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A classification of incompleteness
statements∗

Henry Towsner and James Walsh

Abstract. For which choices of 𝑋,𝑌 , 𝑍 ∈ {Σ1
1 , Π

1
1 } does no sufficiently strong 𝑋-sound and

𝑌-definable extension theory prove its own 𝑍-soundness?We give a complete answer, thereby delim-
iting the generalizations of Gödel’s second incompleteness theorem that hold within second-order
arithmetic.

1 Introduction

Gödel’s second incompleteness theorem states that no sufficiently strong consistent
and recursively axiomatized theory proves its own consistency. We give an equivalent
restatement here:

Theorem 1.1 (Gödel) No sufficiently strong Π0
1-sound and Σ

0
1-definable theory proves its

own Π0
1-soundness.

A theory is Π0
1-sound (or, in general, Γ-sound) if all of its Π

0
1 theorems (Γ theorems)

are true. This notion can be formalized in the axiom systemswe consider (see Definition
2.1).

A recent result [5] lifts Gödel’s theorem to the setting of second-order arithmetic,
where stronger reflection principles are formalizable:

Theorem 1.2 (Walsh) No sufficiently strong Π1
1-sound and Σ

1
1-definable theory proves its

own Π1
1-soundness.

Note that this latter theorem applies to all Σ1
1-definable theories and not just to the

narrower class of Σ0
1-definable theories.

There are three classes of formulas in the statement of Theorem 1.2, leading to eight
variations one could consider, including the original. In this paperwe consider the other
seven. Table 1 records the truth-values of the statement: No sufficiently strong 𝑋-sound
and 𝑌-definable theory proves its own 𝑍-soundness.

To place the ✗s on Table 1 we show how to give appropriately non-standard defini-
tions of arbitrarily strong sound theories. Theorem 1.2 places the first ✓ on the table;
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2 H. Towsner and J. Walsh

for this a “sufficiently strong” theory is any extension of Σ1
1-AC0. For the second ✓ a

“sufficiently strong” theory is any extension ofATR0.
Both ✓s can be placed on the table via relatively simple reductions to Gödel’s orig-

inal second incompleteness theorem. However, in [5], it was emphasized that the first
✓(i.e., Theorem 1.2) can be established by a self-reference-free (indeed, diagonalization-
free) proof, which is desirable since applications of self-reference are a source of opacity.
In particular, the first ✓can be established by attending to the connection between
Π1
1-reflection and central concepts of ordinal analysis. To place the second ✓ on the

table we forge a connection between provable Σ1
1-soundness and a kind of “pseduo-

ordinal analysis.” Whereas Π1
1-soundness provably follows from the well-foundedness

of a theory’s proof-theoretic ordinal, we show thatΣ1
1-soundness provably follows from

the statement that a certain canonical ill-founded linear order lacks hyperarithmetic
descending sequences. In this way, we provide a proof with neither self-reference nor
diagonalization of yet another analogue of Gödel’s second incompleteness theorem.

2 The Proofs

2.1 Simplest Cases

We begin by placing the first four ✗s on the table.

Definition 2.1 When Γ is a set of formulas, wewriteRFNΓ (𝑈) for the sentence stating
the Γ-soundness of𝑈 (i.e. reflection for formulas from Γ):

RFNΓ (𝑈) := ∀𝜑 ∈ Γ
(
Pr𝑈 (𝜑) → TrueΓ (𝜑)

)
.

Here TrueΓ is a Γ-definable truth-predicate for Γ-formulas. For the complexity classes
that we consider this truth-predicate is available already in the systemACA0.

For Γ ∈ {Σ1
1,Π

1
1}, we let Γ̂ be the dual complexity class. The following result is an

immediate consequence of this definition:

Table 1: Truth values of the statement:No sufficiently strong 𝑋-sound and 𝑌-definable
theory proves its own 𝑍-soundness.

