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Let Tn denote the full transformation semigroup on the finite set n = {1, 2, ..., n), that
is the set of all mappings from h to n, with function composition as the semigroup
operation. In this paper algorithms are introduced to solve equations such as axmb = c
and ax = xb (a, b, c e Tn), which employ a representation of members of Tn as special
directed graphs.

Algorithms for equations in Tn. The object of study here is Tn, the full transforma-
tion semigroup on n = {1, 2, . . . , n}, which means the semigroup of all mappings from n
to itself under composition. This semigroup is to the theory of algebraic semigroups what
the symmetric group (the group of all permutations on a set) is to group theory. It is easy
to prove a "Cayley Theorem" to the effect that any semigroup S can be faithfully
represented as a subsemigroup of Tsi, the full transformation semigroup on the set S1

(the semigroup S1 is the semigroup S, with an adjoined identity 1, if 5 does not already
possess one (see [1])). The full transformation semigroup also enjoys the important
property of regularity, meaning that each element a e Tn has an inverse x (not necessarily
unique) in the sense that a = axa and x = xax.

In [3] the author introduced a method for the calculation of all square roots of a
given a e Tn, the full transformation semigroup on n = {1, 2, . . . , n), as an alternative to
the necessary and sufficient conditions given in [6] for or to be a square. The technique,
which relies on a representation of a as a special directed graph, is extended here to
furnish algorithms for the solution of the equations:

axmb = c (1)
and

ax =xb (a,b,ceTn, n 3=1). (2)
The following graph theoretic definitions and results come from [2]. A digraph is said

to be weak if it is connected when viewed as a graph. A functional digraph is a weak
digraph in which every point has outdegree one. An in-tree is a digraph with a sink (point
of outdegree zero), which is a tree when regarded as a graph.

RESULT 1 ([2, Theorem 16.5]). The following are equivalent for a weak digraph D.
(1) D is functional.
(2) D has exactly one cycle, the removal of whose arcs results in a digraph in which

each component is an in-tree with its sink in the cycle.
(3) D has exactly one cycle Z, and removal of any arc of Z results in an in-tree.

RESULT 2 ([2, Theorem 16.4]). A weak digraph is an in-tree if and only if exactly one
point has outdegree zero, and all others have outdegree one.
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A tree is said to be rooted, if it has a distinguished point called the root. An in-tree
has a natural root in its sink. In what follows a "tree" will always mean an in-tree.

We associate with a e Tn a digraph (which we shall also call a) on n labelled points,
where ij is an arc if ia =j. Each point of a has outdegree one, so that the components of
a are functional. Each component A of a can be pictured as a cycle ZA, together with a
family of in-trees rooted at the points of ZA. The distance between two points i and / on a
digraph, denoted by d{i, j), is the length of any minimal directed path from / toy, (if such
exists). For a point u of a component A we define d(u) = 0 if u e ZA, and d(u) = d{u, 0)
otherwise, where 0 denotes the sink of the tree of which u is a point. The vertex set of a
tree T, cycle Z etc. is denoted by V(T), V(Z) etc. The radius r(T) of a tree T is the
maximum of d{u) (u e V{T)). It is easy to prove by induction on the radius that the
direction of the arcs of a tree are implicitly defined once the sink has been specified.
Therefore if we adopt the convention that the cycles of a e Tn are directed anti-clockwise,
then the arrows may be deleted from the picture of a, with the exception that the picture
must provide indication of all cycles of order one (corresponding to fixed points) in order
to avoid ambiguity. In the following example this is done by shading the fixed point.

Let a be the member of T20 given by

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 3 4 5 6 4 2 9 10 11 12 13 14 11 14 17 17 17 17

Then the corresponding digraph is

9U

IOO

llO—

12O—

Ol5

—6l4

—O13

The range of a mapping a will be denoted by Va. The rank of a is the order of the
range of a, denoted by |Var| or rank a. The defect of a e Tn is defined as n - rank ex. The
components of the digraph of a correspond to the orbits of a as defined in [6]; the orbit of
i (ien) is {j en\ iar =jas for some r, s eN}. The stable range of a, denoted in [6] by
stran a, is defined as

s t r a n a = {ien\ie nak f o r all k = 1 , 2 , . . . , } .

Note that a|stran a is a permutation, stran a = stran ak for all k = 1, 2, . . . , and that the
points of stran a correspond to the points of the cycles of the digraph of a. Observe also
that stran a = Va1, where i is the least positive integer such that Va-' = Va'+1 in the
descending chain Va 3 Va2 3 . . . 3 Vak 2 . . . . It follows that a partitions h into two sets
corresponding to stran a and its complement, and that this partition is invariant under the
taking of powers, and thus the taking of /nth roots also. This key observation will allow
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the problem of solution of equations of type (1) to be split into two constructions
corresponding to the classes of this partition.

The digraph representation of members of Tn has been employed extensively by
Howie. In [4] Howie showed that the subsemigroup of Tn generated by E, the set of all
idempotents of Tn of defect one, is the semigroup S of all "singular" mappings:

(E) = S = {a e Tn |rank a < n).

