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THE MINIMUM AND THE PRIMITIVE REPRESENTATION
OF POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

Let M, N be positive definite quadratic lattices over Z with rank(M) = m
and rank(N) = # respectively. When there is an isometry from M to N, we say
that M is represented by N (even in the local cases). In the following, we assume
that the localization M, is represented by N, for every prime p. Let us consider
the following assertion A,, ,(N) :

A,..(N): There exists a constant ¢(N) dependent only on N so that M is repre-
sented by N if min(M) > c(N), where min(M) denotes the least positive number rep-
resented by M.

We know that this is true if # = 2m + 3, and a natural problem is whether
the condition # = 2m + 3 is the best or not. It is known that this is the best if
m = 1. But in the case of m = 2, what we know at present, is that there is an ex-
ample N so that A,,,(N) is false if # — m = 3. We do not know such examples
when # — m = 4. Anyway, analyzing the counter-example, we come to the follow-
ing two assertions APW,, ,(N) and R,, ,(N).

APW,,,(N) : There exists a constant ¢’ (N) dependent only on N so that M is rep-
resented by N if min(M) > ¢'(N) and M, is primitively represented by N, for every
prime P.

R,..(N) : There is a lattice M containing M such that Mj is primitively repre-
sented by N, for every prime p and min(M’) is still large if min(M) is large.

If the assertion R,,, (V) is true, then the assertion A,,,(N) is reduced to the
apparently weaker assertion APW,, ,(N). If the assertion R,,,(NN) is false, then it
becomes possible to make a counter-example to the assertion A,,,(N). As a matter
of fact, the assertion R, ,.,,(N) is false in a certain kind of lattices N and it
yields examples of N such that the assertion A, ,.,;(N) is false. Note that
APW, ,(N) is true for every N although A, ,(N) is false in general.

We proved in [4] that the assertion R, ,,,,(IN) is true if m = 2. The aim of
this paper is to show that the assertion R, ,,,,, (V) is also true if m = 3 (Theorem
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in §2).
To what extent is the assertion R, ,,(N) is true?
In 8§83, we give some remarks on the asymptotic formula for the number of
isometries from M to N.

We denote by Z, Q, Z, and Q, the ring of integers, the field of rational num-
bers and their p-adic completions.

Terminology and notation on quadratic forms are those from [5], [6]. For a lat-
tice M on a quadratic space V over Q, the scale s(M) denotes {B(x, ) |z, y
€ M}. Even for the localization M, it is similarly defined. dM, dM, denote the
discriminant of M, M, respectively.
For a subset S of a positive definite quadratic space V, we put

min(S) = miny(S) := min{Q(x) |0 # x € S}.

For a matrix A, ‘A denotes the transposed matrix of A.
4
For square matrices 4,,...,A,, diag(4,,...,A,) means

§1

The aim of this section is to prove the following preparatory theorem.

THEOREM. Let m be a natural number (= 3), p a prime number and M a lattice
on a positive definite quadratic space V over Q with dim V=m, s(M) € Z and
s(M,) = Z,. Suppose that there is a basis {w,,...,w,} of M such that

(B(w,, w)) = diag(e, Bp™,...,B,p™ mod p™*,
where € € L,, B, is even unimodular for 1 < i < u with (1,1)-entry not divisible by
2pand 2 < a, < -+ < a,. Puts = [a,/2] where [x] is the largest integer not ex-
ceeding x. Let £ be a veal number with 0 < k < 1/7. Then there is a positive con-
stant C independent of M but dependent on m, k£ and p, which satisfies the following:
If we have the inequality

min(M) > C,

then there is an element w of M so that w = 2., fw; € M whth f, 0 mod p, and
= =f,=0modp, and w satisfies the followings:
(1) min(M + p""Z[w]) = min(M)".

(ii) s(M + p""Z[w]) C Z.
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(i) ord,(d(Zlw,, p~°w])) < 2.

The assertions (ii) and (iii) are satisfied for every f of the above form and so
the rest of this section is devoted to prove the assertion (i).
Throughout this section, m, p, &£, s and M denote those given in Theorem.

DerINITION  For a real number x, we define the decimal part [x] by the con-
ditions

—1/2<[x] <1/2 and z— [z}l €Z.

Lemma 1. Let gy, ¢, and K be positive numbers. If an integer u satisfies the fol-
lowing inequalities (1) and (2):

1) min ([bp~"1’q, + [bup™"1’g,) < K,

PS5k

where b runs over the set of integers not divisible by ps,

1 1
(2) qul/K<|ul<"2“V41/K’

then we have

(3) 0.4, < 16K°p™.

Proof. We note that [6p™"] depends only on b modp’. So we may suppose
that an integer b with 0 # | b| < p5/2 gives the minimum of the left-hand side of
the inequality (1). Then we have K > [bp ™| qu = bzp—zsq1 and so the inequality
o] <VK/qp’. The condition (2) implies, then the inequality | bu | < p°/2 and
so K> [bup1%q, = b°u’p™q, = u’q,p™" > q,q,/ 16K) - p™*, which is nothing
but the inequality (3). O

LEmMA 2. Let qq, q, and K be positive numbers and u, an integer. Suppose that
a natural number e satisfies an inequality

P |
p < Z\/QI/K.

If the inequality (1) holds for every integer u with u = u, mod P°, then we have the in-
equality (3).
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1 1
Proof. By the inequality 5\/(11/K - Z\/‘h/K > p°, we can take an integer
1 1
% so that Z‘/QI/K <u< E\/%/K and # = u,mod p°. The assertion follows
immediately from Lemma 1. O

Lemva 3. Let {v,,...,v,,) be a basis of M. Suppose (B(v;, v;)) = diag(q,...,
@) > 0. For an element w = 27— ,rv; € M, we have

min(M + p~Z[w]) = min (% [brp~"1%q)
beZ i=1
bwepSM

if min(M + p~°Z[w]) < min(M).