𝑋 𝑌 𝑍

✓ Π1
1 Σ1

1 Π1
1

✗ Π1
1 Π1

1 Π1
1

✗ Σ1
1 Π1

1 Π1
1

✗ Π1
1 Σ1

1 Σ1
1

✗ Σ1
1 Σ1

1 Σ1
1

✗ Π1
1 Π1

1 Σ1
1

✗ Σ1
1 Σ1

1 Π1
1

✓ Σ1
1 Π1

1 Σ1
1
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A classification of incompleteness statements 3

Proposition 2.1 Provably inACA0, for Γ ∈ {Σ1
1 ,Π

1
1},𝑇 is Γ-sound if and only if𝑇 +𝜑

is consistent for every true Γ̂ sentence 𝜑.

Theorem 2.2 Let Γ ∈ {Σ1
1,Π

1
1}. For any sound and arithmetically definable theory 𝑆, there

is a sound and Γ-definable extension 𝑇 of 𝑆 such that 𝑇 ⊢ RFNΓ (𝑇).

Proof We define𝑈 := 𝑆 + Σ1
1-AC0. Then we define:

𝑇 (𝜑) := 𝑈 (𝜑) ∧ RFNΓ (𝑈)

That is, 𝜑 ∈ 𝑇 if and only if both 𝜑 ∈ 𝑈 and RFNΓ (𝑈).
Then Σ1

1-AC0 ⊢ 𝑇 = ∅∨
(
𝑇 = 𝑈 ∧RFNΓ (𝑈)

)
. Thus, reasoning by cases, Σ1

1-AC0 ⊢
RFNΓ (𝑇). Since 𝑇 = 𝑈 ⊇ Σ1

1-AC0, 𝑇 ⊢ RFNΓ (𝑇).
To see that 𝑇 is Γ-definable, note that 𝑈 is Γ-definable and that RFNΓ (𝑈) has an

arithmetic antecedent and a Γ consequent.
Finally, note that 𝑇 is just𝑈, whence it is sound. ■

Remark 2.3 In the proof of Theorem 2.2, we use theΣ1
1 choice principle only if Γ = Σ1

1 .
Indeed, to infer that RFNΣ1

1
(𝑈) is Σ1

1 , we must pull the positively occurring existential
set quantifier from TrueΓ (𝜑) in front of a universal number quantifier. If Γ = Π1

1 , it
suffices to define𝑈 as 𝑆 +ACA0, since RFNΠ1

1
has a finite axiomatization inACA0.

2.2 Intermediate Cases

We can resolve twomore cases with a subtler version of the proof of Theorem 2.2. First,
we recall the following useful lemma.

Lemma 2.4 For 𝑇 extendingACA0, RFNΓ̂
(𝑇) does not follow from any consistent exten-

sion of 𝑇 by Γ formulas.

Proof Suppose 𝑇 + 𝛾 ⊢ RFN
Γ̂
(𝑇) with 𝛾 ∈ Γ. Then 𝑇 + 𝛾 ⊢ Pr𝑇 (¬𝛾) → ¬𝛾. Hence

𝑇 + 𝛾 ⊢ ¬Pr𝑇 (¬𝛾), i.e., 𝑇 + 𝛾 ⊢ Con(𝑇 + 𝛾). So 𝑇 + 𝛾 ⊢ ⊥. ■

The following theorem adds two more ✗s to our table.

Theorem 2.5 Let Γ ∈ {Σ1
1 ,Π

1
1}. For any sound and arithmetically definable theory𝑈, there

is a Γ̂-sound and Γ̂-definable extension of𝑈 that proves its own Γ-soundness.

Proof Consider the following formulas:

𝜑(𝑥) := 𝑥 = ⌜RFNΓ (𝑈)⌝ ∨ 𝑥 = ⌜¬RFN
Γ̂
(𝑈 + RFNΓ (𝑈))⌝

𝜏(𝑥) := 𝑈 (𝑥) ∨
(
RFN

Γ̂

(
𝑈 + RFNΓ (𝑈)

)
∧ 𝜑(𝑥)

)
Let 𝑇 be the theory defined by 𝜏.