(Note that Tn is the disjoint union of 5 and the symmetric group on h.) Later in [5],
Howie found the least integer k such that a e Ek for a given a eTn. The answer can be
expressed succinctly in terms of features of the digraph of a:

k = n-c(a)+f(a),

where f{a) is the number of fixed points of a, and c(a) is the number of cyclic orbits of
a. (An orbit is cyclic if it is a cycle of order at least two.)

We begin our attack on equation (1) with the special case where a = b equals the
identity map. In other words we seek all the mth roots of a e Tn. First we observe that it
is enough to solve

xp = a, (3)

where p is prime. For a subset of 5 of Tn define

SVm = (J aVm, where allm = {j8 | /T = a-}.
aeS

it follows that aVm can eventually be calculated provided aVp can be found for any prime
P-

After the fashion of [3], we approach our problem by first identifying features of a
typical pth power in Tn. To this end, let a e Tn and let A be a component of a. By the
order of A, denoted by o(A), we shall mean the order of the cycle, ZA of A. We may also
regard A as a mapping whose domain and codomain is the set of points of A; whereupon
we may speak of Ak as the digraph corresponding to the fcth power of the map associated
with A, while AUk means the set of all kth roots of A.

The map Ap has two fundamentally different forms according as p does or does not
divide o(A).

LEMMA 3. The map Ap has one component or p components according as
o(A) ^ O(modp) or o(A) = 0(modp).

Proof. Suppose that o(A) = k ̂  O(modp). Take i e V{ZA). Then the points icf,
ia2p, . . . , iakp are all distinct, for if iarp = iasp (1 =s r, s < k) then rp =sp(mod k), whence
r = s(mod&) as (p,k) = l. Hence r = s. We obtain V(ZA) = strand = s t r and =
{iap, ia2p, . . ., iakp}, and since these points are obviously in the same orbit in Ap, it
follows that Ap has but one component.
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On the other hand suppose that o(A) = kp for some k ^ 1. Then for any ieZA, kis
the least positive integer such that i = iapk. Hence stmn Ap = V(ZA) is partitioned into
o(A)/k =p cycles, each of order k, corresponding to the p distinct components of Ap.

Next we investigate the behaviour of the points of a tree T, rooted on the cycle of A,
when A is raised to the pth power.

LEMMA 4. Let T be a tree rooted on the cycle ZA of A. Denote r(T)(modp) by k. The
non-root points of 7 form the non-root points of p trees (7i, T2, . . . , Tp = To) in Ap that we
shall call the pth order offspring of T. Furthermore, r(T1) = r(T2) = . . . =r(Tk) =
r(Tk+1) + 1 = r(Tk+2) + 1 = . . . = r(Tp) + 1 if Jfc # 0, and all radii are equal if k = 0. If
p | o(A) then the Tlt . . . , Tp are rooted one on each of the p distinct cycles of the
components of Ap. If p Jf o(A) then Tlt . . . , Tp are rooted on the unique cycle of Ap.
Regard the points of ZA in anti-clockwise order as the integers modulo o(A) beginning with
0, the root of T. Then the roots of Tlt T2, . . . , Tp are respectively p — 1, p — 2, . . . , 0.

Before formally verifying this lemma we illustrate the behaviour described by means
of a pair of examples corresponding to the case p \ o(A) and p\o{A) respectively. In
both examples p = 3 and two vertices are labelled by the same letter if they occur in the
same tree in the offspring triple. In the first case A consists of a single component of order
three.

EXAMPLE 1.

a b c a b c a

We can think of A as a member of Tl5 with the points labelled by the integers 1 to 15 in
some manner. Consider A3. The digraph of A3 is thus

T3=TU

o-»-o-o
where the direction of arcs is understood to be towards shaded points, and the points in
the stable range still carry their original labels. The second example involves a single
component of order four, but in all other respects resembles our first digraph.

EXAMPLE 2. b
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Since p)(o(B) it is easy to see that B3 has but one component, and it is also of order four.
The tree of B splits into an "offspring triple" exactly as in the first example.

In both examples r(T) = 7 and k = r(T)(modp) = 7(mod 3) = 1.
In accordance with the lemma we have r(71) = r(T2) + 1 = r(T3) + 1 = 3. Note also

that in both examples the positioning of the roots of the offspring triple is consistent with
the statement of the lemma: the roots of the triple in order are a, b, c, which correspond
to the order that occurs in the inverse of the cycles of A and B. Also the root of T3 = To is
that of T.

These examples serve to indicate that our problem of reconstructing pth roots will
split into the related tasks of building root cycles of the given collection of cycles, together
with parent trees of collections of offspring trees, and combining the two in a consistent
manner.

