-
Gopengauz-type inequalities involving the first and second order moduli of continuity,
respectively. Our results thus generalize related results by Lorentz and Zeller, Shvedov,
Beatson, DeVore, Yu and Leviatan.

1. Introduction

The present note deals with shape preservation by so-called DeVore-Gopengauz-type
approximants and thus falls into the general context of approximation with constraints
(in connection with pointwise estimates). See, for example, Section 3 of [24] and the
excellent survey on the early history of the subject in Section 3.2 of [14] which also
contains numerous references.

Certain approximation processes which preserve shape properties of a function, and
the parametric curves and surfaces based upon them nowadays are not only widely
used in Computer-Aided Design, but also to represent curves, surfaces, and volumes
for which the data are not necessarily subject to modification (including physical
and physiological data, for example). A well-established tool in these fields is the
Bemstein-Bézier technique, which was derived from the classical Bernstein operators.
However, the present authors feel that the possibilities provided by approximation
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theory have not yet been fully exploited in the fields mentioned. The present paper
aims to bridge the gap between good shape preservation properties and the best possible
degree of approximation (not rendered by Bernstein operators). Further details are
given below.

To define DeVore-Gopengauz operators we first introduce some notation. Let
N := {1,2,...} be the set of natural numbers, Z := {0, +1, 42, ...}, C[a, b] the
real vector space of continuous functions on the closed interval [a, b] and T1, be its
subspace consisting of all algebraic polynomials of degree < n. By w,(f, -) we denote
the second order modulus of smoothness of f € Cla, b], givenfor0) <8 < (b—a)/2
by

w2(f,8) = sup {| f(x—h) —2f(x) + f(x+h)| : x,x  h € [a, b), 0<h <85}.

DEFINITION 1.1. A sequence of linear operators L, : C[—1,1] — 11,45, r € N,
s € Z fixed, is said to be of DeVore-Gopengauz-type, if for all f € C[—1, 1] and all
x € [—1, 1] one has

/1 — x2
|f () = La(f,X)| < -y (f, ——lz—x)

with a constant ¢ independent of n, f and x.

Two remarkable features of DeVore-Gopengauz-type operators are the facts that
they reproduce linear function, that is, L,(f,-) = f for all f € I}, and that they
interpolate the approximated function of the endpoints of its interval of definition.
Both properties are shared by the classical Bernstein operators which have other
remarkable features, too.

In order to further motivate our research below we recall the following facts. It
is well known that the Bemnstein operators B, mapping C[0, 1] into I1, preserve
convexity of all orders, that is, f¥> > 0 on [0, 1] implies [B,(f)]¥? > 0 on [0, 1]
for j = 0,1,.... Itis for this reason (among others) that they have received
considerable interest in Approximation Theory and, more recently, also in Computer-
Aided Geometric Design (see [17] and [20]). However, their rate of approximation
is poor in comparison to that of DeVore-Gopengauz-type operators. A result dating
from 1964 ([4]) states that

(B,(f,x) — f(x)| < con (f; Jr(= x)/n) forall f e C[0, 1], all x € [0, 1].

Only recently inequalities of this type have again attracted some interest (see, for
example, [27] and the references cited there). The saturation theorem by Lorentz [23]
and the inverse theorems of Berens and Lorentz [3] show that this is, in a certain
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sense, indeed best possible for Bernstein operators. The following result by Berens
and DeVore [2] demonstrates that this slow degree of approximation is a consequence
of their convexity, and that they have the best rate of approximation among all operators
with the same shape preserving properties.

THEOREM A. Let L, denote the class of all operators L, mapping C[0, 1] into itself
with
@ L.(f)el,forall f e Cl0,1],
(i) L,{()=lforalll € 1),
(i) [L.(OIV20,if fP>0,j=0,1,...,n
Then

x(I-x)

- B, [(-—x)z,x]=Linr€1£nL,, [( —x)?x], O0=x<L

The assumption (iii) of Theorem A, that all cones of j-convex functions, j =
0,1, ..., n, be invariant under the operators in the class L, , is quite stringent. It is
therefore a natural question if this assumption can be loosened somewhat in order to
get a better rate of convergence. This is the topic addressed in the present note which
can thus be viewed as written in the spirit of the Berens-DeVore paper.

