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Abstract

A unified theory of continuous and certain non-continuous functions is proposed and developed.
The proposed theory encompasses in one the theories of continuous functions, upper (lower)
semicontinuous functions, almost continuous functions, c-continuous functions, c*-continuous
functions, s-continuous functions, 1-continuous functions, //-continuous functions, and the
e-continuous functions of Klee.
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closed.

1. Introduction

In recent years there has been an awakening of interest in results dealing with
discontinuous functions and operations. Moreover, the notions of certain
non-continuous functions seem natural in connection with the mathemati-
cal modelling of certain physical problems, where there is strong empirical
evidence of a weaker form of the continuity of a function, though its full-
continuity cannot be tested experimentally (see [1], [8]).

The author wishes to thank Professor E. E. Grace for pointing out that this approach includes
the e-continuous functions of Klee [7].
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Various types of non-continuous functions occur in the literature which
have been extensively studied by several authors from different viewpoints.
Certain of these non-continuous functions have properties similar to those
of continuous functions and their theories run, either in part or in whole,
parallel to the theory of continuous functions. Further, analogies inherent in
their definitions, as well as the nature of results obtained in the process of
their study, suggest the need of formulating a unified theory, including the
theory of continuity and its generalizations. The purpose of this paper is an
attempt leading towards the fulfillment of this need.

In Section 2 of this paper we introduce the notion of a /"-continuous
function, which leads to the formulation of a coherent unified theory of con-
tinuity and certain variants of continuity. Basic properties of P-continuous
functions are studied in Section 4. In Section 5, sufficient conditions on do-
main and/or range are obtained which imply the continuity of P-continuous
functions. The results obtained in the process unify and improve scores of
results in the literature pertaining to continuous functions and certain classes
of non-continuous functions.

2. A unified theory

Throughout the paper, P will denote a property, not necessarily topolog-
ical, possessed by certain subsets of a topological space. In particular, for
example, P may denote any one of the following properties: the property
of being a (regularly) closed set; the property of being a 5-closed set (128],
[40]); the property of being a (regularly) open set; the property of being a
regularly closed set; the property of being a zero set; the property of hav-
ing complement of diameter at least e (e > 0 is a real number and the
space under consideration is assumed to be a metric space); the property of
being //-closed (referred to as absolutely closed in [2]) or quasi //-closed
([32], [35]); compactness; countable compactness; the Lindelof property; and
connectedness. It may be observed that the first five properties mentioned
in the above list are not necessarily preserved under topological embeddings
and the sixth is not a topological invariant, while the last four properties are
well-known continuous invariants.

In the sequel that follows, we shall note that corresponding to each property
mentioned in the above paragraph, there corresponds a concept like conti-
nuity in the literature, which in general is weaker than the usual concept of
continuity.
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DEFINITIONS 2.1. Let X be a topological space and let A c X. We say
that

(i) A is a P-set if A possesses property P, and
(ii) A has P-complement if X - A possesses property P.
DEFINITIONS 2.2. Let / : I - » 7 be a function from a topological space

X into a topological space Y. Then / is said to be
(i) P-continuous if for each x e X and each open set V containing f(x)

and having P-complement there is an open set U containing x such that
f(U)cV;

(ii) a semi P-function if for each closed P-set K c Y, f ' (K) is a closed
P-set; and

(iii) a weak semi P-function if for each closed P-set K c Y, f~X(K) is
closed.

Several authors have studied semi P-functions for a particular property
P . For example, while Lee [14], Jones [6] and Long [15] have studied semi
P-functions for P-equal to connectedness, Mathur [24] and Noiri [30] in-
troduced semi P-functions for P equal to the property of being a <5-closed
set and when P is the property of being a zero set the corresponding semi
P-functions are considered in [38]. Moreover, it turns out that in general the
concepts of a continuous function and a semi P-function are independent
of each other and either of them is a weak semi P-function. However, a
weak semi P-function need not be either continuous or a semi P-function
(see [9, page 175]). Further, we shall see that the concepts of a P-continuous
function and a weak semi P-function coincide (Theorem 3.1).

