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On the gravity-driven shear flow of an ice-till mixture
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ABSTRACT. In this work, we formulate a model for the isothermal flow of a
(basal) ice—till mixture that is overlain by a layer of pure ice. Such a model is relevant
to the case of a glacier or ice sheet possessing a till at its base. T'o this end, ice is treated
as usual as a constant true-density, very viscous fluid, while till, which is assumed to
consist of sediment and bound (i.e. moving with the sediment) interstitial water, is also
assumed in a first approximation to behave as such a fluid. Since the mixture is
assumed isothermal, only the mass- and momentum-balance relations for till and ice
need be considered. To complete the model, no-slip and stress-free boundary
conditions are assumed at the base and free surface, respectively. By working with the
former conditions, we neglect the process of entrainment of sediment into the basal
layer, concentrating rather on its flow behaviour and thickness. The transition from
the till-ice mixture layer to the overlaying pure ice layer is idealized in the model as a
moving interface representing in the simplest case the till material boundary, at which
jump-balance relations for till and ice apply. As in the basal layer, till and ice are
assumed to interact mechanically at this interface. In the context of the thin-layer
approximation, numerical solutions of the lowest-order form of the model show that it
is predominantly the thickness of the basal (mixture) layer that is influenced by the

ice—till momentum interaction.

1. INTRODUCTION

Observations in borcholes drilled into glaciers to their
base (e.g. Engelhardt and others, 1978) have shown that,
close to the rock bed, the glacier ice is increasingly
contaminated by sediment. In the extreme case, a basal
layer consisting predominantly of sediment and bound
(i.e. moving with the sediment) water forms, representing
a so-called till, with up to approximately 85% till possible
(personal communication from G. Clarke), the remainder
consisting of ice, free water and/or possibly cavities. The
sediment part of this till is likely eroded from the basal
rock surface by the moving ice and incorporated into the
near-bottom ice as the glacier or ice sheet moves,
Assuming, on the scale of the entire base of a glacier or
ice sheet, that the free-water constituent is negligible, a
glacier or ice sheet can be idealized as consisting of a
relatively thick pure ice layer riding on top of a relatively
thin ice—till mixture layer at the base.

In general, the sediment part of the till consists of

various-sized particles (i.e. clay, silt, sand, gravel,
boulders and so on) which together constitute a granular
material. In the first approximation being treated in this
work, we ignore the (higher-order) eflects due to the
volume-fraction-gradient dependence of the dll stress
tensor and treat the till constituent as viscous. In other
words, the ellects of volume-fraction gradients and
friction between the sediment grains on the stress are
assumed negligible, something that is perhaps in fact not
very realistic for high sediment concentrations; on the
other hand, interstitial water could have a lubricating
eflect, such that the ellect of intergranular fricton is
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reduced. Note, in addition, that study of creeping flow of
soil containing various amounts of water has shown that
the assumption of viscous behaviour can account for
observed deformations both in the laboratory and in the
field (Hutter and WVulliet, 1985; Vulliet and Hutter,
1988a,bh). On this basis, we follow Hutter and others
(1994), and Svendsen and others (1995) in treating the
icetill system as a mixture of two constant true-density,
viscous fluids. In addition, we assume for simplicity that
this mixture is saturated, 1.e. the mixture volume is always
equal to that of tll plus ice in the mixture, i.e. no cavities
or voids arise during the flow. Analogous to the constraint
of constant density in a fluid, this constraint is maintained
by a pressure, the so-called saturation pressure.

Since the motion of the layer is extremely slow, Stokes’
flow is assumed. The till and ice momentum balances
reduce then to force balances between the constituent
stresses, gravitation and the momentum-exchange forces.
The boundary conditions at the base are assumed to be
no-slip for both constituents, while the free surface is
assumed to be stress free. As such, we neglect the process
of entrainment of sediment at the base into the flow and
concentrate on the mechanical aspects of the basal layer.
Since we are primarily interested at this point in the
mechanical behaviour and thickness of this layer, this
seems not unreasonable for simplicity in a [irst approx-
imation. In any case, the process of entrainment can be
incorporated into the model by working with jump
balance relations at the base of the mixture layer and will
be the subject of future work.