The method to be examined below is quite classical, while still offering capabilities
which seem to have been overlooked before. We start off with a short description of
this technique.

The traditional method of proving Jackson’s theorem for f,g ¢ Cla, b] uses
convolution operators of the form

G(fix)=(f*xg)x) = —71; /” f(cost)glcos(6 — t)]dt, x=cosf. (1.1)

If K..(v is an even trigonometric kernel of the form

m(n)

1
Knm() = 3 + Z Or.m(n * COS kV,

k=1
then
8mn(2) 1= Kng(arccos z)

1 m(n)
= '2_ + Zpk.m(n) : Tk(z),
k=1

where T} denotes the k-th Cebyzev polynomial, is an element of IT,,).
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Furthermore, G = G, attains the form (6 = arccos x)

G (f, %) = %/‘” f(cost) - K, [arccos(cos(@ — t))] dt

T

1
= = f(cost) - K,m(arccosx — t) dt (1.2)

= %/‘" Sflcos(arccos x + t)] - Kp(ny(2) dt, (1.3)

and, foreach f, G (f, -) is also in I[T,.

In previous research an important role has been played by positive kernels K,
and in particular by the higher order Jackson kernels (Matsuoka kernels) given as
follows (see, for example, [15], [26]).

. 2 2s
Fors e N, let K;,—;(V) := Cps (SLHM) ,

sin (v/2)
where ¢, ; is chosen so that 7! [ K,,_,(v)dv = 1. Thus,

sn—s

1
Kons(v) = '2' + Z Pk,sn—s CO8 kv. (14)
k=1

The degree of approximation by convolution operators of the above form and by
some of their modifications was recently investigated in a series of papers by the
present authors (see [S]-[12], [18]-{19]). One quantitative result needed below is the
following.

LEMMA 1.2. (Cao [5, Theorem 1], [6]). Let n € N and K,,,,,(v) = 0. Then for
—1<x<1land f € C[-1,1],

£ () = Gy (s 21 = 200 [ £5.0 = pr) x| + V2 T= i - VT =22
Here w,(f; -) is the first order modulus of continuity of f.

Shape preservation properties of an operator can be expressed using its behavior
on the cones of j-convex functions. Let j € N and f € C[a, b]. The j-th forward
difference of f with increment 4 is then given by

j .
ALF(@) = Z(—l)f"‘ (ch)f(t +kh), O0<h<(b-a)/jandtelab-—jhl
k=0

A function f is called j-convex if f € Cla, b] and all j-th forward differences
A{; f@),0 < h < (b—a)/j, ate non-negative. Also, the function f is said to be
0-convex if it is non-negative on [a, b].

As far as shape preservation by convolution operators of the above form is con-
cerned, the following result is important,
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LEMMA 1.3. (Beatson [1, Theorem 1]). Let f, g € C[—1, 1], and let the convolution
operator G be given by

1 T
G(f,x)=(f xg)x) = ;/ f(cosv)g[cos(@ — v)]dv, x = cos6.
Let j be a non-negative integer. Then the cone of j-convex functions is invariant
under the operator G(f) = f = g ifand only if g is j-convex.

For the case j = 1, this result had been obtained earlier by Roulier [28] and
Senderovizh [29]. Based upon this lemma Beatson proved the following.

THEOREM B. (Beatson [1, Theorem 2]). Let j be a positive integer. There exists an
M; such that for each f € C[—1,11andn =0, 1,2, ..., there exists a P, € Il, with
P, i-convex for any i € {0, 1, ...} for which f is i-convex and

[f(x) = P,(X)| < Mjon [ f, An(x)], lx] < 1.

Here, Ag(x) := 1 and, forn > 1, A,(x) := max(+/1 — x2/n, 1/n?).

For the case j = 1, a pointwise theorem had been obtained earlier by Lorentz and
Zeller [25, Theorem 2], and for j = 2 a uniform estimate of the above type was first
given by Shvedov [30, Theorem 4]. Theorem B shows that, in a Timan-type theorem,
cones of i-convex functions can be assumed to be invariant up to some predescribed
order j.

However, for certain cases it is known that w,[f, A,(x)] can be replaced by the

quantity w,(f, +/1 — x2/n).

THEOREM C. (DeVore and Yu [16]). Let f € C[—1, 1] be an increasing function.
Then there exists P,(f,-) € 1, such that P,(f, -) is increasing and

@ =R e o (fVI=F/m), ksl 19
Here the constant c is independent of f, x and n.

