This is a ``preproof'' accepted article for *Canadian Mathematical Bulletin* This version may be subject to change during the production process. DOI: 10.4153/S000843952510091X

Canad. Math. Bull. Vol. **00** (0), 2020 pp. 1–8 http://dx.doi.org/10.4153/xxxx © Canadian Mathematical Society 2020

A classification of incompleteness statements*

Henry Towsner and James Walsh

Abstract. For which choices of $X, Y, Z \in \{\Sigma_1^1, \Pi_1^1\}$ does no sufficiently strong X-sound and Y-definable extension theory prove its own Z-soundness? We give a complete answer, thereby delimiting the generalizations of Gödel's second incompleteness theorem that hold within second-order arithmetic.

1 Introduction

Gödel's second incompleteness theorem states that no sufficiently strong consistent and recursively axiomatized theory proves its own consistency. We give an equivalent restatement here:

Theorem 1.1 (Gödel) No sufficiently strong Π_1^0 -sound and Σ_1^0 -definable theory proves its own Π_1^0 -soundness.

A theory is Π_1^0 -sound (or, in general, Γ -sound) if all of its Π_1^0 theorems (Γ theorems) are true. This notion can be formalized in the axiom systems we consider (see Definition 2.1).

A recent result [5] lifts Gödel's theorem to the setting of second-order arithmetic, where stronger reflection principles are formalizable:

Theorem 1.2 (Walsh) No sufficiently strong Π_1^1 -sound and Σ_1^1 -definable theory proves its own Π_1^1 -soundness.

Note that this latter theorem applies to all Σ_1^1 -definable theories and not just to the narrower class of Σ_1^0 -definable theories.

There are three classes of formulas in the statement of Theorem 1.2, leading to eight variations one could consider, including the original. In this paper we consider the other seven. Table 1 records the truth-values of the statement: *No sufficiently strong X-sound and Y-definable theory proves its own Z-soundness.*

To place the Xs on Table 1 we show how to give appropriately non-standard definitions of arbitrarily strong sound theories. Theorem 1.2 places the first \checkmark on the table;

²⁰²⁰ Mathematics Subject Classification: 03F35, 03F40.

Keywords: Proof theory, incompleteness, second-order arithmetic, reflection principles.

^{*}Thanks to Hanul Jeon for discussion. Thanks to an anonymous referee for many helpful suggestions. Thanks, in particular, for discovering an error in an earlier draft and for suggesting the simple proof of Theorem 2.8, which we have included. The first author was partially supported by NSF Grant DMS-2054379.

for this a "sufficiently strong" theory is any extension of Σ_1^1 -AC₀. For the second \checkmark a "sufficiently strong" theory is any extension of ATR₀.

Both \checkmark s can be placed on the table via relatively simple reductions to Gödel's original second incompleteness theorem. However, in [5], it was emphasized that the first \checkmark (i.e., Theorem 1.2) can be established by a self-reference-free (indeed, diagonalizationfree) proof, which is desirable since applications of self-reference are a source of opacity. In particular, the first \checkmark can be established by attending to the connection between Π_1^1 -reflection and central concepts of ordinal analysis. To place the second \checkmark on the table we forge a connection between provable Σ_1^1 -soundness and a kind of "pseduoordinal analysis." Whereas Π_1^1 -soundness provably follows from the well-foundedness of a theory's proof-theoretic ordinal, we show that Σ_1^1 -soundness provably follows from the statement that a certain canonical ill-founded linear order lacks *hyperarithmetic* descending sequences. In this way, we provide a proof with neither self-reference nor diagonalization of yet another analogue of Gödel's second incompleteness theorem.

2 The Proofs

2.1 Simplest Cases

We begin by placing the first four Xs on the table.

Definition 2.1 When Γ is a set of formulas, we write $\operatorname{RFN}_{\Gamma}(U)$ for the sentence stating the Γ -soundness of U (i.e. reflection for formulas from Γ):

$$\operatorname{RFN}_{\Gamma}(U) := \forall \varphi \in \Gamma(\operatorname{Pr}_{U}(\varphi) \to \operatorname{True}_{\Gamma}(\varphi)).$$

Here True_{Γ} is a Γ -definable truth-predicate for Γ -formulas. For the complexity classes that we consider this truth-predicate is available already in the system ACA₀.