Assuming for simplicity that the sediment in the
system is conlined solely to the basal layer, the interface
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between the till and overlying pure ice moves with the till
material velocity and is non-material with respect to ice.
As such, the jump-balance relations for both till and ice
apply at this interface. In addition, as recognized by
Hutter and others (1994), ice and dll can interact
mechanically with each other at this interface, just as
they do via, e.g. drag forces in the bulk. The major
purpose of the current work is to investigate qualitatively
via numerical solution of the governing equations the
effect of this interface interaction between ice and tll on
behaviour and thickness of the basal
layer, modelled as a till ice mixture.

the mechanical

To begin, the governing field equations, along with
boundary and transition conditions, are formulated
(section 2). Next, a scaling analysis for gravity-driven
shear flow down an inclined curved surface is carried out
(section 3). Assuming that the geometry is slowly varying,
the governing equations are then simplified (section 3).
Lastly, numerical solutions of the lowest-order form of the
resulting model are obtained, and their implications for
the mechanical behaviour and thickness of the basal layer
are discussed (section 4,

2. GOVERNING EQUATIONS

Consider the isothermal flow of an ice-till mixture
overlain by a pure ice layer down an inclined plane
(Fig. 1). As discussed above, the lower layer is modelled
as a mixture of two very viscous, constant true-density
fluids; similarly, the upper layer is assumed to behave as a
very viscous, constant-density single [luid. In addition,

the lower mixture layer is assumed to be saturated, i.c.

v +rvr=1 (2.1)

holds, where 1/, represents the constituent volume fraction
(v = T, I for till and ice, respectively). In other words, we
assume that no “cavities” or “void™ can arise in this layer
during its flow. Defining v = vy, we then have vy = 1 — v,
Since the true density g, of each constituent is assumed

Fig. 1. Two-dimensional model geomelry. yg, y1. and yp
represent the pasitions of the base, interface and free surface
of the system as a function of x and t.
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constant, the corresponding partial density p, = v, pa
varies only with the tll volume [raction r. Assuming no
mass exchange between ice and till, the mass and
momentum balances for till and ice then take the forms

ah .
c)!/ + div(rvr) =0,
= %—{—div((l —v)u) =0,

divTr+prrvg+m=0,
divTi+p(l—v)g—m=0. (2.2)
Here, vt and vy represent the dll and ice velocities,
respectively; T and Ty the constituent partial stress
tensors and m the mechanical interaction force between
tll and ice. In the upper pure-ice layer, the governing
equations take the standard forms

dive; =0,
divTi+prg=0. (2.3)

where g is the vector of gravity acceleration. Note that
the till and ice mass-balance relations (2.2) 5, which
were originally evolution relations for the fiwo indepen-
dent variables pp = vy pr and py = 1 pr, respectively,
reduce Lo two equations in the two unknowns v and
Y, respectively, via the constant true-density assump-
tion, and further to two equations in ere unknown v in
the context of the saturation constraint (Equation
(2.1)). Consequently, this latter constraint leads to the
loss of an independent variable. Such a constraint is
analogous to the classical constant-density (“incomp-
ressibility™) constraint for a fluid, in which case the
mass density is lost as such a variable, to be “replaced™
by the pressure maintaining the constraint as a new
unknown. By analogy, in the current mixture context,
this new unknown pressure p replaces the volume
fraction lost via the saturation constraint (Equation
(2.1)) as an unknown in the model and maintains this
constraint. Hence, we refer to p as the saturation
pressure. As in the classical incompressible fluid case, p
enters the balance relations via the stress constitutive
relation; in additon, in the current mixture context,
the till-ice momentum interaction also depends on p
(see, e.g. Svendsen and Hutter, 1995, and below). As
such, (Equation (2.2)), which originally represented
cight equations in the eight unknowns pr, pr. vy and
v, become once again eight equations in eight
unknowns, i.e. v, p, vr and vy,

Since we are modelling ice and dll as viscous {uids,
the corresponding stress tensors take the forms

T, =—p.I+S,. (2.4)
where Lis the three-dimensional unit tensor, p, represents
the constituent (equilibrium) pressure and S, the viscous
(non-equilibrium) part of T,,. The constituent pressures
are related to the mixture saturation pressure p by the
constitutive assumption

J')(\ = h’”'}" (2.5)
in the context of Equation (2.1). Clearly, we have p; # pr
in general. Assuming the bulk viscosity of the till and ice
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constituents is negligible, we also have the usual form

Sn = lu Df (26)