THEOREM D. (Yu [32], Leviatan [22]). If f € C[—1, 1] is a convex function then
there is a convex polynomial P, € I1,, such that

@) = Pf Dl s c o (£VT=x/m), k<1,

with ¢ independent of f, x and n.
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Uniform results corresponding to the pointwise ones in Theorems C and D had
been obtained earlier by Shvedov [31, Theorem 1).

In the present note we shall investigate this matter further using the Boolean
sum approach which was also employed in our other papers mentioned. To be
more specific, below we will first construct and study certain convolution operators
H, ; ; based upon modified Matsuoka kernels to generalize Beatson’s Theorem B (see
Theorem 4.3 below). Furthermore, we shall use Boolean sum modifications of H,, ; ;
in order to investigate the invariance of cones of i-convex functions in Telyakovskii
and Gopengauz-type estimates (Theorems 4.4 and 4.5). As special cases we obtain
Theorems C and D. In the final Section 5 we briefly discuss a further type of Boolean
sum modification and show that for this one similar results can be derived.

We make the following additional remarks concerning notation in this paper. For
f € Cla, b], let | fIl := max{|f(t)| :a <t <b}. By C, C (upper or lower case)
we will denote positive absolute constants independent of n, f and x € [a, b]. The
constants C and C may be different at different occurrences, even on the same line.
Occasionally they will carry subscripts in order to explicitly indicate the quantities
they depend on.

2. Further notes on the Boolean sum method

In this section we prove several assertions concerning Boolean sums of certain
positive linear operators. Although the results of this section are mainly of an auxiliary
nature for the main theorems of later sections, they appear to be of independent interest.

Let Lf be the linear function interpolating f at @ and b, that is,

fb)(x —a)+ f(a)(b —x)
b—a ’

L(f,x)=

a<x<b.

Let A be a linear operator mapping C[a, b]into C[a, b], and let A* denote the Boolean
sum of L and A given by '

AT(f,x) = (L ® A(f,x) = L(f; x) + A(f;x) — (Lo A)(f3 %)
= A(f, x) + {(x—a)[f(B)— A(f, B)] + (b—x)[f (@) — A(f, &)1}/ (b—a).

LEMMA 2.1. Let A be a positive linear operator mapping Cla, b) into itself, and such
that A(1;x) = 1. Let f € Cla, b] be increasing, and

v(x) == {(x —a)[f(B) — A(f, B)] + (b — x)[f(a) — A(f, @)1}/ (b — a).
Then v also increases on [a, b]
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PROOF. Since f is increasing on [a, b], we have f(a) < f(x) < f(b),a < x < b.
The operator A is positive, so A(f — f(a); x) = 0, which implies A(f; x) — f(a) -
A(1; x) > 0. In particular, A(f; a) — f(a) = 0. Similarly, f(b) — A(f;b) = 0.
Thus
V(x) == {[f(b) — A(f, B + [A(f;a) — f@]}/(b—a) >0, x € la, b],

from where it follows that v increases on [a, b].

LEMMA 2.2. Let A be a positive linear operator as in Lemma 2.1. For j € N, let
the cone of j-convex functions be invariant under the operator A. Then the cone of
Jj-convex functions is also invariant under the operator A™.

PROCOF. If j = 1,and f € Cla, b] isincreasing on [a, b], by Lemma 2.1 it follows that
the function v(x) is increasing, that is, A,v(x) > 0,0 <h <b—a,x € [a,b — h].
Under the conditions of Lemma 2.2, we have A, A(f, x) > 0. Since A*(f,x) =
A(f, x) + v(x), we have that

ALAY(f, x) = AA(S, x) + Apv(x) = 0.
If j > 2, then Aj(ax + B) = 0, and thus
ALAT(f, x) = A(f, x) + Ajy(x) = A(f, x).
Hence, if Ai f(x) = 0, from the assumption of Lemma 2.2 we have that
AJA*(f, X) = ALA(S, %) 2 0.

In view of the result of Lemma 2.2 it is a natural question if the Boolean sum A™* of
positive operators L and A is also positive. This is not true as can be seen by choosing

[asb]=[0’1]7 L(f;x)zf(l)'x+f(0)(l—x)v
A(f;ix)=x+1)- fx), x € [0, 1].