For $\Gamma \in {\Sigma_1^1, \Pi_1^1}$, we let $\widehat{\Gamma}$ be the dual complexity class. The following result is an immediate consequence of this definition:

	X	Y	Ζ
√ × ×	$ \begin{array}{c} \Pi_1^1 \\ \Pi_1^1 \\ \Sigma_1^1 \end{array} $	$\Sigma^1_1 \ \Pi^1_1 \ \Pi^1_1$	$\Pi_1^1\\\Pi_1^1\\\Pi_1^1$
X X X	Π_1^1 Σ_1^1 Π_1^1 Σ_1^1	$ \begin{array}{c} \Sigma_1^1 \\ \Sigma_1^1 \\ \Pi_1^1 \\ \Sigma_1^1 \end{array} $	$ \begin{array}{c} \Sigma_1^1 \\ \Sigma_1^1 \\ \Sigma_1^1 \\ \Sigma_1^1 \end{array} $
✓	Σ_1^1	Π_1^1	Σ_1^1

Table 1: Truth values of the statement: No sufficiently strong X-sound and Y-definable theory proves its own Z-soundness.

Proposition 2.1 Provably in ACA₀, for $\Gamma \in {\Sigma_1^1, \Pi_1^1}$, *T* is Γ -sound if and only if $T + \varphi$ is consistent for every true $\widehat{\Gamma}$ sentence φ .

Theorem 2.2 Let $\Gamma \in {\Sigma_1^1, \Pi_1^1}$. For any sound and arithmetically definable theory S, there is a sound and Γ -definable extension T of S such that $T \vdash \text{RFN}_{\Gamma}(T)$.

Proof We define $U := S + \Sigma_1^1 - AC_0$. Then we define:

$$T(\varphi) := U(\varphi) \wedge \operatorname{RFN}_{\Gamma}(U)$$

That is, $\varphi \in T$ if and only if both $\varphi \in U$ and $\operatorname{RFN}_{\Gamma}(U)$.

Then Σ_1^1 -AC₀ \vdash $T = \emptyset \lor (T = U \land \operatorname{RFN}_{\Gamma}(U))$. Thus, reasoning by cases, Σ_1^1 -AC₀ \vdash RFN_{Γ}(T). Since $T = U \supseteq \Sigma_1^1$ -AC₀, $T \vdash \operatorname{RFN}_{\Gamma}(T)$.

To see that T is Γ -definable, note that U is Γ -definable and that $RFN_{\Gamma}(U)$ has an arithmetic antecedent and a Γ consequent.

Finally, note that *T* is just *U*, whence it is sound.

Remark 2.3 In the proof of Theorem 2.2, we use the Σ_1^1 choice principle only if $\Gamma = \Sigma_1^1$. Indeed, to infer that $\operatorname{RFN}_{\Sigma_1^1}(U)$ is Σ_1^1 , we must pull the positively occurring existential set quantifier from $\operatorname{True}_{\Gamma}(\varphi)$ in front of a universal number quantifier. If $\Gamma = \Pi_1^1$, it suffices to define U as $S + \operatorname{ACA}_0$, since $\operatorname{RFN}_{\Pi_1^1}$ has a finite axiomatization in ACA₀.

2.2 Intermediate Cases

We can resolve two more cases with a subtler version of the proof of Theorem 2.2. First, we recall the following useful lemma.

Lemma 2.4 For T extending ACA₀, RFN_{$\hat{\Gamma}$}(T) does not follow from any consistent extension of T by Γ formulas.

Proof Suppose $T + \gamma \vdash \operatorname{RFN}_{\widehat{\Gamma}}(T)$ with $\gamma \in \Gamma$. Then $T + \gamma \vdash \operatorname{Pr}_{T}(\neg \gamma) \rightarrow \neg \gamma$. Hence $T + \gamma \vdash \neg \operatorname{Pr}_{T}(\neg \gamma)$, i.e., $T + \gamma \vdash \operatorname{Con}(T + \gamma)$. So $T + \gamma \vdash \bot$.

