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1. Introduction

Within five minutes of the start of my first meeting with Bernhard
Neumann as his research student, late in 1954, he suggested the following
problem to me. Let G be a group in which the cardinals of the classes of
conjugate elements are boundedly finite with maximum n, say. Then the
commutator subgroup G' is finite [6]. Is the order \G'\ of G' bounded in
terms of »? I distinctly recall these words of Neumann: "That should provide
us with a start, I think". He was right: more than just a start, the problem
has been a continuing stimulus to a study of questions in fields as far
apart as permutation group theory ([7], [11], [12], [14], and some un-
published work of Peter M. Neumann) and multiplicator theory ([13], [2]),
as well as attracting interest in its own right.

That the answer is in the affirmative was not hard to establish. In my
M.Sc. thesis [10] I gave a very bad estimate, and there are some improve-
ments in [11], [5] and [14]. In the first of these articles I formulated the
conjecture that

(1.1) |G'| ̂  nH
1+Mn»

in all cases, with X{n) denoting the number of (not necessarily distinct)
prime divisors of n. The resolution of this problem seems to be a task of
quite non-trivial difficulty. The best that is known up to now is an un-
published result of Peter M. Neumann, who has proved that

\G'\ ^ w9<">,

where q is a named function quadratic in log. Peter Neumann's calculations
for finite />-groups are to appear in this journal [8], and they represent an
important step forward. Perhaps even more satisfying is the result embodied
in the Ph. D. thesis [1] of Iain M. Bride, which states that (1.1) is correct
for nilpotent groups of class 2. The satisfaction comes from the fact that the
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only known groups for which the bound in (1.1) is actually attained are
themselves nilpotent of class 2 - apart from'cases where n is prime (see [11]).
Thus one believed that groups of class 2 are likely to be the worst behaved
of all groups (counting a tendency to defeat a long-cherished conjecture as
bad behaviour!), whereas Bride's grooming calls them to order. Experience
suggests that the further a group is from nilpotency, the smaller is its derived
group relative to the size of its largest conjugacy class; equally, the harder
this becomes to establish as a general truth.

Recently I have seen how a very simple application of the elegant work
of Gaschutz, Neubiiser and Ti Yen [2] on the multiplicator proves that our
conjecture is true for a finite p-group provided that its generating number
d is small in comparison with the size p? of its largest conjugacy class.
Details are in §3; the main content is that for each d, only finitely many
values of ft can possibly defeat (1.1).

2. Multiplicators of finite p-groups

We shall follow the notation of [2] for certain numerical invariants of
a finite p-gxonp P. The multiplicator M(P) has order pml~p> and the commu-
tator subgroup has order pk{P). The size of the largest conjugacy class of P
is pb(P), so that for finite ^-groups, conjecture (1.1) becomes

(2.1) k(P)^ib(P)(b(P) + l).

Peter Neumann proves in [8] that

k(P) ^ b{P)2.

The number b(P) is called the breadth of P (see [3], [8]) and has important
connections with the nilpotency class of P ([3], [4]). Finally, d(P) is the
generating number of P.

Our considerations are based on the following three results:

2.2 (Schur [9]). Let A be a central subgroup of the finite group G. Then
G' n A is isomorphic with a subgroup of M (GjA).

2.3 (Ibid.) Let P be an abelian p-group of type

(Pai,pa*, • • -,pa') with OLX ^ <x2 < • • • ̂ a r .
Then

m(A) = ar_1 + 2ar_2H h(^-l)«i-

2.4 (Gaschutz, Neubiiser and Ti Yen [2]). For any finite p-group P
with centre Z,

m(P) ^m{PIP')+k(P)(d(PIZ)-l).

From these last two results it is but a small step to:
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LEMMA 2.5. Let P be a d-generator group of order p'. Then

m(P) g \(d—l){2s—d).

PROOF. Set k(P) = A and suppose that PjP' is of type

(pa*,pa*, • • •,j^") with 0 < aj ^ a2 g • • • ^ ad.

Then by 2.3 and 2.4,

w(P) ^ (i-l)a1+(i-2)aa-f- • • • +xa_1+k{d-l).

Since tx.1+a.2+ • • • -\-xd-\-k = s and each a,- is positive, it follows that

m(P) g (rf-l)s-a8-2a,, ( i -2)a d _ 1 - ( i - l )a d

as required.
The bound given by the lemma is attained whenever s — d(P), that is,

when P is elementary; but I have no idea how far it is from the truth when
d (P) is less than s. Clearly, the bound can be attained only if PjP' is elemen-
tary abelian. One outcome of 2.5 is that the multiplicator of a two-generator
group of order ps has order strictly less than ps. I have not met this result
anywhere, and it seems worth noting.

{To digress for a moment, it is of course the case that the multiplicator
of a two-generator ^-group P may need many generators, even though it is
smaller than P. For instance, let G be a two-generator ^>-group such that
the last non-trivial term A of its lower central series needs many generators,
I say. By 2.2, A is isomorphic with a subgroup of M(GjA), and so this group
needs at least I generators. A suitable G would be the free group of rank 2
of a variety of metabelian nilpotent groups of high nilpotency class and
high ^>-power exponent.}

3. Commutator subgroups

Let P be a finite ^-generator ^>-group with centre Z, and set b(P) = /S
for short. Evidently \PjZ\ S.pfid, so that

(3.1) \P'ZjZ\ ^ ^ - 2 .

A careful application of Lemma 2.5 now shows that

m(PjZ) g \(d-l) (20d-d),
so that, from 2.2,

(3.2) \P' n Z\ <^
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Putting (3.1) and (3.2) together, we get that

k{P) ̂  pd-2+${d-l){2dp-d).

This means that P satisfies (1.1) provided that

2{pd-2)+(d-l){2dp~d) ^
that is, whenever

P2+P{l-2d2)+d2-d+4: ^ 0.

It is not hard to see that this inequality holds provided that /S ^ 2d2—l;
for d = 2, /? ^ 6 will do it.

In the two-generator case, I have more or less checked, using ad hoc
arguments, that the conjecture is correct for /? = 2, 3.1 prefer not to reproduce
these arguments here, for they are tedious and would intrude a note of non-
sinplicity in an otherwise very easy discussion. The conjecture was confirm-
ed for p = 1 in [11]. The cases /3 = 4, 5 prove to be annoyingly more compli-
cated, and I have failed to make much headway. The case /J == 5 would
probably yield to a sustained combinational attack; for instance one
knows that any 2-generator counterexample P of breadth 5 is such that
\P\Z\ = p10, k{PjZ) = 8, 8 ̂  m{P\Z) g 9. But this is by the way.

To sum up:

THEOREM 3.3 Let P be a finite d-generator p-group. Then

provided that b(P) 2: Id2 — 1; for d = 2 this inequality is satisfied whenever
b{P) ^ 6.

Added in proof. Bride's theorem is to appear in this Journal in his
paper "Second nilpotent BFC groups".
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