Then both L and A are positive, and A*(f; x) = (x + 1) f(x) —x - f(1). A* is not
positive. In fact, choose f(x) = x2, x € [0, 1]. Then

1 3 1 1 1
A+ D= = - — - 1 = —-= .
(f’z) 7 f(z) A g <0
For operators G, as introduced above the statement of the example below holds.

EXAMPLE 2.3. Let K, with p,, > 0, =1 <t < 1 be a positive kemnel. Then there is
a function g € C[—1, 1] such that g(z) > 0, —1 > ¢ > 1, and G5 (g, 0) < O, that is,
G{ is a non-positive linear operator.

We do not give a proof of Example 2.3 here; the reader is referred instead to the
technical report {13], where full details are given.
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3. Some auxiliary results

In this section we collect several assertions of auxiliary nature (Lemmas 3.1
through 3.3). We also recall two results which were proved previously by the present
authors (Lemmas 3.4 and 3.5).

Let g € Cla, b]. We write Fo(u) := g(u), u € [a, b]. Forr € N let F, (1) be the
integral of F,_, on [a, u]. It can be shown that ([33, chapter XII, § 8])

Fo(u) = 1)' / (u —v) " 'g(v)dv. @3.D
Indeed, by differentiation with regard to the parameter u we see that, for1 <i <r-—1,
T Fw = A = = [w- a6
du’ (r—i—1
and .
T —F,(u) = g(u). (3.3)

In the sequel, let M, , and M,,,‘, be positive constants depending on m and r only.

LEMMA3.l. Letm > 0,r > 1, g€ C[—-1,1],g(z) >0, -1 <z < 1. Then
I, = / o ( f (cosv—s)"'g(s)ds) dv
0 -1
< M,,,_,/ v+ g(cos v) dv. (3.4)
0

PROOF. We proceed by induction forr =1,2,...:
If r = 1, integration by parts gives

1,,,,1=/ o ([ g(s)ds) dv
0 —1

vm+1 cos v v=mr 1 b4 "
= d + — V" sinv - g(cosv) dv
[m+1(/:1 8&) E)]v_o 1 g( )
1 n
< —_ m+2 d 35
Sl g(cosv)dv, 3.5)
since sinv <v,0<v <.
Assume (3.4) holds for r = rgand any m = 0, 1, 2, ... . Another integration by

parts yields

It = / o ( f (cosv—é)’°g(§)d§> dv
0 -1
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vm+l cosv i
[ ([ e -eroa)]|

_ 1 b4 1 ]cosv B o )’
mill, v (_1 (cosv —§)°g(§)dE ) dv

v=n

R U ( / m(cosv—é)mg@)ds) dv, 3.6)
m+1 0 -1

where the prime denotes differentiation with respect to v.
From (3.2), we know that

ro _ ro—1
i ( [a-o g(&)ds) o [ W ee@as,

whence, for the derivative figuring in (3.6), we have

d cosv cosv
7 (/ (cosv — E)"’g(E)d§> = —ro/ (cosv —§)*'sinv - g(§)dE. (3.7)
-1 -1

Thus

| o / pmi / (cosv — &) 'sin vg(‘;‘)d‘g‘) dv
! m + 1 0 —1

Yo n 2 cos v 3 rom1
m+1f0 v </.1 (cosv —§) g(&)dé)dv

Yo

= m+2r

m+1 0
ro

m+1

IA

A

n
Mpi2s, / vt H2g (cos v) dv
0

Yo

= Mo Y20+ o (cos v) dv.
mt 1 +2.o/0 g( )

Hence (3.4) holds for r = ry + 1 and the lemma is proved.

The next lemma gives an estimate from below.

LEMMA 32 . Letm >0,r > 1,g € C[—1,1],g(z) > 0,—1 <z < 1. Then

n/2 cosv
Ty 1= / o ( / (cos v —5)"'g(s)ds) dv
0 -1

_ /2
>M,, v+ g(cos v) dv. (3.8)
0
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PROOF. We apply again inductionon r. If r = 1, integration by parts shows that

/2 cos v
T = / b ( [ g(&)d&) dv
0 -1
vm+l cosv v=n/2 1 /2
</ g(&) df) + —-—/ v™*!sin vg(cos v) dv
m+1\J_ o
2 m+1 0 2 /2
> (_7:"%— (/ g(E)df) + m'/o vm+2g(COS \))dl)
1

v0 m+1
2 2 +2
> m dv, 39
Z am T 1)/0 v g(cosv) dv (3.9)

since (2/m)v < sinv,0 < v < /2. Let(3.8) hold forr = rpandanym =0, 1,2, ...