Proof. Suppose that y=x+ p bw(x € M, b € Z) gives the minimum
min(M + p " Z[w)). If bw € p°M, then y € M follows and this contradicts min (M
+ p7"Z[w]) < min(M). Thus we have bw & p°M. Moreover putting x = 2., Z;,
(x; € Z), the minimality implies

Qly) = 2 (x, + b"J’—s)ZQi = Z[brip—s]zqzw
i=1 i=1
which completes the proof. O

DerNITION.  For a positive numbers a, b, we write
a<kb

if there is a positive number ¢ dependent only on m = rank M such that a/b < c.
If both @ € b and b € a hold, then we write

a =<
LemMa 4. Let {v,,...,v,) and {w, ... ,w,} be bases of M such that (B(v,,
v,)) is reduced in the sense of Minkowski. We define an element A € GL,,(Z) by
(w,...,w,) =@,...,v,)A.
For an element w = 2.7- f;w; € M, we define integers r; by
ry.r) 1= A, ).

Then there is a positive constant ¢, dependent only on m so that
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min(M + Z[p~ w]) = mig (% [o7p~°1°Q(v)
be i=1

bwep M
if
(4) min(M + Z[p " w]) < ¢, min(M).

Proof. By reduction theory, we know that there exist positive constant ¢,, ¢
which depend only on m so that

m m m
(5) ¢, 22 Q) < QX zw) < ¢, X x'QWw) for z, €R.
i=1 i=1 i=1
We introduce a new quadratic form @’ on M defined by
m m 2
Q (X zw) =2 x;Qv).
i=1 i=1

Putting ¢, 1= ¢,/ ¢5, the assumption (4) and the inequalities (5) imply
ming (M + Z[p~"w]) < ¢;" ming(M + Z[p~*w]) < ¢; " miny (M)

< ming (M).

m . N
Because of w = 2., 7,0;, Lemma 3 implies

ming (M + p™"Zlw) = min (Z [brp™ Q).
bwepSZ,

Moreover the inequalities (5) yield
ming (M + p~"Z[w]) = miny, (M + p~"Z[w]),
which completes the proof with the above equality. O
LemMA 5. Let a matrix A = (a;;) be an element of GL,(Z). Suppose @y, # 0
modp (1 < a < m). Then there is an integer B with 1 < B < m and B # « so that

for given integers k, 1 < i < m) with k, = 0, there exists a vector x = "(x,, . . .,
z,) € Z" (x, = 0) satisfying

g =k modp’™ for i#p,

where we put ' (g,,. . .,8,) ‘= Ar.
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Proof. 1f s = 1, then the assertion is clear and so we may assume s = 2. De-
note by A; the i-th column vector of A and take integers b, so that a,; = b,a,,
s—1 .
mod p . The equation

10 0 0 0
01 —b, —b, - —b,
Aloo 1 o0 0
0 1

= (4, A, A, — bA,. . A, — b A)
implies that there is an (m — 2) X (m — 2) submatrix of
A= (4, — bA,. . A, — bA)

whose determinant is not divisible by p. Since the a-th row of Ais congruent to 0
modulo p°”", there is an integer 8 (# a) such that the determinant of the submat-
rix of A which misses & and B-th rows from the matrix A is not divisible by p.
Let T € GL,,(Z) be a matrix so that its multiplication from the left induces the
interchange of & (resp. B)-th row and the first (resp. second) row. Then the lower
(m — 2) X (m — 2) submatrix C of TA is regular modulo p. Now we define inte-
gers X, .. .,x, by

C'xy...,x,) ="U,... k) modp’ ™",

where we put "(k},...,k,) := T '(ky,...,k,). Then we have

(5 2,4, — bA)) = TA'(z, . .., z,)
i=3

0
0:---0 x, *
=| k- %k P )=| Kk, |modp™
C z, :
Fon
Hence, putting z, := — >y bz, , = 0 and x :='(z,,. . .,x,,), we obtain Ax =

S, =3 2, (A, — bA,) and so

TAx =

0
P
K, |modp’™.

o
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Then TAzx and (K}, ...,k,) = T ‘(k,, . ..,k,) are congruent modulo p°~" except
for first and second coordinates, and so Ax and t(kl, ...,k,) are congruent modulo
ps—l except for «, B-th coordinates. Since the first coordinate of 7Ax is congruent
to 0 mod ps—l, so is the a-th coordinate of Ax. This completes the proof. O

Lemma 6. Let {vy,...,v,,} be a basis of M so that (B(v,, v;)) is reduced in the

sense of Minkowski, and {w,,. . .,w,} a basis of M given in Theorem. Defining a mat-
rix A = (a;;) n GL,,(Z) vy (w,,...,w,) = (v,...,v,)A, we put

S = {Af mod p°

‘=, foe e fy), fi = 0 modp’, ]
fEFO0modp, ;= =f,=0 modp

Choosing a coordinate & by the condition a,, # 0 modp, there is a coordinate
B (# @) which satisfies:
For an integral vector h ="(hy, .. .,h,) € Z" with h, £ 0 mod p, there exists
an element v = t(rl,. .o ¥ € S so that

Vo =h, modp’ and|7v,— h,| < p/2 if i+ B.
Proof. We take integers b, (1 < i < m) so that @n; = b,a,, modp’ ™. It is
easy to see
S={fA, + pAr modp’| f,# 0 modp, ‘z= 0, z,,...,x,) €Z"},

where A, is the second column vector of A. We define an integer f, (£ 0
mod p) by h, = f,a,, mod p’, and take integers ki, .. .,k, so that k, = 0, and
|h, — fa, — pk;| < p/2 if i+ a. Applying Lemma 5, there is an integer
B (# «) dependent only on A so that there is an integral vector X =
“(z,,...,x,) with 2, = 0 satisfying

g, =k modp”™ for i#p,

putting ‘(gy, . . .,&g,) := Az. Thus we have

(h__(szZ_'_pr))iE{Omodp sxfz—_—a,
h; — f,a,, — pk; modp™ if ¢ #+ B, a.
Hence 7 := f,A, + pAz is a required vector in S. OJ

LEMMA 7. Keep the situation in Lemma 6. Then we have

a,F¥0modp and a,=0 modp for 1>1
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if (i) m = 4, (i) min(M + Z[p" w]) < min(M)”* for every w = 227, fw; € M with
L ZOmodp and f;= -+ = f, = 0 mod p, and (iii) min(M) is larger than some
constant dependent on m, K and p.