Rayburn [33] has studied continuous mappings between Tychonoff spaces
which pull back hard sets to hard sets. Continuous mappings, which pull
back compact sets to compact sets, occur frequently in the literature and
are of significance in both topology and analysis. Yet another point which
may be advanced in favour of semi P-functions is that, in contrast to P-
continuous functions, the composition of two semi P-functions is again a
semi P-function, and hence their study from a categorical viewpoint seems
useful.

Tables 1 and 2 below illustrate the type of P-continuity and the type of
semi P-function induced by a property P . References are quoted as an aid
to the literature of the corresponding non-continuous function. However, no
claim is made to completeness or originality of the source.

3. Basic properties of P-continuous functions

In this section we study basic properties of P-continuous functions. It
turns out that the proofs of the main results pertaining to P-continuous

https://doi.org/10.1017/S1446788700029906 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029906


350 J. K. Kohli [4]

functions are not so very different from those in the classical case of con-
tinuity. Hence, in the sequel, we shall omit the proofs of some results and
include only those which are necessary for the clarity and continuity of the
presentation.

TABLE 1

1.

2(a).

2(b).

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Property P

the property of being
a closed set

the property of being a
regularly closed set

the property of being
a J-closed set

compactness

countable compactness

the property of being
quasi //-closed

the property of being a
regularly closed
compact set

connectedness

the Lindelof property

the property of having
complement of diameter
> e (here the space is
assumed to be a metric
space)

the property of being
an open set

the property of being
a zero set

being a ray (—oo, a],
a e R (here Y = R)

Type of /"-continuous
function

continuous function

almost continuous
function

almost continuous
function

c-continuous function

c*-continuous function

//-continuous function

almost c-continuous
function

5-continuous function

/-continuous function

e-continuous function

mildly continuous
function

z-continuous
function

lower semicontinuous
function

References

[16, 29, 25, 26, 36]

[16, 19,25,26, 36]

[3, 18,21,27]

[21,31]

[17,29]

[5, 27]

[9, 12, 34]

[13]

[7, 8, 29]

[37]

[38]
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TABLE 2

1.

2.

3.

4.

Property P

connectedness

the property of being
a (5-closed set

the property of being
a closed set

the property of being
a zero set

Type of semi P-function

semiconnected function

^-continuous function

continuous function

z-continuous function

References

[6, 14, 15]

[24, 30]

[38]

THEOREM 3.1. Let f: X —» Y be a function from a topological space X
into a topological space Y. The following statements are equivalent.

(a) / is P-continuous.
(b) If V is an open subset of Y having P-complement, then f~\v) is

an open subset of X.
(c) / is a weak semi P-function.
(d) For each x e X and each net {xa} which converges to x, the

net {f(xa)} is eventually in each open set containing f(x) and having P-
complement.

COROLLARY 3.2. Let P denote a property possessed by all singletons in a
topological space and let f: X —> Y be P-continuous and injective. If Y is
Tx, then so is X.

REMARK 3.1. Since every singleton in a T,-space is closed, compact and
connected, Corollary 3.2 includes [18, Theorem 3] and [9, Corollary 2.2].

THEOREM 3.3. Suppose P is a property possessed by all singletons in a
topological space and let f: X —* Y be a P-continuous, closed function from
a normal space X onto a space Y. If either of the spaces X and Y is T{,
then Y is Hausdorff.

PROOF. In view of closedness of the function / , in either case, we may
assume that the space Y is Tx. Let y{ and y2 be any two distinct points
in Y. Then {>>,} and {y2} are closed P-sets in Y so that by Theorem 3.1,
f~\yl) and f~' (y2) are closed subsets of X. By normality of X, there are
disjoint open sets U{ and U2 containing f~i(yl) and f~l(y2), respectively.
Since / is closed, the sets V{ = Y - f(X-Ux) and V2 = Y - f(X- U2) are
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open in Y. It is easily verified that F, and V2 are disjoint and contain yx

and y2 respectively. Thus Y is Hausdorff.