Consider a2 o
It = / 1 (/ (cosv — S)’°g(§)d§> dv.
0 -1

Integrating by parts and using (3.7), we have

l)m-H cos v
Imrort = v (/ (cosv —5)’°g(5)dé)

m+1 1 i)

1 nf2 cos v ’
! ( / (cos v — e)"'g@)ds) dv

T m+1 1
_ (n/z)m+l ) o
_e (/_](O—E) g(S)th)

nf2 cosv
.. / y™+sinv ([ (cosv — E)°'g(&) d&) dv
m+1 0 ~1

i—/m pmt? (/W(cosu — gy (g)ds) dv
a(im+1) Jo -1 §

——2r0—7VI_ /m vt +2a(cos v) dv
ﬂ(m + 1) m+2,rp A

2"0 —_— 2
————— M2 HrotDAm 5 (cos v) dv. 3.10
T+ 1) +2.0/0 v g(cosv) (3.10)

v=m/2

v

\Y

This yields the claim of Lemma 3.2.

LEMMA 3.3. Let pandq € N, p > q. Then

™ (sin(nv/2))* P /"/2 (sin(nv/2))?
1]

~ dv ~ n¥ 1,
v4 ’ v "

0
Here, a, = b, if and only if a, = O(b,) and b, = O(a,).
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PROOF. See [15, p. 80].

LEMMA 34. Let n > 1, m(n) € NU {0} with cn < m(n) < ¢n for n > 2 and for
some constants c,c. Let A, : C[—1, 1] — Il be a sequence of linear algebraic
polynomial operators. Suppose that for A, we have the Timan-type estimate

14n(f.0) = fOl < con (£VT=/n,1/n2), ¥ <1,

Then for AT, the Telyakovskii-type estimate

AF0) = fOl < cor (£VT=x/n),  IxI=],
holds true.
PROOEF. See Cao and Gonska [12, Theorem 3].

LEMMA 3.5. Let n > 2 and ¢, < m(n) < ¢n for some constants ¢, ¢. Furthermore,
let Kiiy(v) = 0, and

@) 1= pimm =00,
(i) 3/2 =201 mm + 1/202mm = O(n™%).
Then, for all f € C[-1, 1],

G ¥) = @I S con (fVT=22/n),  Ixl=<1.

PROOF. See Cao and Gonska [8, Theorem 5.4).

4. Approximation by Boolean sums G ..
We start this section with the construction of certain kernels f,,‘s, j(v) upon which
the definition of shape preserving operators H, ; ; will be based.
Let & = cos(v). Starting from (1.4), we define

sn—n (aI'CCOS é’) s <Sin (n arccos §/2) ) 1 sn—s

Py sn—s k
sin (arccos £ /2) 2 + Z Pk sn—s COS(k arccos £).

k=1

Clearly K,_;(arccos &) € I;,_,.
For j € N, we define

Fn,:.j(z) =

5 | = K starecosra @
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to be a j-th antiderivative of K;,_;(arccos §); thus F, ; ; € I1,_,., and

_ sn—s+j
Fn,s.j(z) - TO.n.s,j + Tins,j 2 + -+ rsn—:+j,n,s.j 4 Jy
or

F,5.j(COSV) = Topsj + Tiins, COSV + -+ + Tp_spjns j(COS V), 4.2)

Normalizing yields the kernel

— Fns X
Fn,.r.j(v) = ”71' S5 (COS V) , (4.3)
[T F,,j(cost)dt

for which
1 "=
-/ F,,;j(v)ydv=1. 4.4)
T Jon

Furthermore, from (4.2) we have

Frs,j(V) = Ao+ Ans,jCOSV+ A2 COS2V 4 -+ Ay st COS(SR—5+ ).