Proof. We put K := min(M)". By making min(M) large so that
1 1 . -
7 /Q0,) /K = 4 min(M) 472 > p,

Lemma 6 yields that there is an integral vector ¥ = '(7’1,. .o ¥y € Ssothatz, =

. 1 . .
1 modp and %\/Q(va) /K <7 < E\/Q(va) /K for i# a, B Defining an

element w = Xon, fw, € M by "(f,, .. ..f,) =A"'7, r € S yields f, = 0 mod p°,
L Z0modp, f,= -+ =f,=0 modp, and then the assumption implies min(M
+ Z[p " wl) < min(M)" < ¢, min(M) for a sufficiently large min(M), and then
Lemma 4 implies that

min(M + Z[p"*w]) = min (X [brp"1°Q)).
beZ i=1
PShb
Hence, from the assumption min(M + Z[p *w]) < min(M)" follows
min (2 [b7p Q) € min(M)".
veZ i=1
porb
Taking out @ and 7-th coordinates for 7 # «, 8, Lemma 1 gives
Q(v,) Q(v,) € min(M)*p*,

which implies
Q()’Qv,) Qv,) = (Qv) Q(v,)) (Q(v) Q)
€ Q) Q(w,)* €« min(M)™p*.

If 1€ {a, 7}, then it is easy to see, by the assumption on the basis {w;} in
Theorem

Q) Qv Q) < dZlv,, v,, v] > p*.

Hence the above two inequalities imply @(v,) € min(M)* < min(M)*”. This is a
contradiction if min(M) is sufficiently large. Thus we have 1 € {a, 7}. By the
assumption #m = 4, there is a number 7" with 7" # a, B, v and 1 < 7" < m. Simi-
larly we have 1 € {a, 7’} and so @ = 1. Since the number « is given only by the
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condition a,, # 0 mod p, we have a;, = 0 mod p if 1 # 1. OJ

Proof of Theorem in the case of m = 4.

We define bases {v;}, {w;} of M, a matrix A and others as in Lemma 6. If
there is an element w = 27, fw, € M with f, # 0 modp and f, = - = £, =0
mod p such that the inequality (i) in Theorem is true, then there is nothing to do.
Hence we may assume

min(M + Z[p""w]) < min(M)"

for every w= X, fw; with £, # 0 modp and ;= -+ =f, =0 modp. We
will show that this leads us to a contradiction. Assuming that min(M) is suffi-
ciently large, we have min(M)" < ¢, min(M). Now Lemma 4 implies, for such a
vector w

min (3 [b7.p™1°Q()) = min(M + ZIp™*w]) < min(3D",
beZ i=1
XD

where '(7,,...,7,) = A0, f,,....f,). Now Lemma 7 implies
a, #0 modp and a, =0 modp for ¢=2.

We will show that @;; ¥ 0 mod p implies j < 2 if ¢ = 3. Take a natural number ¢
with 3 < ¢ < m and let f; be an integer with f; = 0 mod p. Then the above ine-
quality implies, for ‘(r,,...,7,) = A, + fA,

min()" > min (3 [ba,, + fa,)p~ QW)
beZ j=1
b

= min ([b(ay, + fia,)p " 1°Qw) + [blay, + f,a;)p " 1"Q1))
beZ
5 xb

for every integer j > 1. Suppose that a;; # 0 mod p and j = 3. We will show a
contradiction. Let us consider the equation in x € Z

a, + fa; = (a, + fia,)x modp’.
It is equivalent to
fila; — a,;») = a,x — a;, mod p’.

We note a;;, =0 modp and a,;; Z 0 mod p. Hence the equation has a solution
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fi (=0 mod p) if x = 0 mod p. So we have, replacing b(a,, + fa;,) by b
min(M)* > min ([5p~1°Q(v,) + [bxp~1°Q(v)))
beZ
I 2)
for every integer £ (= 0 mod p).

1 X
The inequality TV Q) /min(M)" =

Q(v) Q(v) < min(M)*p™.
The assumption j = 3 and dZ[v,, v,, v,] = 0 mod p* imply
Qw)p" < Q) dZlv,, v, v,] € Qv)’Q(v,) Q(v,)
< (1) Q1)) < min(M)*p*

and hence min(M) < Q(v) € min(M)*. Hence if min(M) is sufficiently large,
this inequality does not hold. Thus we have shown a@; = 0 modp if : =2 3 and
7 = 3. Hence Lemma 7 yields

min(M) “ ™% > p and Lemma 2 imply

|

=
H
* ¥ %
o ¥ *
o ¥ *
o ¥ *

mod p.

¥ 0 0 = 0
This contradicts A € GL,,(Z) if m = 4. Thus the theorem has been proved if
m = 4. O
Next we must prove the case of m = 3. Let {v,}, {w;}, 4, s and others be as
above. Assume for every integer f (= 0 mod p)
min(M + Z[p~" (w, + fw,)1) < min(M)".
We will show that this leads us to a contradiction, making min(M) sufficiently

large. For an integer f = 0 mod p, Lemma 4 yields

min(M + Z[p~" (w, + fw,)]) Zm)i(n (233 [brp~°1?Q )
»° i

b i=1

for ‘(#, 1, r) = A'(0,1, f), if the left-hand side is less than ¢, min(M). Hence
we have
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min (3 [b7p™°1*Q(v,)) < min(M)*

Sy i=1
for every integer f(= 0 modp), assuming that min(M) is sufficiently large.
* S T
PuttingA=1| * S, 7T, |, we have
* S, T,

v, =S, + fT.

Lemma 8. Put dy; = S;T; — S;T,, and take any coordinates a, B such that
S, #0 modp and d,;# 0 modp. Denote by @ an integer which satisfies
ad=1modp’ ifa £ 0 modp. If x= S_,,SB mod p holds for an integer X, then
there is an integer f (= 0 mod p) so that 7, = 7, mod p°. The condition Ty = 7,X
mod p° implies for v + a, 8

7, = 1yl (d,, + dox) modp’.