REMARK 3.2. The substitution of compactness for P in Theorem 3.3
yields [18, Theorem 4] on c-continuous functions and the substitution of
connectedness for P gives [9, Theorem 2.3] pertaining to s-continuous func-
tions.

REMARK 3.3. There is a continuous open mapping of a subset of the plane
onto a non-Hausdorff 7^-space (see [9, Remark 2.1]). Thus, Theorem 3.3 is
false with 'closed' replaced by 'open'. Moreover, the identity mapping of an
infinite indiscrete space onto the same set endowed with the cofinite topology
shows that the hypothesis of P-continuity is essential in Theorem 3.3.

DEFINITION 3.1 [20]. A function / : X -> Y is said to have a strongly
closed graph in case for each (x, y) £ G(f) there are open sets U and V
containing x and y respectively, such that U x V is disjoint from G(f).

THEOREM 3.4. Let / : X —> Y be P-continuous and let Y be a Hausdorff
space such that Y possesses a base of closed P-neighbourhoods. Then f has
a strongly closed graph.

PROOF. Let (x, y) be any point of X x Y which does not lie in the graph
of / . Then f(x) ^ y. Since Y is Hausdorff, there are disjoint open sets
Vl and V2 containing f{x) and y, respectively. By hypothesis on Y, there
exists a closed P-neighbourhood V of y which is contained in F2. By
Theorem 3.1, f~l(V) is closed in X and does not contain x. Since / is
P-continuous, there is an open set U such that x s U c X - f~1(V) and
such that f(U)cY -V. Then U x W contains (x, y), where W = int V
and U x W is disjoint from G(f). Thus G{f) is strongly closed in X x Y.

REMARK 3.4. Theorem 3.4 contains several known results in the literature.
For example, with P being countable compactness, it gives an improved ver-
sion of [21, Theorem 3.2]; with P being //-closed it yields an improved
version of [17, Theorem 8] and for P being connectedness it reduces to
[9, Theorem 2.6]. Similarly, for P being compactness it yields [27, Theo-
rem 3.4], and if P is the property of being regular closed, it gives a sufficient
condition for an almost continuous function to have a strongly closed graph.

THEOREM 3.5. Let P denote a finitely productive property and let f: X —*
Y be a function from a topological space X into a topological space Y such
that the graph function is P-continuous. If X possesses property P, then f
is P-continuous.
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PROOF. Let x € X and let V be an open set containing f(x) such that
Y - V is a P-set. Then p~x{V) is open in X x Y. Since each of the
spaces X and Y - V have property P and since P is finitely productive,
X x(Y -V) = X xY -p~\V) possesses property P. Thus p~l(V) is an
open set in X x Y having P-complement. Therefore, by P-continuity of g,
there is an open set U containing JC such that g(U) c p~l(V). It follows
that py(g(U)) = f(U) c V, so / is P-continuous.

REMARK 3.5. Theorem 3.5 contains several known results in the literature.
For example, with P being compactness (respectively connectedness) it gives
[18, Theorem 9] (respectively [9, Theorem 2.7]). Similarly, the substitution
of quasi //-closed for P in Theorem 3.5 yields an improved version of
Theorem 3.12 of Noiri [29] where X is required to be compact.

REMARK 3.6. We do not know whether the converse of Theorem 3.5 is
true. In particular, it is not known whether the converse of Theorem 3.5
holds for P being compactness or connectedness (see [9], [18]).