4.5)
Since
1 "=
_/ Fn,:.j(v)dv= 1 =2')‘0,n.s,j’
T Jx
we have A, ,;; = % We denote the convolution-type operators (1.3) with kernel

F,.,(v)by H,, ;. Then

H,,;(1,x) = n-'/ F,,(vdv=1, (4.6)
and, from (4.5),
1 r* — .
Ains,j = ;/ coskvF, ;(v)dv, l<k<sn—s+]. “.7

The next lemma shows that the coefficients of cos v in (4.5) are sufficiently close
to 1.

LEMMA 4.1. Let j e Nands > j+2. Then

1 - A'I.n..v.j = 0[’1_2]-
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PROOF. From (4.6), (4.7), and (4.3), we have
1 77 —
1~ Ainsj = —f (1 —cosv)F,, (v)dv
T J_n

1 [ - F,, i(cosv
=L [0 —coswy | Zfrsilcosy)
T ), [7 Faj(cost)dt

1 4 v
T x 2Sin2_Fns'COS d
f_,, F, ; j(cosv)dv /:n y j(cosv)dv

< 1 7 V2F, j(cosv)dv

= . 4.8
-2 f_n F,; j(cosv)dv (4.8)
Using the inequality
—v <sinv, O0<v< E, 4.9)
T 2
we have, on the other hand,
2 [T V?F,, i(cosv)dv
1= Aypej > Jog V" Frs(c08 V) (4.10)

n? f_"ﬂ F, . (cosv)dv

Let N,,r = 1,2, ..., be positive constants independent of n. Write

/ F, s j(cosv)dy = 2/ F, s j(cosv)dv
_ 0

= .—2—/n(/cosv(cosv — &) 'K,,_s(arccos £) dE) dv
G—=D!Jo -1

= Rn,s.j-
Using Lemma 3.1 (for the case m = 0, r = j), we get

Rn,s,j < ﬂ
(-

=N, / VYK, (v)dv. 4.11)
0

/ v¥ K, _,[arccos(cos v)] dv
0

Using Lemma 3.2 (again for the case m = 0, r = j) we have

Rn,s,j Z 2.'M0,j
(- D!

n/2
/ v¥ K, _,[arccos(cos v)] dv
0

/2
=N, f VYK, (v)dv. 4.12)
0
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Define

n

s = viF, (cosv)dv

=

-

= 2/ Vv2F, ; j(cosv) dv
0

~G-D! .

Again, using Lemma 3.1, we derive
En.s,j < N3/ v2j+2Ksn—s(v) d‘)a
0

and using Lemma 3.2, we have
f— nf2 .
Rn.s,j = N4/ v21+2Ksn—x(U) dv.
0
Combining (4.8), (4.10), (4.11), (4.12), (4.13) and (4.14), we obtain

/ VIR (0) dv
0

I - )"l,n,s.j < NS 7/2
/ V¥ Kops (v) dv
0

and
/2 )
/ VK () d
0

1- A'l,n..s‘.j > NG T
f VIK,, (v) dv
0

By Lemma 3.3, we have

n m sin 22\ ¥
/ VIR, (v)dy = C,,J/ p2i+? (——3—) dv
0 0 sm 3

. 2s
™ (sin %) J
= —_—qaVv
n.s o p26—j=n
N Cpy - 0TIV s> 40
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[14]

(4.13)

4.14)

4.15)

(4.16)

4.17)
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Similarly,
nf2 . .
f VZ‘H-ZKSH—S(V)dV ~ Cn,s : n2(s-—j—l)—l’ § Z j + 2’ (418)
0
f Uzj KS"—s(V)dV ~ Cn,s ‘ nZ(S—j)_lv s Z .] + 1’ (419)
0
nf2 . .
f VYK (V) dv & Gy -7 s> 41 (4.20)
0

Combining (4.15) through (4.20), we obtain that if s > j + 2, then

p26—j-D-1 -
1 - }\.1'"_5‘1' ~ 7(5——])—]_ = O(n ). (4.21)
LEMMA 4.2. Let j e Nands > j + 3. Then
3 1 _
’2' - 2}\.1',,,5'_,' + Ekz‘"'” = 0()1 4).
PROOF. From (4.6), (4.7), and (4.3), we have
3 1 a2 1 —
3~ 21+ EAZ'"'S’j = 1—2cosv+ 5(1 +cos2v) | Fp,i(v)dv