Proof. Suppose xr = S—aSB mod p. The equation 7, = 7,x mod p° is equiva-
lent to
(6) f(T, — T,x) = S,x — Sy mod p°.
Substituting x = S_aSB + py, it becomes

f(Ty = T,5,8; — pT.9) = pS,y modp’
and so
fldy — pS,Ty) = pSiy mod p’.
Since d,; # 0 mod p, this is indeed soluble for f (= 0 mod p).
Supposing 7, = 7,2 mod p°, we have
dys + dpx = S,T, — S;T, + (S, T, — S, T)x
= (Spx — SpT, + ST, — Tpx) = (T, — T,o) (fT, + S, by (6)

=7l — Te2) = o (ro Ty — Tora) -
17 {(Sy + T Ty — To(S; + fTy)} = r,7,d,s modp’,

which yields 7, = 7,dy,(d,; + d,,x) mod p’, O

LEMMA 9., We have
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(7 min ([6p~1°Q(v,) + [bzp™"1°Q(vp)
o _
+ [bd s (dys + doy)p " 1'Q(0,)) < min(ID”

for every integer x (= E;SB mod p).
Proof. This follows directly from Lemma 8, replacing b by b;;. |

LemMMA 10. If the constant C in Theovem is sufficiently large, then we have
{a, B} ={1,2) and y =3, and S; = T, = 0 mod p and

(8) Q) Q(v) < 16 min(M)*p™.
Proof. Put K := min(M)". Since we may assume
1 1 . A-x)/2
1 \/Q(Ua) /K > 1 min (M) > p,

applying Lemma 2 to the partial sum on &, 8 in (7), we have
Q(v) Qvy) < 16K°p™.
If a or 8= 3, then it implies
Q) dM < (1) Q1)) (R Q1)) € (Q(v,) Qw)°
< 16°K“*.

Now dM 2p“ yields min(M) < Q(v,) < K* < min(M)*". This is a contradic-
tion if min(M) is larger than constant dependent on m = 3. Thus we have
{a, B} = {1,2). Since « is taken under the condition S, # 0 mod p only, we have
S; = 0 mod p, and since B is taken under the condition d,; # 0 mod p, we have
doy = ST, — S;T, =0 mod p, which yields 7;=0 modp by S,=0 modp
and S, # 0 mod p. O

LEmMMA 11. Let e be the least integer such that
1 . _
(9) pe+1 2 me(ﬂl)(l u)/z.

Then we have

S,= T, =0 mod p°.
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. 1
Proof. Put K :=min(M)". If p1+°rd"d"3<z‘/m1n0m/1(, then we have

p1+°rd"d"3<%\/@m, and applying Lemma 2 to the partial sum on «,
7 (= 3) in (7), we have

Q(v,) Qv < 16K°p™.
This is the contradiction as in the proof of the previous lemma. Thus we have
plrees > %fm and hence ord,d,, = e.

Let us see the inequality ord,ds; = e. If S; # 0 mod p, then replacing & by b in
(7), we get

min ([6p1°Q(w,) + [dp(dy® + do)p 1°Q(v) < K
p5kb
for every integer T = Sagl—g mod p. Similarly to the case of &, we have the inequal-
ity ord,dg, = e.
Next suppose S; = 0 mod p. Then the inequality (7) holds for every integer

x = 0 mod p. Suppose that the minimum of the left-hand side is attained by b
with 0 # | 5| < $°/2 and b = 0 mod p°™". Putting b = Bp"™", we have

K> [Bp 1?Q,) = B*»7*Qvy) = p7°Q(v,)

and so min(M) < Q(v,) < sz =p2 min(M)”, which is a contradiction if
min(M) is sufficiently large. Thus the minimum is attained by an integer b with
b# 0 mod p’" and so (7) implies

min (Toxp™"12Q(w,) + [bdoy(dyy + dy®)p*1°Q(vy)) < K
ps—l b

for every x = 0 mod p. Letting x = py with y # 0 mod p and replacing b by b7,
we have

min (0p" 1’ Qv,) + [bdpe(dyep ™7 + d)p' " 1°Qy)) < K

for every integer § # 0 modp. Here we note dyy =0 modp by S, =T, =0
1
mod p. Hence if pord’(d”) < Z’/Q(vﬂ) /K, then Lemma 2 implies

Q1) Q(vy) < 16K°p*“7",

. . oo . ordy(dsg)
This is a contradiction as in the case of a. Hence we have p = % >
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%\/Q(vﬂ) /K > %Jmin(M) /K and so ord,(ds;) = e+ 1> e Thus we have
obtained d,, = dj; = 0 mod p°, and so

S,T, = S,T; mod p° and S;T; = S,T, mod p°.
Hence we have S;ds = Sy(S,T; — S;T) = S,S; T, — S;S. T, =0 mod p° and
50 S; =0 mod p’ and T, = S,S,T, mod p° = 0 mod p°. L

LEMMA 12. Let f be the least integer such that p’ > ¢; min(M)", where ¢, is
some absolute constant. Then we have

s—f-1

d,; =0 modp

Proof. Put K := min(M)". Suppose that an integer b with 0 # | b|< p*/2
gives the minimum of the left-hand side of the equality (7).
Suppose b(d,; + dpyx) # 0 modp’; since dyy + dypxr = 0 mod p° by Lemma 11,
the denominator of b(dss + dx)p ™" divides p° °. Thus the inequality (7) gives

K > [bd,(dy + dpyp)p1°Q(wy) = 77 Q(0,),
which implies @(v;) < Kp"“™® . Thus the inequality (8) in Lemma 10 gives
P < dM = Q1) Q) Qvy) < 16K*p*™

2
< 16K —1F
M)

= by (9)
min (

— 162 min (Im 4u—lp4s+2.

1—-4x

Thus we have min (M) £ pz, and so making the constant C in Theorem larger,

we have a contradiction. Hence we may assume that b runs over integers such that

(10) b(d,; + dyyx) =0 modp’ and p° 4 b

1 1 . B
in the left-hand side of the inequality (7). By 7 yQ(,) /K 2 me(M)“ DS

3p for a sufficiently large C, there is an integer y such that y = S;SB mod p and

(11) V@I TR <y <y+p < 5 VQ)E.