The following theorem adds two more Xs to our table.

Theorem 2.5 Let $\Gamma \in {\Sigma_1^1, \Pi_1^1}$. For any sound and arithmetically definable theory U, there is a $\widehat{\Gamma}$ -sound and $\widehat{\Gamma}$ -definable extension of U that proves its own Γ -soundness.

Proof Consider the following formulas:

$$\varphi(x) := x = \lceil \operatorname{RFN}_{\Gamma}(U) \rceil \lor x = \lceil \neg \operatorname{RFN}_{\widehat{\Gamma}}(U + \operatorname{RFN}_{\Gamma}(U)) \rceil$$
$$\tau(x) := U(x) \lor \left(\operatorname{RFN}_{\widehat{\Gamma}}(U + \operatorname{RFN}_{\Gamma}(U)) \land \varphi(x) \right)$$

Let *T* be the theory defined by τ .

Claim T is $\widehat{\Gamma}$ -definable via τ .

By inspection.

Claim T is $\widehat{\Gamma}$ -sound.

Since U is sound, $U + \operatorname{RFN}_{\Gamma}(U)$ is sound, so $\operatorname{RFN}_{\widehat{\Gamma}}(U + \operatorname{RFN}_{\Gamma}(U))$ holds, and therefore externally, we see that T is the theory:

$$U + \operatorname{RFN}_{\Gamma}(U) + \neg \operatorname{RFN}_{\widehat{\Gamma}}(U + \operatorname{RFN}_{\Gamma}(U)).$$

In particular, *T* has the form $U' + \neg \operatorname{RFN}_{\widehat{\Gamma}}(U')$ where *U'* is sound. Suppose that $U' + \neg \operatorname{RFN}_{\widehat{\Gamma}}(U') \vdash \sigma$ where σ is false $\widehat{\Gamma}$. Then $U' + \neg \sigma \vdash \operatorname{RFN}_{\widehat{\Gamma}}(U')$. So $\operatorname{RFN}_{\widehat{\Gamma}}(U')$ follows from a consistent extension of *U'* by Γ formulas, contradicting Lemma 2.4.

Claim $T \vdash \operatorname{RFN}_{\Gamma}(\tau)$.

From our external characterization of T we see that

 $T \vdash \neg \operatorname{RFN}_{\widehat{\Gamma}}(U + \operatorname{RFN}_{\Gamma}(U)).$

Hence *T* proves that τ defines the theory *U*. Again, appealing to our external characterization of *T*, *T* \vdash RFN_{Γ}(*U*). Thus, *T* \vdash RFN_{Γ}(τ).

2.3 Limitations

The presentation τ of theory T defined in Theorem 2.5 is clearly somewhat pathological, in part because T cannot discern the identity of τ . Before continuing to the final case, we want to illustrate that such pathologies are inevitable. We use a proof technique suggested at the end of [5].

Proposition 2.6 Let T be a Γ -definable extension of Σ_2^1 -AC₀ that proves Theorem 1.2 and Theorem 2.8. Suppose that there is a Γ presentation τ of T such that T proves RFN_{$\widehat{\Gamma}$}(τ). Then both of the following hold:

- (1) There is a theorem A of T such that $T \vdash \neg \tau(A)$.
- (2) There is a Γ presentation τ^* of *T* such that *T* proves $\neg \text{RFN}_{\widehat{\Gamma}}(\tau^*)$.

Proof Suppose that each of the following holds:

- (1) *T* is definable by a Γ formula τ ;
- (2) T extends Σ_2^1 -AC₀;
- (3) *T* proves Theorem 1.2 and Theorem 2.8;
- (4) T proves the Γ -soundness of τ .