Claim 𝑇 is Γ̂-definable via 𝜏. ■
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By inspection.

Claim 𝑇 is Γ̂-sound. ■

Since 𝑈 is sound, 𝑈 + RFNΓ (𝑈) is sound, so RFN
Γ̂
(𝑈 + RFNΓ (𝑈)) holds, and

therefore externally, we see that 𝑇 is the theory:

𝑈 + RFNΓ (𝑈) + ¬RFN
Γ̂
(𝑈 + RFNΓ (𝑈)).

In particular, 𝑇 has the form𝑈′ + ¬RFN
Γ̂
(𝑈′) where𝑈′ is sound. Suppose that𝑈′ +

¬RFN
Γ̂
(𝑈′) ⊢ 𝜎 where 𝜎 is false Γ̂. Then 𝑈′ + ¬𝜎 ⊢ RFN

Γ̂
(𝑈′). So RFN

Γ̂
(𝑈′)

follows from a consistent extension of𝑈′ by Γ formulas, contradicting Lemma 2.4.

Claim 𝑇 ⊢ RFNΓ (𝜏). ■

From our external characterization of 𝑇 we see that

𝑇 ⊢ ¬RFN
Γ̂
(𝑈 + RFNΓ (𝑈)).

Hence𝑇 proves that 𝜏 defines the theory𝑈. Again, appealing to our external character-
ization of 𝑇 , 𝑇 ⊢ RFNΓ (𝑈). Thus, 𝑇 ⊢ RFNΓ (𝜏).

2.3 Limitations

The presentation 𝜏 of theory 𝑇 defined in Theorem 2.5 is clearly somewhat patholog-
ical, in part because 𝑇 cannot discern the identity of 𝜏. Before continuing to the final
case, we want to illustrate that such pathologies are inevitable. We use a proof technique
suggested at the end of [5].

Proposition 2.6 Let 𝑇 be a Γ-definable extension of Σ1
2-AC0 that proves Theorem 1.2

and Theorem 2.8. Suppose that there is a Γ presentation 𝜏 of 𝑇 such that 𝑇 proves
RFN

Γ̂
(𝜏). Then both of the following hold:

(1) There is a theorem 𝐴 of 𝑇 such that 𝑇 ⊢ ¬𝜏(𝐴).
(2) There is a Γ presentation 𝜏★ of 𝑇 such that 𝑇 proves ¬RFN

Γ̂
(𝜏★).

Proof Suppose that each of the following holds:

(1) 𝑇 is definable by a Γ formula 𝜏;
(2) 𝑇 extends Σ1

2-AC0;
(3) 𝑇 proves Theorem 1.2 and Theorem 2.8;
(4) 𝑇 proves the Γ̂-soundness of 𝜏.

Let 𝜎 be a sentence axiomatizing Σ1
2-AC0. We have assumed 𝑇 ⊢ 𝜎. We also have that

𝑇 ⊢ RFN
Γ̂
(𝜏). Let 𝐴1, . . . , 𝐴𝑛 be the axioms of 𝑇 that are used in the 𝑇-proof of 𝜎 ∧

RFN
Γ̂
(𝜏). Thus:

⊢ (𝐴1 ∧ · · · ∧ 𝐴𝑛) →
(
𝜎 ∧ RFN

Γ̂
(𝜏)

)
.

Claim 𝑇 ⊢ 𝜏(𝐴1 ∧ · · · ∧ 𝐴𝑛) → ¬RFN
Γ̂
(𝜏). ■
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A classification of incompleteness statements 5

Reason in 𝑇 . Suppose 𝜏(𝐴1 ∧ · · · ∧ 𝐴𝑛). Then 𝜏 extends Σ1
2-AC0 and 𝜏 proves

RFN
Γ̂
(𝜏). Since 𝜏 is a Γ formula, Theorem 1.2 (if Γ = Σ1

1) or Theorem 2.8 (if Γ = Π1
1 )

entails that 𝜏 is not Γ̂-sound.
Since 𝑇 ⊢ RFN

Γ̂
(𝜏), the claim implies that 𝑇 ⊢ ¬𝜏(𝐴1 ∧ · · · ∧ 𝐴𝑛).