Put £ = y or = y + p, and suppose that an integer b with 0 # | b| < p°/2 gives
the minimum of the left~-hand side of the inequality (7). Then we have
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K> [p~1°QW,) = b’p*Q,),

which yields

| bxp™ | < VK/Q(,) ps'% QG 7Kp ™ =1/2.

Hence the inequality (7) gives

K > [bxp~1’Qv,) = b°z°p ™ Q(v,)

2 Q(vy)

>0 Tep p Q) by (11)

2 QUIQWy) s b

=0 16K > 16K

where we used the inequality Q(v,)Q(v,) = dZlv,, v,] = p*. Thus we have
obtained | &| < ¢; K for some absolute constant ¢s. Then the way of choice of f
implies pf > ¢, K > | b| and we have f > ord,b. The equality (10) implies

dy + dyxr = 0 mod p° " = 0 mod p*.

Since this is true for x =y and = y + p, we have d; = 0 modp*™’ ™" |

LEMMA 13. Let g be the least integer such that p* > ¢ min(M)”, wheve cg is

some absolute constant. Then we have
s—g—1

dg; = 0 mod p

Proof. Put K := min(M)”". Since a is determined only by the condition S, #
0 mod p, replacing a by B, we get the assertion from Lemma 12 if S; # 0 mod p.
Hence we may assume SB = (0 mod p. So the inequality (7) holds for every integer
x (= 0 mod p). Letting £ = py with y 0 mod p and replacing b by by, we have,
replacing ¥ by y again

(12) min ([byp~°1*Q(v,) + [bp" "1°Qw,) + [bd,s(dugy + d)p "1°Q(v)) < K

PSKb

for every integer ¥ (¥ 0 mod p). If the minimum of the left~-hand side is given by
an integer b with 0 # | b| < $°/2 and b= 0 mod ps_l, then we have

K> Q) /p°,

noting that the denominator of byp™" is equal to p. It implies Kp* > Q(v,) =
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min(M) and so min(M)'™ < p°, which is a contradiction if C is a sufficiently
large number. Thus the minimum of the left-hand side of (12) is attained by b Z 0
modps—l. Let an integer b with 0% | b| < p°/2 give the minimum of the
left-hand side of (12) and put

=q, + ap with0# |a, | <p*'/2.

Now we claim both @, = 0 and | by | < ps_1/2 if vK/ Q) lyl <1/2.
First, let us see

(13) la,| <p/2.
If p is odd, then we have

lay| =la, = bl/p" < (a | + 16D /p™
S@T D2+ -D/2 /T =p/241/2 -7

and by virtue of the integrality of a,, we have | a, | <pr2. If p = 2, then we have
la, | < (a | +1b) /27 < @2+ 27 /2 =372,

and hence | a,| <1 =p/2.
Next, we put

by = ay + ajp’' modp’
with @) = a,y mod p and | a}| < p/2. Then we will see that
(14) fay] <p*™'/2 and |ay+ap’ | <p’/2,
taking a;, with (@)@, < 0 if p = 2. The inequality (12) implies
K> [bp'1"Qy) = (ap'™)’Q(vp)

and so | a;| < yK7Q(,) p°", which yields | ayy| < p°™'/2 if yK/Q(w,) |y| <
1/2. Hence we have, for p # 2

s= s— -1
lay+ap’™ | <p 1/2+‘DTp t=p%/2.

If p=2 and @, # 0, then we have |ay + a2 | =2""—|ay| <2 Ifp=
2 and a, = 0, then lay| < 2°7' is clear. Thus the inequalities in (14) have been
shown, and then the inequalities (12) and (14) yield

K> [byp~*1°Q(v,) = (ayy + ajpp" Hp ™ Q(v,)
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and hence

(15) lay + ap”™| < VK/7QQW,) p’.

Suppose a, # 0; then we have a, # 0 mod p by (13) and so a; # 0. Thus the
left-hand side of (15) is larger than

P = layl >pT = pT 2 =92,
and hence we have p°7'/2 < VK/Q,) p° < min(M)("_WZps, which yield the

contradiction min(M) "% < 2p. Thus we have shown the claim @, = 0 and b =
a,, that is, an integer b which gives the minimum of the left-hand side of (12),
satisfies two inequalities

byl <p™'/2 and 0#|b|<p""/2 it VK/QW,) |yl <1/2.

1 1 . —x
Because of V@) /K = 4 min M™% > p, we can take y Z 0 mod p so that

LVQGI 7K <1y| <3 (@@ /R,

then letting an integer b with 0 # | b| < p°/2 give the minimum of the left-hand
side of (12), we have | 5] < p°7'/2 and then the inequality (12) and the above
claim | by | < p°7' /2 imply

K> [byp~1"Q(w,) = by’p " Qv,) 2 sz—(U%QI)T(viP_“
> b°/K because of Q) Qv,) > p*.

Thus we have

|b] < K if %\/Q(uﬁ) /K <|y| < %\/Q(uﬁ) /K

where ¢4 is an absolute constant. Now we take the least integer g so that P> cK,
1

which implies | b| < p*. Taking an integer z so that Z\/Q(UB) /JK<z<z+p<

1

ng(vﬂ) /K, we put y=2z or =z+ p, and let b give the minimum of the

left-hand side of (12). Suppose b(dyy + d ) # 0 mod p°; then the denominator
of bd,(dyy + dog)p™" is at most p°° for the integer ¢ in Lemma 11. Hence the
inequality (12) implies K > p_Z(S_E)Q(vQ and hence a contradiction as in the proof
of Lemma 12. Therefore we have b(dyy + dyqp) = 0 mod p°. Noting | b| < p° as
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above, we have dgy + dop = 0 mod p* ™ for y =z or = z + p. Thus we have
dyp =0 modp** and so ord,dsy = 5 — g — 1. ]

Combining Lemma 12 with Lemma 13, we have

LeEMMA 14.  There is an absolute constant ¢, so that

s~h—1

dy; =dy,; =0 modp s

where h is the least integer so that p* > ¢, min(M)*.

Lemva 15, The inequality g < s and dy; = dys = 0 mod p° imply p* <
2 min (M) ulzps/Z.