1

for S, where D, is the symmetric part of the constituent
velocity gradient Vo, D; its deviatoric part and g, the
shear viscosity. Lastly, we assume that the interaction
force m takes an isotropic, linear form

m = my(l — v)v +m,(Vv) (2.7)

where v = vp — o1 is the difference velocity. As usual, the
coefficient m, is associated with drag interactions, and is
proportional to the inverse of the so-called Darcian
permeability. As for m,, it has the unit of pressure and
the simplest form m, = dp is taken here. As shown in the
general thermodynamic formulation of Svendsen and
Hutter (1993) for a mixture of isotropic visco-elastic
materials, this last coeflicient takes the usual form m, = p
(i.e. b = 1; e.g. MacKenzic, 1984) only when one assumes
that the mixture inner free energy” depends negligibly on
(in the current context) v, something that will not in
general be the case. Beyond this, Hutter and others (1994)
showed that, for such a choice (i.e. § = 1), there exist no
non-trivial solutions for the steady shear flow of a mixture
of two viscous fluids overlain by a single viscous fluid layer
in the context of a simple parallel-slab geometry.

The boundary conditions used in this work are as
follows:

The free surface y = yr(x,t) is assumed stress free, i.e.
Tin = 0, where n is the unit normal to the surface.

At the base y=yg(x,t), no-slip is assumed, ie.
v, = 0.

Since the upper layer contains no till, the interface
y =y, t) is material with respect to (ll, yielding the
kinematic condition

oy E)y])

+—ur —vr=0

ot | ox (2.8)

where u,, and v, represent the x and y components of
V.. The mass and momentum-jump conditions are

[p0(va —v1)] -0 =0,

n():{("'-’iE - 'U'[') g n} I[’U”ﬂ - [[T,,Hﬂ = Wau,

where Equation (2.9); was used to write Equation
(2.9)s, !Id)ﬂ =t —4~ (4 for the upper, pure-ice
layer, and — for the till-ice layer) and =g, represents a
constituent interaction force conceptually analogous
to m as given in Equation (2.7), but one on the interface
between the lower till-ice layer and the upper pure-ice
layer, rather than in the bulk. In the till case (@ = T),
the first term in Equation (2.9) vanishes; as for ice,
dimensional considerations show it to be negligible.
Consequently, we have

(2.9)

[To]n = —to, . (2.10)

In general, the sum of the constituent interface
momentum-exchange terms is zero, i.e. T + W]

* . . ~ . g
This is the part of the mixture free energy not
depending on diffusion.
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= 0, ensuring momentum balance in the mixture as
a whole at the interface.

The presence of @ non-zero constituent interface interaction
force @, in Equation (2.10) can be motivated as [ollows.
Consider a pillbox with its upper surface in the pure ice and
its lower surface in till-ice mixture, with both of these
surfaces parallel to the interface. Assume for simplicity a
state at rest with no shear stresses. Surface forces from the
pillbox sides can be ignored (or vanish in this simple casc
when the force balance in the direction of the pillbox
thickness is considered, which we do here for the sake of
simplicity). With the top as the + side, and the bottom as
the — side, Equations (2.4) and (2.10) then imply

(1-v)p —p" =w ice,

v p~ =wryp till;

p- —p' =0 mixture (2.11)
with @, = @, -n. Now, since p~ =p* follows from
Equation (2.11)3, and p* # 0, setting @, = 0 in Equation
(2.11)5 implies »~ = 0, i.e. no jump of till volume [raction

across the interface in this case. As such, for a given value of’
p~, Equation (2.11)5 couples the “magnitude” of the jump
in the till volume fraction (i.e. [¥] = v7) to that of the till
ice momentum-exchange interaction w, at the interface; in
particular, the larger the till-ice momentum exchange at
the interface, the larger the jump in dll volume [raction.
Conscquently, ©o, clearly defines the sharpness of the
interface between the till below and pure ice above, with
w, = 0 corresponding to no interface (in the sense of a
jump in the till volume fraction) at all. Observations (e.g.
Engelhardt and others, 1978) indicate that indeed the
interface between the pure ice above and the till below is
rather abrupt, or sharp; in other words, till is concentrated in
the basal layer. In any case, we would also expect @, # 0
on physical grounds; indeed, the steep gradient in the dll
volume fraction from the bottom to the top of the pillbox
induces mechanical interactions (forces) between the till
and ice which in the limit as the pillbox thickness goes to
zero become corresponding interface interactions which are
non-zero in general.