Proof of Lemma 4. The non-root points of T are not members of stran A, and so are
not members of stran Ap. It follows that the non-root points of T form the vertices of a
number of trees in Ap. Observe that for points u and v of T, d{u, 0) = d(v, 0) = i(modp)
if and only if u and v are points which appear on a tree of Ap rooted at p — i. Hence T
gives rise to p trees (T1, T2, . . . , Tp) in Ap, with u, v e V{Tt) if and only if
d(u, 0) = d(v, 0) = i(modp) and Tt is rooted at p — i, i = 1, 2, . . . , p. (Note that it is
possible that some of the 7] may have no non-root points.)

Moreover r(Tt) equals the number of vertices of V{Tt) on any maximal path of T,
whence r(T,) = r(T2) = ...= r{Tk) = r{Tk+l) + 1 = r(Tk+2) + 1 = . . . = r(Tp) + 1, unless
k = 0 whereupon all the radii are equal. The remaining part of the statement follows from
the proof of Lemma 3.

We may now give an algorithm for constructing the pth roots of a e Tn, up to the
problem of constructing all the parent trees T of a given offspring p-tuple
(Tlt T2,..., Tp).

Again it is perhaps more instructive to work from the particular to the general.
Suppose we were given a e T15 whose digraph had the form of A3 in our first example,
and were asked to construct all its cube roots. We might begin by examining the stable
range and asking ourselves, what cycle structures give, upon cubing, a triple of
one-cycles? Since any cube root has the same three point set as stable range, the stable
range of any cube root must consist of a three-cycle, a two-cycle and one fixed point, or
three fixed points. Lemma 3 precludes the second possibility (the cubing of a 2-cycle
results in a 2-cycle). A cube root with three fixed points is also an impossibility as a little
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careful thought reveals. Suppose that /J3 = a and that stran fi consisted of three
one-cycles. Let T be a tree of B with sink the fixed point a say. In B3, T corresponds to an
offspring triple of trees (Tlt T2, T3) rooted on a, and the radii of these trees differ by at
most one. Obviously the trees rooted on a in A3 cannot be gathered into such triples (and
the same applies to b and c). Hence there is no such B. Therefore the stable range of any
cube root of A3 must be one of two possible 3-cycles. Which ever 3-cycle is chosen, the
trees rooted around the fixed points of A3 can be listed in offspring triples. For each such
triple a parent tree must be constructed and rooted at an appropriate position on the root
cycle. There are two possible complications that we should note. It is possible for an
offspring triple to contain one or two trivial trees of radius zero (the non-trivial trees in
the triple would then have radius one). The second difficulty is apparent upon
examination of the second (or third) component of A3 with fixed point labelled by b. The
tree T2 could equally be regarded as a pair of trees, as the in-degree of the sink b is two.
These possibilities must be remembered when one is required to construct all pth roots of
a given mapping. Nevertheless in this case it is clear that the only possible way of
collecting the trees of A3 into a collection of triples in which the radius difference within
each triple is at most one is to have one triple consisting of Tu T2 and T3 in some order.
Furthermore the first entry in the triple must be T1; because its radius exceeds that of T2

and r3. This leaves us two choices, and so to be definite let us select the triple
(Tlt T2, T3 = To). The next task is to construct a parent tree T, and place the sink of T at
an appropriate point on the chosen root cycle to ensure that we have a cube root of A3.
We know in this case of course, this is possible in at least one way because we possess one
cube root in A itself. A discussion of an algorithm for the construction of all parent trees
of a given triple, or more generally of a given p-tuple, will be temporarily postponed. Let
us fix attention on the known parent T of (7J, T2, T3). The last statement in Lemma 4
shows that the "root cycle" is determined by the ordering of the offspring triple: in this
case the roots of (7i, T2, T3), regarded as a cycle, is the inverse of the root cycle. Hence
the root cycle is (abc)~l = (cba). The root of the parent tree T is c, the root of T3 = To.
Similarly if the offspring (Tu T3, T2) is chosen we can construct one cube root for each
parent tree (but, as we shall show later, there are none), T of this triple: the parent cycle
in this case would be (abc) and the root of T' would necessarily be b, the root of T2.

Next consider the problem of finding the cube roots of the mapping given by fi3.
Since B3 has just one cycle, the same is true of all its cube roots. Indeed it is clear that the
stable range of any cube root is the unique cube root of the given cycle, (abed), which is
(deba). Once more the trees must be listed in offspring triples. For each parent T of the
triple (Tu T2, T3) there results a cube root, with the root of T placed at c. As mentioned
above, the other conceivable ordering of the offspring triple, (Ti, T3, T2) has no parent.
However that there are no more cube roots of B3 can be deduced without knowing this,
because the positioning of the roots of the trees around the cycle of fl3 is inconsistent with
these trees forming the offspring triple (Tu T3, T2); the root cycle is (deba), whence it
follows from the last statement of Lemma 4 that order of the roots of the offspring triple
must be three consecutive members of the inverse cycle (abed), but the roots of
(Tl, T3, T2) are in order a,c,b.
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The problem of constructing pth roots falls naturally into two parts: the problem of
reconstructing the stable range of the root, and the problem of building parents of pth
order offspring, while both procedures must be carried out in a manner consistent with
the positioning of the offspring trees. The problem of recognizing whether or not a given
p-tuple of trees has its roots positioned in a consistent fashion is dealt with in the
following algorithm which solves the equation xp = a modulo the construction of all
parents of a given offspring p-tuple.