Proof. We recall
* S T,
A= * SZ T2 y dii = StT] - SjTi’ (B(wi; w,)) = (B(viy U,))[A]
* S, T,

Hence we have
(B, v)) = (Bw,, w))[A™"]
= diag(e, 0, 0)[A7'] mod p*

0 0 =
= diag(e, 0, 0) || * * * || by dy3 = d,, = 0 mod p®
* % %
0 % x\ /00 * 00 0
=(0 % * ooo>zooo mod p°.
* % %/ \00 0 00 %

Since (B(w;, w;)) # 0 modp and hence (B(v;, v;)) # 0 modp by the assump-
tion s(M,) = Z,, we have Q(v,) % 0 mod p. For i = 1 or 2, we put Q(v,) = ap®,
B(v, v) = bp* (a, b€ Z), which imply ap*Qv,) — bp* = dZlv,, vl =0
mod p*. Therefore s > g implies @ = 0 mod p*, and so @(v,) = 0 mod p*. Thus
s> g yields Q) =Q,) =0 mod p*, and hence P < Q) QWw,) <
16 min(M)“p* by (8). O

Now let us complete the proof of Theorem in the case of m = 3. If we put
g=s—h—1(<5s) for the number % in Lemma 14, we have psﬁh"l <
2 min(M) "/21)8/2, and hence
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ps/z é 2 min(M)x/th+l < 2C7 min(M)Sﬂ/sz

by virtue of p"7' < ¢, min(M)”* < p". Putting M:= M + Z[p *w,], M satisfies
the conditions (ii) and (iii). [M: M] = p° yields min(p"M) = min(M) and hence
we have

min(#) > p~* min(M) > 27*¢;* min (W) ~p”*

> 27 min(M) ™ min(M)*.
Thus, if we take a sufficiently large number C which depends on p, ¢,, we have
min(M) = min(M)". This contradicts our assumption. Thus we have completed
the proof in the case of m = 3. O

§2

In this section we show that the assertion R,, 5, (N) is true if m = 3.

THEOREM. Let m be a natural number = 3, and N a lattice on a positive definite
quadratic space W over Q with dim W = 2m + 1. Let M be a lattice on a positive de-
fimite quadratic space V over Q with dim V = m and suppose that M, is vepresented by
N, for every prime p. Let C, be a positive number. Then theve is a positive number C,
dependent only on C, and N so that if min(M) > C,, then there is a lattice M" on 'V
so that
(1) M’ contains M,

(11) Mj is primitively represented by N, for every prime p,
(iii) min(M") > C,.

Remark. In the case of m = 2, Theorem is false.
The following is immediate.

CoroLLARY. The assertion APW,,,,...(N) yields the assertion A, ;.. (N) if
m = 3.

The proof of the theorem is divided into several steps. Let M, N be lattices
in Theorem. We may assume that #(N) C 2Z without loss of generality. Put

S := {p|pis a prime which divides 2dN}.
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LEMMA 1. If a prime p is not in S, then M, is primitively represented by N,.
Proof. Since p is odd and N, is unimodular, N, is isometric to
01
L2 2D L <aw
A1 0
and so M, is primitively represented by N, by Proposition 5.3.2 in [5]. U

LEmma 2. If a prime p in S and indW, = m, then theve is a constant
¢,(N) dependent only on N, so that there exists a lattice Mi, on V, which satisfies
(1 ) Mi) D MP and [Mp . Mp] < CP(N)’

(i1) M, is primitively represented by N,.

Proof. Let K be a submodule of N, which is isometric to M, ; then by Lemma
3 in [3], there exists a submodule L of N, so that L = K and [N, N Q,L:
L] <¢,(N) for a constant ¢,(N) dependent only on N,. By virtue of L = K =
M,, there is an isometry ¢ from M, to L, and then we have only to put M,, =
o (N, N Q,L). O

Lemma 3. Let p be a prime. There exist two constants 7,(N), ¢,(N) so that there
exists a lattice M (D M) on V which satisfies
(i) [M: M) is a power of the prime p,
(11) M,, is represented by N, for every prime q,
(iii) ord,s(M) < 7,(N),
(iv) min(M) > ¢, (N) 2" min(T,), where a positive definite matrix Ty is defined by
M= p'Ty with n(T)Z, = 2Z, by identifying the corresponding matvix and a

lattice.

Proof. Let N; be a 2p"Z,-maximal lattice in N, and we assume that # is the

least positive integer. 7 is determined by N,.
Suppose ord,s(M,) = » + 13. Write

M= <pr+10+2a+c T0> ,

where T, satisfies n(T))Z, = 2Z, and @ = 1, ¢ = 0 or 1. Putting b := 5 + a, we
have pb > 2° > 36 and then Lemma 2 in [4] implies the existence of a positive
constant ¢(m, p) dependent only on m and p, and a matrix H € M,,(Z) so that
det H is a power of p, min(™**T,[H™'1) > c(m, p)p"* min(T,), p**T,[H "]
%0 modp’ and finally n(p™*“T,[H™']) C 2Z. Hence there exists a lattice M
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(O M) such that [M:M] is a power of p,s(MZ,>D p’“Z,,, min (M) >
clm, p) p" min(T,) > com, p)p"” min(7,) and finally n(M) C 2p"Z. Thus the
assertion (i) is clearly satisfied and then for every prime q ¥ p, Mq = M, is rep-
resented by N,. Since n(M)Z, < 2p’Z,, and Q,M = Q,M is represented by Q,N
and moreover N; (€ Q,N) is a 2p"Z,-maximal lattice, M, is represented by N,
and hence by N,. Thus the assertion (ii) is satisfied. The assertion (iii) is satisfied
for 7,(N) = » + 13. (iv) is satisfied for ¢,(N) := c¢(m, p).

Next suppose ord,s(M,) < r + 13; then putting M := M, the assertions (i),
..., (iv) are satisfied if 7,(N) = » + 13, ¢,(N) = 1.
Thus the assertion are true for 7,(N) := » + 13 and ¢,(N) := min{1, cOm, p)}.

O]

LemMA 4. There is a lattice M (D M) on V which satisfies
(1) any prime number dividing [M: M) is in S,
(i1) there is a constant c(N) depending only on N such that

min(M) > ¢(N) min(M)"?,

(111) Mp is primitively vepresented by N, if p & S, or if both p € S and ind W, = m,
(iv) if p € S and ind W, = m — 1, then there is a number 7,(N) dependent only on
N, such that ord,s(M,) < r,(N) and M, is represented by N,.