Let σ be a sentence axiomatizing Σ_2^1 -AC₀. We have assumed $T \vdash \sigma$. We also have that $T \vdash \operatorname{RFN}_{\widehat{\Gamma}}(\tau)$. Let A_1, \ldots, A_n be the axioms of T that are used in the T-proof of $\sigma \land \operatorname{RFN}_{\widehat{\Gamma}}(\tau)$. Thus:

$$\vdash (A_1 \wedge \cdots \wedge A_n) \to (\sigma \wedge \operatorname{RFN}_{\widehat{\Gamma}}(\tau)).$$

Claim $T \vdash \tau(A_1 \land \cdots \land A_n) \to \neg \operatorname{RFN}_{\widehat{\Gamma}}(\tau).$

Reason in *T*. Suppose $\tau(A_1 \land \cdots \land A_n)$. Then τ extends $\Sigma_2^1 - AC_0$ and τ proves $\operatorname{RFN}_{\widehat{\Gamma}}(\tau)$. Since τ is a Γ formula, Theorem 1.2 (if $\Gamma = \Sigma_1^1$) or Theorem 2.8 (if $\Gamma = \Pi_1^1$) entails that τ is not $\widehat{\Gamma}$ -sound.

Since $T \vdash \operatorname{RFN}_{\widehat{\Gamma}}(\tau)$, the claim implies that $T \vdash \neg \tau(A_1 \land \cdots \land A_n)$.

On the other hand, consider $\tau^{\star}(x) := \tau(x) \lor x = \lceil A_1 \land \cdots \land A_n \rceil$. Note that τ^{\star} is a Γ definition of T. Yet we have just shown that $T \vdash \neg \operatorname{RFN}_{\widehat{\Gamma}}(\tau^{\star})$.

Remark 2.7 Note that in the proof we need only assume that T extends Σ_2^1 -AC₀ if $\Gamma = \Pi_1^1$. If $\Gamma = \Sigma_1^1$, it suffices to assume that T extends Σ_1^1 -AC₀ since Theorem 1.2 applies to extensions of Σ_1^1 -AC₀. Likewise, we need not assume that T proves *both* Theorem 1.2 and Theorem 2.8. It suffices to assume that T proves Theorem 1.2 (if $\Gamma = \Sigma_1^1$) or that T proves Theorem 2.8 (if $\Gamma = \Pi_1^1$).

2.4 Hardest Case

The only remaining case is the dual form of Theorem 1.2:

Theorem 2.8 No Σ_1^1 -sound and Π_1^1 -definable extension of ATR₀ proves its own Σ_1^1 -soundness.

First we give a short proof that was discovered by an anonymous referee:

Proof Let *T* be a Σ_1^1 -sound and Π_1^1 -definable extension of ATR₀ that proves its own Σ_1^1 -soundness. Let Φ be the (conjunction of) the finitely many statements used in the proof (assume that a single sentence axiomatizing ATR₀ is among them). The sentence $\Phi \in T$ is true Π_1^1 . Hence, $\Phi + \Phi \in T$ is consistent and $\Phi + \Phi \in T \vdash \text{RFN}_{\Sigma_1^1}(T)$. By running this same argument inside $\Phi + \Phi \in T$, we conclude that $\Phi + \Phi \in T \vdash \text{Con}(\Phi + \Phi \in T)$. Yet $\Phi + \Phi \in T$ is a consistent and finitely axiomatized extension of ATR₀, which contradicts Gödel's second incompleteness theorem.

Note that a dual version of this proof also establishes Theorem 1.2.

For the rest of this section we will give an alternate proof. In [5], Theorem 1.2 was proved using concepts from ordinal analysis. In short, a connection is forged between Π_1^1 -soundness and well-foundedness of proof-theoretic ordinals. Since we are now interested in Σ_1^1 -soundness, we forge an analogous connection between Σ_1^1 -soundness and *pseudo-well-foundedness*, where an order is pseudo-well-founded if it lacks hyperarithmetic descending sequences.

For the rest of this section assume that T is a Σ_1^1 -sound and Π_1^1 -definable extension of ATR₀. In what follows, PWF(x) is a predicate stating that x encodes a recursive pseudo-well-founded order (that is, a linear order with no hyperarithmetic decreasing sequence). A universal quantifier over Hyp can be transformed into an existential set quantifier in the theory ATR₀ (Theorem VIII.3.20 of [4]). It follows that the statement PWF(x) is T-provably equivalent to a Σ_1^1 formula.