THEOREM 3.6. Let f: X —• Y be any function.
(a) If f is P-continuous and A c X, then f\A: A —• Y is P-continuous.
(b) If {Ua: a 6 A} is an open cover of X and if for each a, fa = f\Ua is

P-continuous, then f is P-continuous.
(c) If {Fg: p e B) is a locally finite closed cover of X and if for each /?,

fn = f\F« is P-continuous, then f is P-continuous.

REMARK 3.7. Theorem 3.6 includes several known results in the literature.
For example, with P being connectedness it gives [9, Theorem 2.8], for P
being compactness it yields an assertion which improves Theorems 2 and 4 of
Gentry and Hoyle [3], and the substitution of the property of being regular
closed for P yields Theorems 2.6, 3.7 and 2.8 of Singal and Singal [36].
Similarly, with P the property of being quasi //-closed we get Theorems 4
and 6 of Long and Hamlett [17] and with P the property of being a closed
set, we get well-known classical results pertaining to continuous functions.

THEOREM 3.7. Iff:X-*Y is continuous and f:Y^Z is P-continuous,
then g o / : X —> Z is P-continuous.

PROOF. Let A" be a closed P-subset of Z . By Theorem 3.1 g~l(K) is
closed and since / is continuous, (g o f)~l(K) = f~\g~l{K)) is closed in
X.

REMARK 3.8. In general the composition of a P-continuous function
f:X—*Y and a continuous function g: Y —> Z need not be P-continuous
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(see for example [9, Remark 2.2], [3, Example 3] and [17, Example 2]). Thus,
in particular, the composition of P-continuous functions may fail to be P-
continuous.

REMARK 3.9. Theorem 3.7 yields [3, Theorem 3], [9, Theorem 2.9] and
[17, Theorem 5] respectively on substituting compactness, connectedness and
the property of being a quasi //-closed set, for P, respectively. Further, the
substitution of the property of being a closed set in Theorem 3.7 for P yields
the fact that the composition of continuous functions is continuous and the
substitution of the property of being a regularly closed set for P gives the
corresponding result for almost continuous functions.

THEOREM 3.8. Let f: X —> Y be a quotient mapping. Then a function
g: Y —> Z is P-continuous if and only if g o f is P-continuous.

REMARK 3.10. The substitution of connectedness for P in Theorem 3.8
yields [9, Theorem 2.10] pertaining to ^-continuous functions. If P is the
property of being a closed set, then one gets the well-known result that a
function out of a quotient space is continuous if and only if its composition
with the quotient mapping is continuous. Similarly, the substitution of the
property of being a regularly closed set for P yields an assertion which gen-
eralizes Theorem 2.5 of Singal and Singal on almost continuous functions
[36].

4. Continuity of P-continuous functions

In this section we obtain sufficient conditions on the domain or the range
(or both) to imply continuity of P-continuous functions, which in particular
yields sufficient conditions for continuity of almost continuous functions,
c-continuous functions, c* -continuous functions, //-continuous functions,
.s-continuous functions and many other non-continuous functions. First we
quote the following definition from [22].

DEFINITION 4.1. A topological space X is called a saturated space if any
intersection of open sets in X is itself an open set equivalently, every point
of X possesses a minimum neighbourhood.

THEOREM 4.1. Let X be a saturated space and suppose Y possesses a
base of closed P-neighbourhoods. If f: X —> Y is P-continuous, then f is
continuous.
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PROOF. Let x e X and let V be an open subset of Y containing f(x).
By hypothesis on Y, there is a P-neighbourhood U of f{x) such that
U = V c V. Let y e Y - U. Again, by hypothesis on Y, there is a closed
P-neighbourhood U of y such that U n U' — 0 . Thus Y -U is an open
set containing / (x ) and having P-complement. Since / is P-continuous,
there is an open set N containing x such that f(N) c Y - U . Let
N = (~){Ny: y G Y — U}. Now, JV contains x and since X is a saturated
space, N is open. Clearly, f{N) c U c V and hence / is continuous.