On the other hand, consider 𝜏★(𝑥) := 𝜏(𝑥) ∨ 𝑥 = ⌜𝐴1 ∧ · · · ∧ 𝐴𝑛⌝. Note that 𝜏★ is
a Γ definition of 𝑇 . Yet we have just shown that 𝑇 ⊢ ¬RFN

Γ̂
(𝜏★).

Remark 2.7 Note that in the proof we need only assume that𝑇 extends Σ1
2-AC0 if Γ =

Π1
1 . If Γ = Σ1

1 , it suffices to assume that 𝑇 extends Σ1
1-AC0 since Theorem 1.2 applies

to extensions of Σ1
1-AC0. Likewise, we need not assume that𝑇 proves both Theorem 1.2

and Theorem 2.8. It suffices to assume that 𝑇 proves Theorem 1.2 (if Γ = Σ1
1) or that 𝑇

proves Theorem 2.8 (if Γ = Π1
1 ).

2.4 Hardest Case

The only remaining case is the dual form of Theorem 1.2:

Theorem 2.8 No Σ1
1-sound and Π1

1-definable extension of ATR0 proves its own Σ1
1-

soundness.

First we give a short proof that was discovered by an anonymous referee:

Proof Let 𝑇 be a Σ1
1-sound and Π

1
1-definable extension ofATR0 that proves its own

Σ1
1-soundness. Let Φ be the (conjunction of) the finitely many statements used in the

proof (assume that a single sentence axiomatizingATR0 is among them). The sentence
Φ ∈ 𝑇 is true Π1

1 . Hence, Φ + Φ ∈ 𝑇 is consistent and Φ + Φ ∈ 𝑇 ⊢ RFNΣ1
1
(𝑇).

By running this same argument inside Φ + Φ ∈ 𝑇 , we conclude that Φ + Φ ∈ 𝑇 ⊢
Con(Φ + Φ ∈ 𝑇). YetΦ + Φ ∈ 𝑇 is a consistent and finitely axiomatized extension of
ATR0, which contradicts Gödel’s second incompleteness theorem. ■

Note that a dual version of this proof also establishes Theorem 1.2.
For the rest of this section we will give an alternate proof. In [5], Theorem 1.2

was proved using concepts from ordinal analysis. In short, a connection is forged
between Π1

1-soundness and well-foundedness of proof-theoretic ordinals. Since we
are now interested in Σ1

1-soundness, we forge an analogous connection between Σ1
1-

soundness and pseudo-well-foundedness, where anorder is pseudo-well-founded if it lacks
hyperarithmetic descending sequences.

For the rest of this section assume that𝑇 is aΣ1
1-sound andΠ

1
1-definable extension of

ATR0. Inwhat follows,PWF(𝑥) is a predicate stating that 𝑥 encodes a recursive pseudo-
well-founded order (that is, a linear orderwith no hyperarithmetic decreasing sequence).
A universal quantifier over Hyp can be transformed into an existential set quantifier in
the theory ATR0 (Theorem VIII.3.20 of [4]). It follows that the statement PWF(𝑥) is
𝑇-provably equivalent to a Σ1

1 formula.
We will define ≺𝑇 to hold on pairs (𝑒, 𝛼) where 𝑒 ∈ Rec and 𝛼 ∈ 𝑑𝑜𝑚(≺𝑒). We

define (𝑒, 𝛼) ≺𝑇 (𝑒′, 𝛽) to hold if
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6 H. Towsner and J. Walsh

there is some 𝑓 ∈ Hyp so that Emb( 𝑓 , ≺𝑒↾ 𝛼 + 1, ≺𝑒′↾ 𝛽) and 𝑇 ⊢ PWF(≺𝑒′ ).