We will define \prec_T to hold on pairs (e, α) where $e \in \text{Rec}$ and $\alpha \in dom(\prec_e)$. We define $(e, \alpha) \prec_T (e', \beta)$ to hold if

there is some $f \in \text{Hyp}$ so that $\text{Emb}(f, \prec_e \upharpoonright \alpha + 1, \prec_{e'} \upharpoonright \beta)$ and $T \vdash \text{PWF}(\prec_{e'})$.

Here we write $\prec_e \upharpoonright \alpha + 1$ for the restriction of the relation \prec_e to $\{\gamma \in dom(\prec_e) \mid \gamma \preceq_e \alpha\}$.

To prove that $T \nvDash \operatorname{RFN}_{\Sigma_1^!}(T)$ it suffices to check that $T \vDash \operatorname{RFN}_{\Sigma_1^!}(T) \to \operatorname{PWF}(\prec_T)$ and that $T \nvDash \operatorname{PWF}(\prec_T)$. Let's take these one at a time.

Claim $T \vdash \operatorname{RFN}_{\Sigma^1}(T) \to \operatorname{PWF}(\prec_T)$.

Proof Reason in *T*. Suppose \neg PWF(\prec_T). That is, there is a hyp descending sequence f in \prec_T . Let $f(n) = (e_n, \beta_n)$. Thus we have:

$$\forall n \ (e_{n+1}, \beta_{n+1}) \prec_T (e_n, \beta_n)$$

By the definition of \prec_T , this is just to say:

$$\forall n \exists g \in \text{Hyp Emb}(g, f(n+1), f(n)).$$

where we abuse notation to write Emb(g, f(n + 1), f(n)) for $\text{Emb}(g, \prec_{e_{n+1}} \upharpoonright \beta_{n+1} + 1, \prec_{e_n} \upharpoonright \beta_n)$ to emphasize the role of f in the statement.

The formula Emb(g, f(n+1), f(n)) is Σ_1^1 in the parameter f; this is an application of Σ_1^1 -AC₀, which is a consequence of ATR₀ [4, Theorem V.8.3].

ATR₀ proves that Hyp satisfies Σ_1^1 choice, and therefore proves

$$\exists g \in \text{Hyp } \forall n \text{ Emb}(g_n, f(n+1), f(n)).$$

Note that g is technically a set encoding the graphs of the countably many functions g_n in the usual way.

Using arithmetic comprehension, we form the composition g_{\star} of the functions encoded in $g-g_{\star}(0) = g_0(\beta_1), g_{\star}(1) = g_0(g_1(\beta_2))$ and so on. The function g_{\star} is a hyp descending sequence in \prec_{e_0} , so \prec_{e_0} is not pseudo-well-founded. Since $f(1) \prec_T f(0)$, we also have $T \vdash \text{PWF}(\prec_{e_0})$. Recall that $\text{PWF}(\prec_{e_0})$ is a Σ_1^1 claim. Hence, $\neg \text{RFN}_{\Sigma_1^1}(T)$.

Before addressing the second claim, let's record a dual form of Rathjen's formalized version of Σ_1^1 bounding [3, Lemma 1.1].

Lemma 2.9 Suppose H(x) is a Π_1^1 formula such that

 $ATR_0 \vdash \forall x (H(x) \rightarrow PWF(x)).$

Then for some $e \in \text{Rec}$, $ATR_0 \vdash PWF(e) \land \neg H(e)$.

Remark 2.10 Note that the dual form of Lemma 2.9 has a diagonalization-free proof (with ACA₀ in place of ATR₀) [5, Lemma 4.22]. Kreisel noted (as discussed by Harrison [2, pp. 527–529]) that when a proof can be formalized in Σ_1^1 -AC₀, then the proof of the dual result (where all quantifiers are restricted to Hyp) is also valid. This is a proof in ATR₀ since ATR₀ proves that Hyp satisfies Σ_1^1 -AC₀. Since the proof of [5, Lemma

4.22] is somewhat involved, we produce here an alternate proof of Lemma 2.9 that incorporates some diagonalization, though we emphasize that diagonalization is not strictly necessary.