The Root Algorithm. Let a e Tn. Then all the pth roots of a are formed as follows:
collect the components of a into p-tuples (Alt A2, • • • , Ap) where either

(i) Ax = A2 = . . . = Ap = A say, o(A) # O(modp) and the trees of ZA are collected in
offspring p-tuples (Tl, T2,. . . , Tp) (every tree appearing exactly once) where the length
of the path between the roots of T,+1 and 7}(i = 1,. . . , p — 1) is k, where k is the least
positive integer such that kp = l(mod o{A))\ (we call such a positioning of the roots of the
Ti consistent); or

(ii) the Aj are all distinct, of the same order, and the trees rooted on the ZA. are
gathered in offspring p-tuples (every tree appearing just once) (Tly T2, . . ., Tp) with one
tree in each p-tuple from each A{.

In case (i) there is a unique pth root Z'A of the cycle ZA. A pth root of A results by
constructing a parent tree T for each p-tuple (7i, T2, . . . , Tp) with root on Z'A as the root
of Tp, and all pth roots of A arise in this way.

In case (ii) each p-tuple offspring (7j, T2, . . . , Tp - To) defines a unique pth root
cycle of order o{At)p, for which the roots of Tlt. . ., Tp appear consecutively clockwise.
It is thus necessary that the offspring p-tuples of the At be rooted consistently, meaning
that each p-tuple defines the same pth root cycle. If this is the case, a pth root of
(Al, A2, . . ., Ap) results by constructing the pth root cycle, and rooting one parent tree T
of each (7i, T2, . . . , Tp) at the root of Tp on the pth root cycle. What is more, all pth
roots of (^4], A2, . . . , Ap) arise in this way.

Most of the above has been shown in the foregoing analysis. The first detail which
has not been established is that concerning the path length between the roots of Ti+1 and
Ti in case (i). To this end suppose that /3P = a, and that B is a component of /3 such that
Bp = A. Any tree T of B gives rise to an offspring p-tuple (Tlt T2,..., Tp) where the
roots of Ti+l and 7] are points which are anti-clockwise adjacent in ZB. Now
V(ZB) = V(ZA) and so the length of the path between these roots in ZA will be k, where k
is least such that kp = l(mod o(A)). Continuing in case (i), let ZA be given by (12 . . . r)
where p\r. Then ZA has as its unique pth root cycle the cycle in which i (1 <i<r) is
followed by i + k (mod r), where k is the unique solution to kp = l(mod r), because this is
precisely the condition that / + l(mod r) occurs exactly p places after i in the pth root
cycle.

Finally in case (ii), given the ZA. (1 < i ^ p ) , there is in general more than one pth
root cycle ZA(o(Ay~1 such cycles in fact). Note that in ZA any p consecutive members
form a transversal of the ZAj, and indeed once a transversal of the ZA. is chosen, there is
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exactly one way to complete the cycle ZA. However, the roots of (Tp, Tp_u . . . , TO will
form p consecutive points in Z(A), and so there is a unique pth root cycle of the ZA.
which is consistent with the positioning of the roots of the 7J. This establishes the remark
on consistency.

We next seek an algorithm for the construction of all parent trees T (if any) for a
given p-tuple of trees {Tu T2,.. . , Tp). We have thus far considered such a p-tuple as a
subgraph of the digraph of some aeTn. It now becomes convenient to consider the
p-tuple (7i, T2,. . . , Tp = r0) of trees with disjoint sets of non-root points without
reference to any particular or. A parent tree T is then considered to be a tree which has as
non-root points the non-root points of Tly T2, . . . , Tp and the same root as Tp, with the
additional properties that for two vertices u,v e V(T), d(u, u)^O(modp) if and only if
u,v e V(7J) for some i = 1, 2, . . . ,p, and for such a pair of vertices d(u, 0)>d(v, 0) if
and only if d(u, 0,) > d(v, 0,), (where 0 and 0, are the sinks of T and of Tt respectively).

We shall picture this parent T as rooted on some unspecified cycle ZA of some
component A of a mapping a. The offspring of T which results when a is raised to the
pth power is then indeed (71, T2, . . . , Tp). The corresponding roots of the offspring
p-tuple, 0i, 02,. . . , 0p = 0 will be points of the unspecified cycle. They will be distinct if
and only if \ZA\^:p. However this is of no consequence in the following parent tree
algorithm.

Suppose that a parent tree T exists. Take a maximal path P of T from an endpoint u
of Tto the sink 0, and label the points of P by t, t- 1, t-2,. . ., 0 where d{u, Q) = t>\.
The path P corresponds to maximal paths Plt P2, . . ., Pp = Po of T1, T2, . . . , Tp re-
spectively, such that |Pi| = \P2\ = . . . = |P*| = |P*+1| + 1 = . . . = \PP\ + 1 where t = fc(modp)
and \Pj\ denotes the length of the path Pt (note here we take k=p if f = 0(modp):
whereupon the statement also holds in the case where all lengths are equal).