= n"/ (1 —2cosv +cos?v) F,, j(v) dv

T
n

=x! (1 —cos v)zﬁ,,y,'j(v) dv

-

= / (1 —cosv)? | —= Fasj(cOS V) dv
— F, s j(cost)dt

-

f 4 sin* gF,,'S,j (cos v)dv
=1 . 4.22)
f F, (cosv)dv

-

From Lemmas 3.1 and 3.2, using a method similar to the proofs of (4.15) and (4.16),
we obtain

f VK, () dv
3 0

1
= =2 psj + 5)\2'"'” <N 7N
/ VYK, (v)dv
i}

7 , 4.23)
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as well as /2
/ vAH K (v)dvy
0

3 1
7~ 205+ 5)»2’,,,:_,' > Ng - (4.24)
| v Kamsrav
0
By Lemma 3.3 we have
n n : 2s
/ VK Wdv=C / p2ite SI_H(L/z) dv
0 n ™ Jo sin(v/2)
~C /” v2j+4___—(sin(nv/2))2’ dv
n,s o vz“
_ ™ (sin(nv/2))”
- Cn,: A v_—’2(:_j_2) dy
R Cps 0?7 5> 43 (4.25)
Similarly,
”/2 . .
/ VIHK (W) dv ~ C,, - n?¢7ITD7 s> j+3. (4.26)
0
From (4.19) and (4.20), we have
/ vzjK.Vl—S(v) dv = Cn,s ° n2(x—j)—l, s 2 j + 1, (4'27)
0
/2 ) )
/ VK () dv & C, s - 027D, s> j+1. (4.28)
0
Combining (4.23) through (4.28), we obtain the result that if s > j + 3, then
3 1 n2(&—j—2)-l ”
5~ 215, + EA-Z,n,s,j N e = on™).

The following Theorems 4.3 through 4.5 constitute the main results of this note.
Our first theorem deals with the quantitative and shape preserving properties of the
operators H, ; ; based upon the kernels _P_",,J, ; (recall (4.5) and its neighbourhood).
Note that shape, as expressed by i-convexity, is fully retained by the H,  ;, including
positivity. This will be different in Theorems 4.4 and 4.5.

THEOREM 4.3. Let j € N and s > j + 2. There exists a positive constant c; ; such
that, foreach f € C[—1, 1]and n > 1, the polynomial H, ; ;(f, -) € I1,,_.; satisfies
the inequality

n n?

Vi-x2 1
| f(x) = Hys i (f, X)) < €5 0 (f, Yy —) , x| < 1.
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Furthermore, if the function f is i-convex, then H, ;(f, ) is also i-convex, where
ie{0,1,...,j}

PROOF. For the convolution-type operators H, ;; with kemels F,, j = 0, using
Lemma 4.1 we have
1 _A-l,n,:,j =0 (H_Z) , s > ] +2

Lemma 1.2 implies the Timan-type estimate

VA 1
lf(x) "s](fX)I<C]sw|(f,‘——x+F), |XI51

n

Since H,; ; is a positive linear operator, we obtain for i = 0 that, if f > 0, then
H,; ;(f,-) = 0. Furthermore, from (1.2) and (4.3), (4.1) we have

H,;(f,x)= % [ﬂ f(cos u)fw(e —v)dv
= 77 ! / f(cosv)F, ; j[cos(® —v)]dv, (4.29)
/ F, s j(cosv)dv

s

where

Faas @ i= Ty [ (6 = 677 Koy arccos ) d.
Using (3.2) and (3.3), we have, for 1 <i < j — 1, the representations
di

e (2) =

T__ﬁ/“EV”QJmm9&>o

and .
J
dzi
It is known (see [21]) that

Al Fo, () = EQ ()R =0,

ns_l

F,; i(z) = Ksu_s(arccos z) > 0.

where h > 0and —1 < & < 1, whence F, ; ;(z) is i-convex. Lemma 1.3 then implies
that, if f is i-convex, thensois H,, ;(f,-) fori € {0, 1,..., j}.

From Theorem 4.3 we obtain Beatson’s Theorem B and also the results by Lorentz-
Zeller [25] and Shvedov [30] mentioned earlier.