3. DIMENSIONAL ANALYSIS AND SIMPLIFICATION

In this section, we adapt the above balance and

constitutive relations to the two-dimensional, parallel-

sided slab idealization of a glacier or ice sheet dealt with

in this work (see Fig. 1). To this end, we work with the

following scalings:

W=L W=H [=T
[S1] = pr gH s,
[p] = prgH cosy,

[un] = Ua [U(.t] == Vu
[S1] = pr gH sin,
[ea] = = (8.1}
Here L, H,U,V and T represent a typical length,
thickness of the two-layer system, x velocity, y velocity
and time, respectively, chosen such that 7' = Lftir =
H/V.
Substituting Equations (3.1) into Equations (2.2)

(2.7), and introducing the thin-layer approximation € =
H/L < 1, we obtain the following non-dimensionalized


https://doi.org/10.3189/S0260305500013331

0.2

o

0.0

T
05
a volume fraction

0.0

0.2

o

0.0

T
0.1
c ice velocity

0.0

0.2

o

o
=]

T

0.9
e ice shear stress

0.8

Wau and others: Gravily-driven shear flowe of an ice—1ill mixture

o
(=]
o
=
= T = 7
0.8 0.9 1.0 14
b saturation pressure
o
o
G-
=
e T
0.00 0.25 0.50
d till velocity
£
(=]
0
>
4
. \
(=]
2y S =2
0.0 35 7.0

f till sheér stress

Fig. 2. Tl volume fraction (a), saturation pressure (b ), ice velocity (¢ ), till velocity (d), ice shear stress (¢) and till
shear stress (f), profiles with depth (all dimensionless) for three values of v~ i.e. v~ = 0.01 (curves with squares),
v~ = 0.1 (curves with cireles) and v— = 0.5 (curves with triangles). For these calculations, we chose H = 1000 m,
R=27,G=1,Gr=1, M=1 and Pr =1 (see text).

component forms of the model relations for the lower
mixture layer:
—ufy + (1 = 8)puy =Ry,
(L—#)py+ (1 —8)pyy=—(1-v),
Tsy = —[v+ Mv(l —v)u],
—(1—=v)4+RMu(l —v)u,
usy = 2G17r,

ury = 201

Ty =

(3.2)

to O(1) in =, where now, and in the rest of this work, a//
variables are non-dimensional. The notation f, indicates a
partial derivative of a quantity f with respect to 3. In
these last relations appear the non-dimensional quantites
R = pr/pr, M = m U/ prgsiny, Gr = H prgsiny/utU
and G, = H?pigsinv/U; furthermore g : = Igl; in add-
ition, we have introduced 7, = Sﬂ-f'r} (for more details, see
Hutter and others, 1994). Similarly, the boundary
conditions from Equations (2.8)—(2.10) become

at iy = e (s t) s =0 and m=0,; {(3:3)
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at y=yple;t) 1 iy =0 and 9, =0, (3.4)
at y=wuz,t): p =p*, 7 = Qrwss
vp = PT W8y » 1'-[r = TIH = Q] Wiz » (35)

with Q¢ = vp/pr gH siny, Q) = v1/p1 gH siny and Pr =
vr/p1 gH cosy. The dimensionless equations in the upper
layer are

a=—1, fg=-1, by=2m, (3.6)
from which we obtain
ply)=-(y—1), =y =-(y-1),
u(y) =w(l) - Gl-y)?* (37

where yp =1 and the boundary conditions (3.2) were
used. From Equations (3.5)2, we infer that if the till
volume fraction ¥~ does not vanish, the interface till-ice
interaction force wg, in the y direction must differ from
zero. In the next section, these quantities are prescribed
effect the and mechanical
behaviour of the basal layer is quantitatively investigated

and their on thickness

in some simple cases.
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4. NUMERICAL SOLUTIONS AND DISCUSSION