REMARK 4.1. The substitution of compactness (respectively connected-
ness) for P in Theorem 4.1 gives [3, Theorem 7] (respectively [9, Theo-
rem 2.11]). Similarly, the substitution of the property of being quasi H-
closed for P in Theorem 4.1 yields the corresponding result pertaining to
//-continuous functions.

DEFINITION 4.2. A topological space X is called a semilocally P-space if
for each x € X and each open set U containing x there is an open set
V such that x € V c U and X — V is the union of finitely many disjoint
closed /"-sets.

It is obvious that the notion of a semilocally P-space is a simultaneous
abstraction of the concepts of a semilocally connected space and a semiregular
space.

THEOREM 4.2. If f: X -* Y is P-continuous and if Y is a semilocally
P-space, then f is continuous.

PROOF. Let x e X and let V be an open neighbourhood of f(x) = y
in Y. Since Y is a semilocally P-space, there is an open set N c V
containing y and such that Y — Ny consists of a finite number of closed

P-sets 5 , , S2, . . . , Sn . For each k = 1,2, ... ,n, f~\Sk) is a closed
set by Theorem 3.1. Therefore, \J"k=l f~

x{Sk) = A is a closed subset of X
and does not contain any point of f~ (y). So, U — X — A is an open set
containing x and f(U) — N c V. Thus / is continuous.

REMARK 4.2. Theorem 4.2 includes several results in the literature and
has many important implications. For example, with P being connected-
ness Theorem 4.2 and Theorem 3.1 give Theorem 9 of Sanderson [34] and
Theorem 2.12 of Kohli [9], which in turn includes a result of Lee [14] (and
Long [15]) pertaining to semiconnected functions. Similarly, the substitu-
tion of regular closed for P in Theorem 4.2 yields Theorem 2.4 of Singal
and Singal [36].
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THEOREM 4.3 [11]. Let f: X —> Y be a closed (or an open) connected
monotone function into a T^-semilocally connected space Y. Then f is
continuous.

PROOF. It is easily verified that for a closed connected subset K of Y,
f~l(K) is closed and connected. Now, with P being connectedness and from
Theorem 3.1, we have / is P-continuous and so in view of Theorem 4.2, /
is continuous.

REMARK 4.3. Theorem 4.3 generalizes Theorems 1 and 7 of Hagan [4]
and also includes Corollary 2 of Long [15].

THEOREM 4.4. Let f: X -> Y be a bijection such that both f and f~l

are P-continuous. If X and Y are semilocally P-spaces, then f is a home-
omorphism.

THEOREM 4.5. Let f: X —• Y be a P-continuous function from a first
countable space X into a countably compact Hausdorff space Y which pos-
sesses a base of closed P-neighbourhoods. Then f is continuous.

PROOF. Suppose / is not continuous at a point x € X. Then there is an
open neighbourhood V of f(x) such that, for every open set U containing
x, /(£/) is not contained in V. Let t/, D C/2 D I/3 D • • • be a countable base
at x and choose xn € Un such that /(*„) £ V . Then xn —> x and since Y
is countably compact and since countable compactness is closed hereditary,
the sequence {/(*„)} has a cluster point y e Y - V . Since Y is Hausdorff,
there are disjoint open sets F, and V2 such that f(x) eV{cV and y e V2 .
Since there is a closed P-neighbourhood W of y such that W c V2 , Y - W
is an open set having a P-complement. Now, if U is any open set containing
x, there is Un c U and a point xn e Un such that f(xn) e W, due to the
fact that the sequence {/(.*„)} clusters at y . Consequently f{U) £ Y -W.
This contradicts the fact that / is P-continuous.

REMARK 4.4. The above theorem yields [12, Theorem 2.1] and [18, Theo-
rem 12] respectively, on substituting connectedness and compactness for P,
respectively.

Finally, we suggest that the approach of this paper be compared with the
work of Sanderson [34] on non-continuous functions and Magrel's paper [23]
on continuous and measurable selections.
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