Here we write ≺𝑒↾ 𝛼 + 1 for the restriction of the relation ≺𝑒 to {𝛾 ∈ 𝑑𝑜𝑚(≺𝑒) | 𝛾 ⪯𝑒

𝛼}.
To prove that 𝑇 ⊬ RFNΣ1

1
(𝑇) it suffices to check that𝑇 ⊢ RFNΣ1

1
(𝑇) → PWF(≺𝑇 )

and that 𝑇 ⊬ PWF(≺𝑇 ). Let’s take these one at a time.

Claim 𝑇 ⊢ RFNΣ1
1
(𝑇) → PWF(≺𝑇 ). ■

Proof Reason in 𝑇 . Suppose ¬PWF(≺𝑇 ). That is, there is a hyp descending sequence
𝑓 in ≺𝑇 . Let 𝑓 (𝑛) = (𝑒𝑛, 𝛽𝑛). Thus we have:

∀𝑛 (𝑒𝑛+1, 𝛽𝑛+1) ≺𝑇 (𝑒𝑛, 𝛽𝑛)

By the definition of ≺𝑇 , this is just to say:

∀𝑛 ∃𝑔 ∈ Hyp Emb(𝑔, 𝑓 (𝑛 + 1), 𝑓 (𝑛)).

where we abuse notation to write Emb(𝑔, 𝑓 (𝑛 + 1), 𝑓 (𝑛)) for Emb(𝑔, ≺𝑒𝑛+1↾ 𝛽𝑛+1 +
1, ≺𝑒𝑛↾ 𝛽𝑛) to emphasize the role of 𝑓 in the statement.

The formula Emb(𝑔, 𝑓 (𝑛 + 1), 𝑓 (𝑛)) is Σ1
1 in the parameter 𝑓 ; this is an application

of Σ1
1-AC0, which is a consequence ofATR0 [4, Theorem V.8.3].
ATR0 proves that Hyp satisfies Σ1

1 choice, and therefore proves

∃𝑔 ∈ Hyp ∀𝑛 Emb(𝑔𝑛, 𝑓 (𝑛 + 1), 𝑓 (𝑛)).

Note that 𝑔 is technically a set encoding the graphs of the countably many functions 𝑔𝑛
in the usual way.

Using arithmetic comprehension, we form the composition 𝑔★ of the functions
encoded in 𝑔—𝑔★(0) = 𝑔0 (𝛽1), 𝑔★(1) = 𝑔0 (𝑔1 (𝛽2)) and so on. The function 𝑔★ is
a hyp descending sequence in ≺𝑒0 , so ≺𝑒0 is not pseudo-well-founded. Since 𝑓 (1) ≺𝑇

𝑓 (0), we also have 𝑇 ⊢ PWF(≺𝑒0 ). Recall that PWF(≺𝑒0 ) is a Σ1
1 claim. Hence,

¬RFNΣ1
1
(𝑇). ■

Before addressing the second claim, let’s record a dual form of Rathjen’s formalized
version of Σ1

1 bounding [3, Lemma 1.1].

Lemma 2.9 Suppose 𝐻 (𝑥) is a Π1
1 formula such that

ATR0 ⊢ ∀𝑥
(
𝐻 (𝑥) → PWF(𝑥)

)
.

Then for some 𝑒 ∈ Rec,ATR0 ⊢ PWF(𝑒) ∧ ¬𝐻 (𝑒).

Remark 2.10 Note that the dual form of Lemma 2.9 has a diagonalization-free proof
(with ACA0 in place of ATR0) [5, Lemma 4.22]. Kreisel noted (as discussed by Harri-
son [2, pp. 527–529]) that when a proof can be formalized in Σ1

1-AC0, then the proof of
the dual result (where all quantifiers are restricted to Hyp) is also valid. This is a proof
in ATR0 since ATR0 proves that Hyp satisfies Σ1

1-AC0. Since the proof of [5, Lemma
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A classification of incompleteness statements 7

4.22] is somewhat involved,we produce here an alternate proof of Lemma2.9 that incor-
porates some diagonalization, though we emphasize that diagonalization is not strictly
necessary.