We shall say that a point u of Pt is at position j if d(u, 0,) =/. Now consider a tree T
rooted at position l = rp+j on P (0<j<p — 1). The sub-tree 7" of T gives rise to a
p-tuple of its own, (T[, T2, . . . , T'p = T'o) rooted on the paths P;+1, Pj+2, . . . , Pp, Px,
P2,...., Pj respectively. This follows as ueV(Tl) if and only if d(u, I) = /(modp)<=>
d(u, 0) = i + rp +j(modp) =j + i(modp). Furthermore, T[, T2, • • • , Tp-j are rooted at
position r on Pj+U PJ+2,..., Pp respectively, while T'p-j+x, T'p-.j+2,..., T'p are rooted at
position r + 1 on Plt P2,..., Py respectively. We shall also call (T[, T'2,...,T'p- T'o) a
consistently rooted offspring p -tuple of 7".

Again let us illustrate these observations by means of the following example.

EXAMPLE 3. 8 9 10 11
CHO-OOI T

0 1

Obviously T has a unique maximal path P. The third order offspring of T are (Tu T2, T3):
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0 3 6

• -O-O
10 OS 9O

The maximal paths P,, P2, P3 corresponding to P are

(P-O-O-%, O-O—•, O-O—•).
7 4 1 0 , 5 2 0 2 6 3 0

We have r = 7 = l(mod3), hence k = l, and in accord with this we have 3 = |Pi| =
11 10 9 8 1

|P2| + 1 = \P3\ + 1. Our sub-tree 7" of 7 is (O—O—O—O—•), is at position 1 of P,

and 1 = 0.3 + 1, giving r = 0, j = \ in this case, and (T{, T2, 73) = (O—O—•,
11 8 O7

O—•, O—•). Hence we find that T[, T2 and 73 are rooted on P2, P3 and P, respec-
tively with T[ and T2 rooted at position 0 while 73 is rooted at position 1, in accord with
our general description.

These observations allow construction of all parent trees of a consistently rooted
p-tuple (7i, T2, . .. , Tp) in the digraph of a e Tn.

The Parent Tree Algorithm. Let (71, T2,. .., Tp) be a consistently rooted p-tuple
of trees occurring in the digraph of ae Tn. The following construction yields all parent
trees of (Tu T2, . . . , Tp).

Assume inductively that we may construct all parent trees of any non-trivial,
consistently rooted p-tuple (T[, T2, • • . , T'p) for which the total number of points is less
than the total number of points of (Tlt T2, . . . , Tp). (There is no difficulty starting this

inductive argument, for the p-tuple (O—#, O , . . . , O) has a unique parent tree in

(O—•)). Select a p-tuple (P,, P2, . . . , Pp) where P, is a maximal path to the root 0, of %
such that |Pj| = \P2\ = . . . = \Pk\ = \Pk+l\ + 1 = |Pfc+2| + 1 = . . . = \PP\ + 1 for some k e
{1, 2 , . . . , p}. Furthermore do this in such a fashion that the sub-trees occurring on the
paths Pi, P2,. . . , Pp can themselves be listed in consistently rooted offspring p-tuples
(T[, T2,..., T'p) meaning that T[, T2, . . . , T'p occur on P,+ 1 , Pj+2, . . . , Pp, Pu . . . , P;

respectively (for some 0 s / < p — 1) with T[, T2, • • . , Tp-j rooted at position r for some
r > 0, and T'pH+u T'p_j+2, ... ,T'P rooted at position r + 1.

Next, construct a path P from (Pu P2, . . . , Pp) as follows: relabelling the points of P,
from the sink as 0,0, 0(1, 0,2, . . . , the points of P from the sink 0p0 are: 0p0, 0 n ,
02i, • • •, 0pl, 012, 0 2 2 , . . . , 0 p 2 , . . . , 0lf, 0 2 , , . . . , 0to, where t = \PX\ = |P2| = . . . = \Pk\.
For each p-tuple (T[, T2,.. . , T'p) construct a parent tree 7" rooted at position rp + j on
P. The tree T so constructed is a parent of (7i, T2,. . . , 7J,) and all parent trees are
constructed in this way.
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As an example to illustrate this algorithm let us find all parent trees of the triple
(Tu T2, T3) of Example 1:

1 2 3 4 6 7 8 9 10 12 13 14 15

There is just one choice of Px and P3 and three choices for P2. Let's begin with

We obtain P =

1 2 3 4 6 7 8 12 13 14

'. This gives the sub-tree triple

', 6—•, 6—4) with j = 1, r = 0,

o
11

whence Tl, 7^ are positioned at 0 and T'3 positioned at 1. Repeating the procedure we
get

10 9 8 15 14 5 3

(PI, P2, P3) = (0-O-«, O-9, O-#)

and thus
3 9 15 5 10 11 9 15 5

P' = • - 0 ^ 0 1 T 0 0 . Finally there remains (T'{, T\, Tl) = (O-%, O, O) 0" = 0, r = 1)
giving P" = •—O. Combining P, P' and P" we get a parent tree

14 3 7 13 2 6 12

T:

Attaching T to the cycle (14 8 4) in effect gives us our original cube root A of A3. There
are another two which can be constructed by selecting different choices for P2.