The relations (3.2);5 can be rewritten in the forms
(1-6)pr,=(1-R(l-v),
py=—-1+(1-R)v, (4.1)

representing two coupled equations in two unknowns v
and p. In addition, restricting attention for simplicity to
the case of constant viscosities, i.e. G, = constant,
Equations (3.2)3_ can be combined to obtain the single

relation

wyy = 2[Gi(1 — v) — Grv] — 2Mu(1 —v)(1 + R)u (4.2)

for w = wp — wy. Ity is given, we can integrate the first
two equations containing only # and p numerically with
the boundary conditions (3.5);3. From Equations
(3.2)56, (3.2)24 and (3.7)2, there follows u,~ =1 —yy at
the interface. The relation (4.2)3 together with the
boundary conditions u, =1—y and u(yg) =0 con-
stitutes a two-point boundary-value problem, which can
be solved numerically using a shooting technique. The
shear stress 7, is then obtained via numerical integration
of Equations (3.2)3,; with Equations (3.5)o4 and the
solutions of w and 1. Finally, the velocity u, is obtained
by integrating Equations (3.2)5 with Equation (3.4). It
is reasonable to assume continuity of the ice velocity
through the interface, i.e. uy =u; as the kinematical
relation at the interface, which can be used to determine
y1 via a predictor-corrector method. Giving an initial

value for yi, we calculate u;~, w1 and compare them. If

their difference is not sufliciently small, we correct y; and
repeat the computation until the difference |u; — up"|
becomes negligible.

For the numerical solutions, we chose H = 1000 m,

R=217, Gr=1,0py=1, M = Land Py =1; the first of

these is an appropriate order-of=magnitude value for the
thickness of an ice sheet and the other values are chosen
for simplicity. In particular, note that Gp /Gy = R pu/per.
so that these assumptions correspond to assuming that the

viscosity of the “granular™ till is about three times that of

ice. Further, we assume that ws,, @, and @y, are
negligible for simplicity and focus on ws,, which is
prescribed. Equation (3.5)3 allows the till volume fraction
v~ at the interface to be evaluated. Since 1 & 0.85 at the
base is the largest physically reasonable value (personal
communication from G. Clarke), yg = y(r=0.85) is
numerically determined in our computations.

As shown by Hutter and others (1994), one obtains
only trivial solutions of Equations (4.1) when 6 = 1, i.e. a
single-layer, single-constituent “mixture.” Svendsen and
others (1995) investigated the eflects of varying 6 lor
v~ =0 on the till volume fraction, pressure, shear stress
and velocity profiles in a single-layer mixture model for a
glacier or ice sheet. In particular, they showed that the
most realistic till volume-fraction profiles arise for the case
6 = 0.95. Here, we use this value of 6 and vary v~, which
is tantamount to varying s, in the context of Equation
(3.4)2, and it is easier to implement numerically. In
particular, we look at the cases v~ = 0.01, 0.1 and 0.5; the
effects of this on the vertical profiles for till volume
fraction. saturation pressure, ice velocity, till velocity, ice

1 3
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shear stress and till shear stress in the lower part of the
two-layer system (0 < y < 0.1) are shown in Figure 2a .
The most significant aspect of these results is the wpper
extent of each curve. which marks the interface positeon in the lwo-
layer system. Indeed, varying v~ does not alter significantly
the form of the profiles, 1.e. the qualitative behaviour of
the solution, nor even their quantitative values, but
rather the lower till-layer thickness. Looking, for exam-
ple, at the till volume-fraction profiles in Figure 2a, we see
that, with increasing v~. i.e. an increasingly sharper
interface, the lower till layer becomes thinner. Comparing
this trend with interface values p~ of p shown in Figure 2b
(upper lefthand values on each curve), which increases
with 27, as well as with Equation (3.4),, implies that g,
is also increasing with decreasing basal-layer thickness.
Consequently, the stronger the till-ice interactions at the
mixture-ice interface, the thinner and sharper the
resulting basal layer. From the quantitative point of
view, the effect of varying v, and so @s,, on the fields is
most noticable in the case of the saturation pressure (Fig.
2b) and shear stresses (Iig. 2¢ and f); indeed, these
increase with increasing basal-layer thickness (at a given
depth in the layer) and so indirectly with increasing till
ice momentum exchange.

One of the main purposes of the current work is to
investigate the effect of till-ice interaction processes, both
in the bulk, as represented by m in Equation (2.7), as
well as on the mixture-ice interface, as represented by @,
in Equation (2.10), on the “geometry™ of the wwo-layer
system and, in particular, on the distribution of till in this
system. From an observational point of view, it is exactly
this latter aspect, i.e. the distribution of till in the system,
that is most well-known. As shown in this and previous
work, the bulk and interface momentum interaction
between tll and ice has a dramatic mfluence on this
distribution, as well as on the thickness of the basal layer.
The next step is to extend these considerations towards a
more detailed model of the rheology and dynamic
behaviour of the basal layer itself, taking in particular
ice—till (and perhaps more importantly, free-water—till)
interactions into account,
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