Proof [2, Theorem 1.3] implies that PWF (the set of pseduo-well-founded recursive linear orders) is Σ_1^1 -complete; note that Harrison does not use self-reference or any other form of diagonalization in his proof, which is the mere application of Kreisel's aforementioned trick (Remark 2.10) to the proof that well-foundedness is Π_1^1 -complete for recursive linear orders. Hence, there is a total recursive function {*k*} such that:

$$\neg H(n) \iff \mathrm{PWF}(\{k\}(n))$$

Since the reduction of Π_1^1 predicates to O can be carried out in ACA₀, *a fortiori* it can be carried out in Σ_1^1 -AC₀. When we restrict all quantifiers to Hyp we thereby get a proof of the dual result for O^* , which is the set of notations for recursive linear orderings with no hyperarithmetic descending sequences introduced in [1]. Hence

$$ATR_0 \vdash \neg H(x) \leftrightarrow PWF(\{k\}(x)).$$

By the recursion theorem and the S-m-n theorem, there is an integer e so that ATR_0 proves that $\forall i[\{e\}(i) \simeq \{\{k\}(e)\}(i)]$ (where \simeq means that if either side converges then both sides converge and are equal). Working in ATR_0 , $\neg PWF(e)$ implies $\neg PWF(\{k\}(e))$, which implies H(e), which implies PWF(e), which is a contradiction. So $ATR_0 \vdash PWF(e)$. (Not that this implies $e \in Rec$ by the definition of PWF(e).)

Similarly, H(e) implies $\neg PWF(\{k\}(e))$, which is equivalent to $\neg PWF(e)$, which we have already ruled out. So $ATR_0 \vdash \neg H(e)$.

Claim $T \nvDash PWF(\prec_T)$.

Proof Suppose that *T* proves $PWF(\prec_T)$. From the definition of \prec_T , it follows that:

$$T \vdash (\exists f \in \operatorname{Hyp} \operatorname{Emb}(f, \prec_x, \prec_T)) \to \operatorname{PWF}(\prec_x).$$

The formula $\exists f \in \text{Hyp Emb}(f, \prec_x, \prec_T)$ consists of an existential hyp quantifier before a Π_1^1 matrix (the matrix is Π_1^1 since \prec_T refers to provability in T and T is Π_1^1 -definable). Hence, there exists a Π_1^1 formula $\pi(x)$ such that:

$$ATR_0 \vdash \pi(x) \leftrightarrow \exists f \in Hyp Emb(f, \prec_x, \prec_T).$$

By Lemma 2.9, there is some e so that

$$ATR_0 \vdash PWF(\prec_e) \land \neg \pi(e).$$

Hence $ATR_0 \vdash \neg \exists f \in Hyp \ Emb(f, \prec_e, \prec_T)$. Moreover, since ATR_0 is sound, we infer that $\neg \exists f \in Hyp \ Emb(f, \prec_e, \prec_T)$ is true.

On the other hand, since T extends ATR_0 , we infer that $T \vdash PWF(\prec_e)$. Hence the map $\alpha \mapsto (e, \alpha)$ is a canonical hyp embedding of \prec_e into \prec_T . So $\neg \exists f \in$ Hyp $Emb(f, \prec_e, \prec_T)$ is false after all. Contradiction.

It follows from the claims that $T \nvDash \operatorname{RFN}_{\Sigma_1^1}(T)$, which completes the proof of Theorem 2.8.

References

- S. Feferman and C. Spector, Incompleteness along paths in progressions of theories. J. Symbolic Logic 27 (1962), 383–390.
- [2] J. Harrison, Recursive pseudo-well-orderings. Trans. Amer. Math. Soc. 131 (1968), 526-543.
- [3] M. Rathjen, The role of parameters in bar rule and bar induction. J. Symbolic Logic 56 (1991), 715–730.
- [4] S.G. Simpson, Subsystems of Second Order Arithmetic. Cambridge University Press, 2009.
- [5] J. Walsh, An incompleteness theorem via ordinal analysis. J. Symbolic Logic 18 (2024), 80–96.

Department of Mathematics, University of Pennsylvania e-mail: htowsner@math.upenn.edu.

Department of Philosophy, New York University e-mail: jmw534@nyu.edu.

8