(pIf p2, p3)=(6-6-6-4,6-6-4, &-&-%).

,5-4,6-4) = (p;, Pi, p3) v = = o).
3 7 15 5 6

r;, r2, n) = (6-4 ,6 ,6) = (p;, PS, p$) (/ = r = i)
2 11

P" = •—O. Combining, we get another parent tree
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14

The third choice for P2 is O—6—•. This will simply interchange the roles played by the
points 10 and 11 in the construction, thus giving a third parent R, identical to 5 except
that the labels 10 and 11 are swapped.

The other conceivable offspring in A3 is (Tu T3, T2). However the algorithm to
4 3 2 1

construct parents breaks down when applied. We take (P1; P2, P3) = (•—O—O—O,
14 13 12

•—O—O, P3), where there are three possible choices for P3. However, regardless of
which P3 is chosen, P3 has a radius two subtree positioned at zero, which must be the first
entry of a triple of the form (T[, T2, T'3) with T[ on P3, T2 on Pu T3 on P2 and T[ rooted
at 0, T2 and T3 rooted at 1 (as j = 2). Plainly, there is no suitable T3 on P2.

Therefore we have in effect found all three cube roots of our mapping A3 of Example
1.

It is now possible to solve our equation (1) axmb = c(a, b, c e Tn). First consider the
equation ayb = c. The map or is a solution if and only if (ia)a e (tc)^"1 for all i e n. All
such a can easily be found. We then solve the original equation axmb = c by calculating
{v e Tn I ayb = c}1/m using the above algorithms repeatedly.

As an example, let us find all cube roots of a e T32:

D

The only listing of the components which might be consistent with The Root Algorithm is
(A, A, A), (B, C, D) and (E, E, E). (The ordering of the components within the triple
(B, C, D) is of no importance: any ordering leads to the same analysis). The cyclic
component A has a unique cube root in (1432). Next we consider (B, C, D), and we try

to form a parent tree for the triple (Tu T2, T3). We take Px = O—O—•, P2 = 6—6—#,
17 18 11 6

P3 = O—•. There is only one sub-tree on Px, P2 or P3, the tree O — • occurring at the
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second vertex of 7i. This can be associated with the trivial trees at the points 13 and 17 of

P2 and P3 respectively, to give a triple (T[, T2, T3) = ( 6 — • , O, O) in accordance with
the Parent Tree Algorithm (p = 3, r = 1, j = 0, k = 2). This gives the parent tree T

18 6 13 17 5 12

11

The cube root of the triple of cycles (ZB, Zc, ZD) defined by this offspring triple is
10 9

(18 14 7 19 15 8 20 16 9). The tree O — • is easily accommodated (clearly 10 must be
10 9 16 20

mapped to 20 in the cube root) but formally we list the triple (O—#, O, O)
10 20

(p = 3, k = 1), and form the parent tree O — • with consistent positioning of the roots

(i.e. this triple defines the same parent cycle). The other possible choice for P, is
11 6 7

O—O—•; this leads to a cube root in which 12 is mapped to 11. Also there is another
possible listing of the trees, viz. (T2, 7i, T3), which leads to two distinct cube roots of
(B, C, D), giving four in all.

Finally we deal with the component E. One cannot argue that since there are four
trees rooted on the fixed point, they cannot be listed in offspring triples, as a tree may
have more than one branch at its root. If a cube root exists, the trees of E must be listed
in a triple (Tu T2, T3) with exactly one of the trees with two branches at the root. Also Tx

must contain the topmost tree (containing the point 21), as it has a maximal path whose
29 28 24 30 31

length exceeds any other. It is also true that one of T2, T3 must be O—O—•—O—O.
29 28 24 31 30 24

The alternative would see O—O—• or O—O—• as one of T2, T3; to be definite let us
29 28 24

suppose it is O—O—•• However, then the member of (Tu T2, T3) with two root branches
would have a subtree of radius two at its root, which could not be listed in a suitable

29 28 24

subtree triple (T[, T2, T3) as O—O—• has no non-trivial subtrees. Hence we attempt to
construct a parent for (7i, T2, T3) as given below:

7", T2

21 22 23 24 26 25 24 29 28 24

We choose P, = (O—O—O-%), P2 = (O—<>-•), and P3 = (O—O-*) . The subtrees
of 7i, T2, T3 can then be accommodated in just one way consistent with the criteria of the
parent tree algorithm: (T[, T2, T3) = ( 6—6—•, O-%, O—%) (p = 3, r = 0, j = 2, k = 1
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and rp+j = 2), as the radius of T[ exceeds the radii of the other two subtrees. This
allows us to construct a parent tree T:

24 23 25 28 22 26 29 2!
•-O—O-O-O-O—O—O

o-oo-o
30 J2 27 31

In the previous construction the total number of choices for Px, P2, P3 was 1 x 2 x 2 = 4,
leading to four distinct cube roots of E (although the reader should be aware that
different choices of the maximal paths Pt does not automatically lead to different roots;
e.g. see the example of [4]). It is also conceivable that (Tu T3, T2) might be an offspring

31 30 24

triple, but this is not the case, for then the triple of subtrees {T\, T2, T'3) = (O—O—#,
O—#, O—•) which results is not an offspring triple (p = 3, r = 0, / = 1, k = 1) as T2 is
positioned at r + 1 = 1 instead of the required position of r = 0.

Therefore the total number of cube roots of a is 1 x 4 x 4 = 16. The one correspond-
ing to our detailed calculation is:

1 2n
As another example we find all the 6th roots of the idempotent a e T4

The full details are left to the reader, with the reminder that offspring tuples involving
one-arrow trees may include trivial trees with no non-root points. The square roots of a
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a:

the two unnamed square roots are clearly not cubes. The sixth roots of a are then the
cube roots of a and /3, which are:

1 3n and

respectively.

For a given a e Tn the subset Ca = {b\ab = ba}, which consists of all members of Tn

which commute with a, is a subsemigroup of Tn (Ca is non-empty as it includes all powers
of a). The determination of Ca is equivalent to the solution of the equation ax = xa. We
next provide a method of solution for the more general equation ax=xb (a,b e Tn).

THEOREM 5. Given a,b e Tn construct xeTn (if possible) as follows. For each com-
ponent A of a choose a component B of b such that o(B) \ o(A). Take r0 e V(A) such
that d(r0) is maximum. Choose foe V(B) such that d(f0)<d(r0). Then for all fcaO put
roa

kx = fob
k (we interpret a0, b° as the identity map on n). Next carry out the following

procedure until sx is defined for all s e V(A). (*) Choose s e V(A) such that d(s) is
maximum amongst all s eV(A) with sx not defined. Let k be the least positive integer such
that sakx is defined. Choose a directed path so—*sx^*. . .—*sk^1^'Sk = sakx in B. Define
sa'x = s, (0 < t < k).

The map xeTnso constructed is a solution of ax =xb and all solutions to this equation
arise from this procedure.

Proof. Let k, I be non-negative integers and suppose roa
k = roa

k+l. Then roa
k e ZA,

and thus rob
k e ZB since d(r0) < d(r0). Now o(B) \ o(A) \ I, whence rob

k+l = rob
k; thus the

rule for x is well-defined, at least for all the images of r0 under a. Observe that each point
of ZA is a member of {roa

k \ k ^ 0}. Furthermore, (roa
k)ax = roa

k+1x = fob
k+1 = rob

k. b =
(roa

k)xb, whence ax and xb agree on roa
k for all k s 0.

Now suppose that the procedure (*) has been carried out i > 0 times, and that for all
members 5 of V(A) for which sx has been assigned, sx is well-defined and sax=sxb.
Denote the members of V(A) chosen during the procedure (*) at each stage by r0,
rY). . . , r,. Procedure (*) is now repeated with choice r,+1. Let k be the least positive
integer such that ri+1a

kx is defined. Since ri+1a'$ZA for all t<k, it follows that
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d(ri+i) = k + d(ri+xa
k). Let ry (0 ̂ y ^ i) be such that ri+xa

k = ̂ a' for some integer t. Then
t ^ k, as otherwise we would have

d(rj) < d(rj, ri+xa
k) + d(ri+xa

k) = t + d(ri+1a
k) <k + d{ri+xa

k) = d(r/+1),

which contradicts the maximality condition on d{rt). A required directed path in B is
given by

Tja'~kx —> rja'~k+1x -*...-*• rfl'x

which we write as

« — » « — > —><; - r nkr

Define ri+1a
px = sp(0^p </c). Clearly this is well defined and furthermore, for 0 s p <

k-\,

ri+xa
pax = r,+1a"+1je = sp+l = r,a'-*+p+1* = ria-

k+"ax

= rja'~k+pxb (by induction) =5pjic6 = ri+la
pxb

as required. Since the above procedure must terminate at some stage, this completes the
direct half of the proof.

Conversely, suppose that ax=xb (a,b,xeTn). Suppose that i, jen are such that
iak =ja' for some k, 1^0. Then ixbk = iakx =ja'x =jxb', whence ix and/* are in the same
component of b. Hence for each component A of a, x defines a map, which we also call
x:V(A)-*V(B), for some component B of b. Next suppose that ieZA and that
o(A) = k. Then, as above, we get i = iak, whence ix = ixbk, from which it follows that the
restriction mapping x \ ZA maps into ZB and moreover o(B) \ o(A).