Our next theorem shows that extra interpolation conditions at the endpoints can be
imposed. These will be achieved, however, at the expense of positivity. Note further
that the following theorem only requires s > j 2. This is in contrary to the condition
s > j + 3 needed in Theorem 4.5, and thus Theorem 4.4 is not a consequence of
Theorem 4.5.
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THEOREM 4.4. Let j € N and s > j + 2. Then there exists a positive constant ;
such that for all f € C[—1,1]1andn > 1,and H', .(f,") € Mnostjs

n,s,j

£ = H (0 < G (£, T=22/n)

Furthermore, if f is i-convex, then H; J( f,-) isi-convex, wherei € {1,..., j}.
PROOF. Since s > j + 2, we have
n<sn—s<sn—s+j<sn—s+s—2=sn—2<sn, n>2 s>3

From Theorem 4.3, we know that

V1 —x2? 1
If(-x) ns;(f X)I <C/swl ('f’—i-’-;’—;)’ |x! =< 1.

n

Using Lemma 3.4, we obtain

/1 — x2
IfO) —H (f, 0l <& (f, ——ni) x| < 1.

If f is i-convex, from Theorem 4.3 we find that H, ; ; (£, -) is i-convex as well. Since
H,;;(1,x) = 1and H,,; is a positive linear operator, using Lemma 2.2 we obtain
that H,', ;(f,-) is i-convex, too, where i € {1, ..., j}.

From Theorem 4.4 again Beatson’s Theorem B follows, but only fori € (1, ..., j}.
For j = 1, we get again an estimate as that of Lorentz and Zeller, and for j = 2 the
uniform one of Shvedov.

Our final theorem in this section is formulated in terms of the second order modulus
of smoothness.

THEOREM 4.5. Let j € N and s > j + 3. Then there exists a positive constant c;.g
such that for each f € C[—1,1]and n > 2, and “](f ) € Mgy,

1F0) = HE (f0l S geen (fVT=2/m), xS L.

Also, if f isi-convex, then H, .(f, -) isi-convex, too, where i € {1,..., j}.

nsj

PROOE. First, if f € C[—1, 1], then

Hn,s,j(f’ ) € nsn—s+j-
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Since s > j + 3, we have
n<sn—s+j<sn, n>2,s>4.

For the operators H, , ; based upon the kernels F,  j(v) > 0, using Lemmas 4.1 and
4.2 we have

1 - A-l,n,.v,j = O(n_2)1 s Z .] + 2’
% - 2)‘l,n.s.j + A-Z.n..v.j = 0(71_4), $ = j +3.

By Lemma 3.5, there exists a positive constant c;; such that for f € C[—1, 1] and
n=>2,

) = Hj(f01 S e (FVT=3n), Ixl < 1.

By Theorem 4.4, the cone of i-convex functions is invariant under H,,“fs‘ j» Where
iefl,...,j}
From Theorem 4.5 we again obtain Theorem B, where i € {1,...,j}. If j =1,

we obtain Theorem C, and for j = 2, Theorem 4.5 implies Theorem D and the earlier
uniform result by Shvedov [31, Theorem 1]. Furthermore, for the case j = 3, we
arrive at a refinement of another result by Shvedov [31, Theorem 2].

*
m(n)*

5. Concluding remark: approximation by Boolean sums G

In [7], we also investigated approximation properties of the Boolean sum

A*(f,x) = (A®L)f;x)
= A(f;x)+ L(fix) = (Ao L)(f;x) = A(f — Lf, x) + L(f, x).

In the applications given in [7] we had A = G ,,(») (based upon suitable kernels K,,(,),
and L was given as above.
If Gy = Has,j, with H, ; j as given in Section 4, then the Boolean sums H; . =

H,;; ® L have a degree of approximation and preserve the shape of a function as
indicated in the following theorem.

THEOREM 5.1. Let j € N and s > j + 2. There exists a positive constant c; ; such
thatforall f € C[—1,11,n > 1,and H*_ .(f,-) € N5y j,

ns,j
"f - H:.s,j(f’ )” =< Cj,.\'wZ (f, l/n) .
Furthermore, if f is i-convex, then HY, .(f,-) is i-convex, where i € {1, ..., j}.

https://doi.org/10.1017/50334270000010365 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000010365

232

Jia-ding Cao and Heinz H. Gonska [20]

Since we were only able to prove uniform inequalities involving w,(f, -) for the

operators H*

we do not give a proof here. Details are contained in the technical

ns,j?

report [13] available from the authors.
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