Proof [2, Theorem 1.3] implies that PWF (the set of pseduo-well-founded recursive
linear orders) isΣ1

1-complete; note thatHarrisondoes not use self-reference or any other
form of diagonalization in his proof, which is the mere application of Kreisel’s afore-
mentioned trick (Remark 2.10) to the proof that well-foundedness is Π1

1-complete for
recursive linear orders. Hence, there is a total recursive function {𝑘} such that:

¬𝐻 (𝑛) ⇐⇒ PWF
(
{𝑘}(𝑛)

)
.

Since the reduction ofΠ1
1 predicates toO can be carried out inACA0, a fortiori it can

be carried out inΣ1
1-AC0. Whenwe restrict all quantifiers toHypwe thereby get a proof

of the dual result forO★, which is the set of notations for recursive linear orderings with
no hyperarithmetic descending sequences introduced in [1]. Hence

ATR0 ⊢ ¬𝐻 (𝑥) ↔ PWF
(
{𝑘}(𝑥)

)
.

By the recursion theorem and the S-m-n theorem, there is an integer 𝑒 so that ATR0
proves that ∀𝑖[{𝑒}(𝑖) ≃ {{𝑘}(𝑒)}(𝑖)] (where ≃ means that if either side con-
verges then both sides converge and are equal). Working in ATR0, ¬PWF(𝑒) implies
¬PWF({𝑘}(𝑒)), which implies𝐻 (𝑒), which impliesPWF(𝑒), which is a contradiction.
SoATR0 ⊢ PWF(𝑒). (Not that this implies 𝑒 ∈ Rec by the definition of PWF(𝑒).)

Similarly, 𝐻 (𝑒) implies ¬PWF({𝑘}(𝑒)), which is equivalent to ¬PWF(𝑒), which
we have already ruled out. SoATR0 ⊢ ¬𝐻 (𝑒). ■

Claim 𝑇 ⊬ PWF(≺𝑇 ). ■

Proof Suppose that 𝑇 proves PWF(≺𝑇 ). From the definition of ≺𝑇 , it follows that:

𝑇 ⊢
(
∃ 𝑓 ∈ Hyp Emb( 𝑓 , ≺𝑥 , ≺𝑇 )

)
→ PWF(≺𝑥).

The formula∃ 𝑓 ∈ Hyp Emb( 𝑓 , ≺𝑥 , ≺𝑇 ) consists of an existential hyp quantifier before
aΠ1

1 matrix (the matrix isΠ1
1 since ≺𝑇 refers to provability in𝑇 and𝑇 isΠ1

1-definable).
Hence, there exists a Π1

1 formula 𝜋(𝑥) such that:

ATR0 ⊢ 𝜋(𝑥) ↔ ∃ 𝑓 ∈ Hyp Emb( 𝑓 , ≺𝑥 , ≺𝑇 ).

By Lemma 2.9, there is some 𝑒 so that

ATR0 ⊢ PWF(≺𝑒) ∧ ¬𝜋(𝑒).

Hence ATR0 ⊢ ¬∃ 𝑓 ∈ Hyp Emb( 𝑓 , ≺𝑒, ≺𝑇 ). Moreover, since ATR0 is sound, we
infer that ¬∃ 𝑓 ∈ Hyp Emb( 𝑓 , ≺𝑒, ≺𝑇 ) is true.

On the other hand, since 𝑇 extends ATR0, we infer that 𝑇 ⊢ PWF(≺𝑒). Hence
the map 𝛼 ↦→ (𝑒, 𝛼) is a canonical hyp embedding of ≺𝑒 into ≺𝑇 . So ¬∃ 𝑓 ∈
Hyp Emb( 𝑓 , ≺𝑒, ≺𝑇 ) is false after all. Contradiction. ■

It follows from the claims that 𝑇 ⊬ RFNΣ1
1
(𝑇), which completes the proof of

Theorem 2.8.
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