Next let rQeV(A) be such that d(r0) is maximum. Then d{rox)^d(r0), for if
d(r0) = p < d(rox) we would have roa

p e ZA, but roa
px = r^xbp $ ZB, contrary to what has

been proved. Hence the mapping x: V(A)-> V(B) which sends r0 to TQJC is consistent with
the initial procedure of the algorithm, and agrees with x on {roa' | f>0}. Suppose
inductively that we have repeated the procedure (*) i s O times, and that the values
assigned to the map x: V{A)—* V(B) that is being constructed so far agree with the map
x: V(A)->V(B). We repeat the procedure and begin by choosing a suitable ri+1. Let k be
the least positive integer such that ri+xa

kx = ri+la
kx is defined. Denote ri+xa'x by

5,(0<r<&). Then s0—>sx —*...-*sk is a directed path in B, as for all 0 s / < k — 1,

s,b = ri+xa'xb = ri+1a'ax = ri+xa'+1x = s,+u

as required. We then define ri+la'x(0^tsk -1) in accord with this path, that is
ri+xa'x = ri+xa'x, whereupon x and x remain in agreement. This establishes that the
mapping x does arise out of the procedure laid down in the algorithm, thus completing
the proof.

For the sake of the completeness we make a passing comment on the relatively
simple equations ax-bx and xa = xb (a, b e Tn). Note that ax = bx if and only if
{(ia, ib) e kerx for all i e n}. Hence this equation defines a partition P of n (jPk if there
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exists ien such that j = ia, k = ib) and the solution set of the equation is {a e
Tn | ker a^P}. This set forms a right ideal of Tn containing the constant functions. The
equation xa = xb can be solved through consideration of the (perhaps empty) set Y,
which is the largest subset of n such that a\Y = b\Y. Clearly xa = xb if and only if
Vx c Y. The order of the solution set is then \Y\" and, unless empty, this set forms a left
ideal of Tn.

As an application of our Theorem 5, we determine those members a e Tn for which
Ca is as small as possible.

THEOREM 6. Let aeTn. Then Ca = {ak:k>0} if and only if a has a unique
component and a unique endpoint, or every component of a is cyclic and the orders of
these components are pairwise relatively prime.

Proof. Suppose that a has a unique component A with a unique endpoint r. By the
algorithm of Theorem 5 we see that a member x e Ca is determined by rx = rak for some
A: > 0, whereupon it is evident that x = ak. Next suppose that all components of a are
cyclic, and that the orders of these components are pairwise relatively prime. Since the
orders are relatively prime and a has no fixed points, it follows that for any x eCa and
component A, the function x maps V(A) to itself. Hence if the (cyclic) components of a
are Aly A2,.. . , Ak say, we have that x \ V{A() = a'' \ V(Aj), for some positive integer f,
(1 < i < k). By the Chinese Remainder Theorem, the system of congruences

y = f,(mod o(A,)) (i = 1, 2, . . . , k)

has a unique solution mod o(Al)o(A2)... o(Ak), which we denote by t. Hence
x | V(Af) = a' | V(Aj), for all i = \,2, . . . , k. In other words x = a' as required. This
completes the direct half of the proof.

Conversely, suppose that a has two distinct components A and B. Suppose that
o(B) = 1 so that V(ZB) = {p} say. Define x e Tn by

if HV{A),
if ieV(A).

By construction we get ax = xa. However x £ {ak \ k s 0} as for i e V(A), iak ¥=p = ix, for
every k > 0. Hence if Ca = {ak \ k a 0} and a has two distinct components, then a has no
fixed points. Suppose that a satisfies the conditions of the previous sentence but that the
component A of a has an endpoint r. Define x e Tn by

\i if i$V(B),
lia if ieV(B).

Again, by construction, x e Ca, but suppose x = ak for some k 5:0. Then since rx = r, and
r $ Vfl, this implies k = 0; that is x is the identity. But x \ V(B) ¥= 11 V(B), as a has no
fixed points.

We conclude that if Ca = {ak \k^ 0} then any pair of distinct components A and B of
a are cyclic, of orders mx and m2 say. Consider again the mapping xeCa introduced in
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the preceding paragraph. If x = ak for some £ > 0 then k = kim^ = k2m2 + 1 for some
non-negative integers kr and k2. But then kxmi — k2m2 = 1 which implies that mx and m2

are coprime.
Finally suppose that a has a unique component A with two distinct endpoints r and s

and that

Let / be the least positive integer such that sal = ra' for some positive integer t. Observe
that t > / as d{r) > d(s). Define x e Tn by

sa"x = ra'-'+p for all 0 < p < /,

observing that the definitions coincide when p = /. Now x eCa, as if i $ {sap \§<p <
1-1} then ixa = ia = iax, while 5«pxa = ra'~'+p+1 =sap+1jc = sapax for all 0 < p < / - l .
Finally suppose that x-ak for some <:>0. Since /•* = r, and r $ Va, it follows that k = 0.
But ;t is not the identity, as sx = ra'~'^s because s$Va and r^s. This completes the
proof.

The author wishes to acknowledge the support of a Deakin University Post Doctoral
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