Proof. By Lemma 1, M, is primitively represented by N, if p € S. Using
Lemma 2 if p € S and ind W, = m and using Lemma 3 if p € S and ind W, =
m — 1, we have only to enlarge M. O

SuBLEMMA. Let 0 < k < m < n be integers and N,, K, regular quadratic lat-
tices over 4, with rank N, = n, rank K, = k. Moreover we assume that there is a
quadratic space U over Q, such that Q,N, = Q,K, L U and ind U =2 m — k. Then
there exists a constant ¢ = ¢(N,, K, m, k) such that if K= K, L K, is a regular
quadratic lattice of rank K = m and K is vepresented by N,, then theve is a submod-
ule Ky © N, which is isometric to K with [N, N Q,K,: K,] < c.

Proof. This is nothing but Theorem 2 in [3] (¥, #, m and M there, are re-
placed by k, m, n and N respectively). O

LEMMA 5. Let p be a prime. Assume that there is a decomposition M, = M, , L

M,, with rank M,, > 1, then there is an isometry o :M,— N, such that
[Q,0(M,) N N,:0(M,)] < c,(M,,, N,), where ¢,(M,,, N,) depends only on M,,
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and N,.

Proof. Put k = rank M, ,. By virtue of the sublemma, we have only to show
ind U 2 m — k where U is determined by W, = Q,M,, L U. We know

dmU=2m+1—k=2m—k +k+1=2m— k) + 3.
If, hence the inequality ind U < m — k holds, then we have

dmU<2indU+4<2m—k—1) +4=2m— k) + 2.
which contradicts dim U = 2(m — k) + 3. Thus we have ind U = m — k. OJ

Proof of Theorem.

By virtue of Lemma 4, we may suppose
(1) M, is primitively represented by N, if p € S or if p € S and ind W, = m,
(ii) ord,s(M,) < r,(N) if p € S and ind W, = m — 1, where 7,(N) is only de-
pendent on p and N,
(111) min(M) is sufficiently large.
We are assuming that #(N) C 2Z and M, is locally represented by N,. So we
have #n(M) C 2Z. Let a prime p € S satisfy ind W, =m — 1, and put {,:=
ord,s(M,). By the assumption (ii), we have 0 < ¢, < 7,(N). Let

X :={zx € N,|ord, Q@) < r,(N}.

The orthogonal group O(N,) and Z, act on X and the number of orbits is finite.
Denote the set of representatives of orbits by X. Hence X is a finite set and if
ord,@(x) < 7,(N) for x € N,, then there exist an isometry 0 € O(N,) and ¢ €
Z, such that ec(x) € X. For € X, we take a maximal lattice N, (C z" in N,),
and put the norm #(N,) = p"”‘”z,,. We take N, so that #,(x) is minimal, and put

n, = max n,(x).

zreX

n, is determined by #,(N), and hence only by N,.

Let M,=], L -+ L J, be aJordan decomposition, where J; is pb‘Zp—modular
and 0 < b, < b, <---<b, By virtue of s(M,) =s(J)), we have 0 < b, = ¢,
< 7,(N). If rank(/)) > 1, then noting that the number of possiblities of isometry
classes of J; is bounded by a number dependent only on #,(N) and m =
(rank N ~ 1) /2, Lemma 5 implies the existence of a lattice M’ such that [M:
M] < ¢,(N,) and Mj is primitively represented by N, where ¢,(N,) depends
only on N,. [M’": MIM’ C M implies (M’ : M)’ min(M’) > min(M) and hence
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min(M") = [M’: M1~ min(M) > ¢,(N,) > min(M). Since c¢,(N,) depends only
on N,, min(M’) is still large if min(M) is sufficiently large. Next, we assume
rank(J)) = 1. If b, = ord,s(J,) < n, holds, then applying Lemma 5 to M,,:=
Ji L J,, we can get the similar result. So we may assume

rank(J) =1 and b, > n,.

Now we take a basis {w,,...,w,} of M so that the matrix (B(w;, w,)) satisfies
the congruence condition in Theorem in §1, making it sufficiently close to bases of
T Jo Put z,0=wy, z,:= w, — B(w,, w) Q(w,)'w, (i = 2); then we have M,
=Z,w] L Z,1z,...,z2,]. Puts:= [(ord,Q(w,) — ord,Q(w,)) /2]; by applying
Theorem in §1 to the scaling of M, by PO =
w € Zlw,,...,w,](C M) such that

min(M + p"Z[w]) > min(MD"®, s(M + p~°Zlw)) < p"Z,
ord,(dZlw,, p~"w]) <2 + ¢,

—t .
p 7, there exists an element

Now we put
M:=M+p ""Zw).
Then we have

Mc M+ p " Zwl,
min(M) = min(M + p™*Z[w]) > min(M)""*,
ord,dZ[w,, p™""w] <2 +¢t, + 2n, < 2 + 7,(N,) + 2n,,

—=Ss+n,

and Z[w,, p w] © M is clear. Hence if M, is represented by N,, there is a lat-
tice M’ D M by Lemma 5 such that Mj is primitively represented by N, and [M’
: M1 is bounded by a number dependent only on N,, and it completes the proof of
the theorem. Since B(w, wl) is sufficiently close to 0, we have

M, =17,lz,...,2,] +p"Z,[w— Bw, w)Qw) "w]
=7Z,lz] L (Z,Mz,...,2,) +p "2, w— Bw, w)Qw,) 'w]).
Moreover we know that ord,@(z,) = ord,Q(w,) = t, < 7,(N) and M, is repre-
sented by N,, and hence there is an isometry o from M, to N, so that 0(z) = ex
fore €Z, and x € X.
Now ord,s(w;,) = b, > n, implies s(Z,lz,...,2,]) € p"Z, and s(M, +
p"°Z,[w]) C p"Z, implies

B(Z,,[zz,. . .,zm], p‘s*’n,,(w — B(w, wl)Q(wl)_lwl)) c pn,ﬂpzr
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Finally we have Q""" (w — B(w, w,) Q(w,) ‘w,)) Epm"”’Zp, since B(w, w,)
is sufficiently close to 0 and Q(» *w) =0 mod p” and hence we have

s(Z, 025,25 + 9L, lw — B(w, w)Q(w,) 'w,]) C p™Z,.

Hence z; in M, is represented by the maximal lattice N, (Cz" in N,) of
ord,n(N,) < n, because of Q,(z; in M,) < Q,x" and ord,n(z in M, = n,
Thus Mp is represented by N,, and hence we have completed the proof of the
theorem. O

§3

Let us see the behavior of the expected main term of the number of isometries
from M to N when # = 2m + 1. The expected main term (= Siegel’s weighted
sum) is given by

¢ (dN) " (@MD" @, (M, N,)
b

where ¢,, is a number independent of M and N, and a,(M,, N,) is the local densi-
ty. If a prime p is odd and both M, and N, are unimodular, then we know

- —m+1)/2 .
Q'p(Ml,, Np) = II a1 - p_e) X {1 + Xp( dNdM)p if24m
m1<e<zm 1 if 2| m,

where X, is the quadratic residue symbol. If we assume that m > 1 and M, is pri-
mitively represented by N, for every prime p, then

Me,(M,, N,) > c(N T +e,p™)
b b

where primes p in the left-hand side run all over the primes, and primes p in the
right-hand side run over the set

{p|p # 2 and N, is unimodular but M, is not so},

and €, = 0 or = £ 1 and the number ¢(/N) is only dependent on N. ¢, is defined
as follows: When M, /pM, is isometric to R of dimension 1 and the radical over
Z/pZ, ¢, is by definition x,(dRd(N,/pN,)), where d denotes the discriminant
and X, is the quadratic residue symbol. Otherwise we put &, = 0. The right-hand
side can tend to the zero when M varies. Note that there is a constant ¢ such that

MQA—7p" > cloglog ™.
plt
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If we do not assume the existence of the primitive representation of M, by N,,
then a,(M,, N,) can tend to the zero for a single prime p when M varies. It is
known (Corollary on p. 448 in [3]) that there is a constant ¢(M,, N,) so that

1 ifind W, =m,

a(’M,N)>c(M,N){_
oM Ny IV AT ifind W, =m— 1.

In our case, i.e. rank N, = 2 rank M, + 1, we have
a,(M,, N,) = [M,: M,)""d,(M;, N,)

for any lattice M, which contains M, and is primitively represented by N,, where
d,(M;, N,) denotes the primitive density. We expect [Mj: M,] € p“**”? where
p”" denotes the i-th elementary divisor of the matrix corresponding to M,. When
we are concerned with the asymptotic formula of the number of isometries from M
to N, we need a stronger estimate for error terms than in the primitive repre-
sentation case.

On the contrary, from the arithmetic view-point, the primitive representation
problem APW, ,.., vields automatically the representation problem A, ,,,, by
virtue of the validity of R, 5.1 (V).

Appendix

PROPOSITION.  Let M be a lattice on a positive definite quadratic space over Q of
dmV=m. Let M; G =0,...,7 be a lattice containing M on V, and let x; € M,
give the minimum of M, i.e. Q(x;) = min(M,) and suppose that a module K =
Zlx,...,x,] is of rank » and x, € QK. Then we have

=~

1

min(M,) > d(K + Zlz,]) [Z[z,) N M : Z[z,) N K N M)°
0

X [Zlz,) N K :Zlz,) N KN M)~ min(M).
Moreover the index [Z[x,) N K : Zlx,) N K N M divides [M, N (Z;_, M,) : M].

Proof. 1t is easy to see

=~

Q(x) = det(B(z;, z)),,», = dK
= d(K + Zlz,)) [K + Zlz,] : KI*.

i=1

Moreover the index [Zlx,]:Zlx,] N Mlx, € M implies [Z[z,)] : Z[x,] N
M1*Q(x,) > min(M). Hence we have
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jan Y

Q(x) = d(K + Zlx,) [K + Zlx,) : K1*[Z[x,] : Z[x,] N M1~ min(M).

Il

Here we have

(K + Zlx,) : KI[Zlz,) : Z[x) N MI™
= [Zlz,] : Z[x,] N K1[Z[z,] : Z[x,) N M]™*

= [Zlzx,] N M :Z[z,] N KN M{Z[x,) NK :Z[x] N KN M,

which implies the required inequality. Since the canonical mapping
14
@iz 0 B/ZLz) 0 K0 — (M, 0 (2 M))/M
i=1
is injective, it completes the proof. |

COROLLARY. Let M be a lattice on a positive definite quadratic space V over Q of
dmV=m. Let M;(i=0,...,m) be a lattice containing M on V such that
s(M) CZ fori=0,...,m and [M,: M] and [M,: M] are relatively prime if i # j.
Then we have

3

min(M) < II min(M,).

i

In particular, min(M,) > (min(M))" ™ for some i.

Proof. Let x; € M, give the minimum and may assume that K := Z[z,,.. .,
x,] is a module of rank 7 and x, € QK without loss of generality. Then Proposi-
tion yields

<

min(M,) > d(K + Z[x,)) [Z[x,] N M : Zlz) N K N M]*
0

1

]

x [Z[z,] N K : Z[z,] N K N M]™* min(M)
> d(K + Zlx D [Zlx) N K : Zlxz,) N KN M) ™ min(M).
On the other hand, the assumption implies s(K + Z[x,]) € s(Z-, M) C Z and

hence d(K + Zlx,]) = 1. Moreover M, N (X7-, M) = M implies [Z[z,] N K :
Z[x,] N K N M] = 1, which completes the proof. O

Remark. In the inequality, we need m + 1 lattices in gemeval. For example,

let p,< -+ <p, be odd different primes, and M = Zlv,,...,v,] with
(B(v,, v))) = diag(p?,. . .,p). We put

https://doi.org/10.1017/50027763000004773 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004773

MINIMUM AND REPRESENTATION 153

— -1
M, =Zlv,...,0,_, b; Vi Vye1ye . 0l

Then [M, : M] = p; and min(M,) = 1 are clear and min(M) < II_, min(M,) does
not hold.
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